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An enrichment wall-model for spectral element method (SEM) is developed and imple-
mented in the high-order Nek5000 CFD solver. The enrichment method augments the poly-
nomial solution with a non-polynomial enrichment function that represents a feature in the
flow that cannot be accurately resolved with the polynomial basis. The method is applied to
wall-modeling by enriching the polynomial solution in the wall-adjacent elements with an ana-
lytical law-of-the-wall function representing the mean velocity near the wall. This enrichment
function is able to represent the high-gradients near the wall which allows the polynomial
modes to represent the turbulent fluctuations. It is shown that the proposed method greatly
improves solution accuracy on under resolved grids as compared to the traditional spectral
element method by better capturing the shear stress at the wall and reducing unphysical oscil-
lations. Additionally, the enrichment wall-model shows good agreement for coarser grids than
traditional shear stress wall-models. The method is applied to turbulent channel flow simu-
lations for a range of Reynolds numbers in Reynolds-averaged Navier-Stokes and large-eddy
simulations. The results show great improvements in the prediction of turbulent shear stress
and the log-law profile.

I. Introduction
High Reynolds number turbulent flows are commonly found in engineering systems. Correctly simulating turbulent

wall-bounded flows is crucial for applications, such as turbomachinery and internal combustion engines [1]. In such
applications, accurately resolving the shear stress and thermal gradients at the wall is critical to compute the quantities
of interest. However, excessive computational costs make simulating the full systems infeasible because they need to
resolve the smallest turbulent eddies near the walls.

In most cases in industry, this computational cost issue is addressed by using Reynolds-Averaged Navier-Stokes
(RANS) simulations where only the mean flow solution is computed. For some problems, these methods are sufficient,
but for transient simulations, such as simulations with flow separation or laminar-to-turbulent transition, RANS methods
are unreliable. For such problems, the turbulent scales must be resolved throughout the domain in direct numerical
simulations (DNS), or in the near-wall regions and modeled elsewhere in wall-resolved Large-Eddy Simulations
(WRLES), but both of these methods are computationally infeasible because the number of grid points in the near-wall
region scales with '42g [2]. Hence, there is a need to develop reliable methods to reduce the cost of such simulations by
modeling the smaller turbulent scales in the near-wall regions, but resolve the flow transients by using wall-modeled
Large Eddy Simulations (WMLES).

There have been a number of different WMLES algorithms developed. Most have been developed for finite-difference
(FD) and finite-volume (FV) methods [3], but recently there have been efforts to develop such methods in the context of
higher-order methods such as the Spectral Element Method (SEM) [4], flux reconstruction (FR) [5], Spectral Difference
Method (SDM) [6], and the discontinuous Galerkin (DG) method [7] [8] [9]. Most of these methods use the solution
outside of the near-wall region to fit an empirical wall function in the boundary layer in order to compute the wall shear
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stress. Then, this shear stress is applied to the flow using a boundary condition [10]. However, unlike FD and FV
methods, finite element based higher-order methods have a continuous solution representation of the solution throughout
the domain which can be leveraged for new methods for wall-modeling. For example, in the context of DG and the
continuous finite element method (FEM), there have been efforts to develop so-called enrichment turbulent wall-models
[9] [11] [12] [13] [14]. These methods augment the solution by considering the empirical wall function as part of the
solution representation. Doing so removes spurious oscillations in the near-wall region due to insufficient polynomial
resolution of the boundary layer and improves the solution representation by allowing the degrees of freedom to represent
the fluctuations instead of the mean behavior. Additionally, it allows the solution to be physically meaningful throughout
the domain.

In this paper, we develop an enrichment based wall-modeling approach for the high-order spectral element method
and compare its performance to that of traditional shear stress wall-models. The method is designed to improve the
accuracy of the RANS/WMLES, prevent unphysical oscillations, and be easily implementable in existing SEM solvers.
Specifically, this method is implemented in the open-source, high-order spectral element CFD solver Nek5000 [15].
The method is validated in the context of RANS and WMLES calculations for turbulent channel flows.

II. Mathematical Formulation
This section describes the governing equations, spectral elementmethod, enriched basis framework, thewall-modeling

method, and its implementation in Nek5000.

A. Incompressible Flow Governing Equations
The governing equations are the incompressible Navier-Stokes equations written as:

mu

mC
= −∇? + ∇ ·

[
a

(
∇u + ∇u)

)]
− u · ∇u, (1)

∇ · u = 0, (2)

where u is the velocity vector, C is the time, ? is the pressure, and a is kinematic viscosity of the fluid. The equations are
solved over a computational domain Ω with boundary mΩ. Throughout the flow, the implicit LES (ILES) framework is
employed, so no explicit subgrid-scale model is used and the dissipation of the numerical scheme is relied upon to
represent the physical dissipation [4].

B. Spectral Element Method
The algorithm was implemented in the open-source, high-order spectral element CFD platform, Nek5000 [16]. In

the SEM, governing equations are put into a weighted residual formulation:

3

3C
(v, u) = (∇ · v, ?) − (∇v, a(∇u + ∇u) )) − (v, u · ∇u), (3)

(∇ · u, @) = 0, (4)

where v and @ are test functions, and the L2 inner product is defined as ( f , g) B
∫
Ω
f · g 3+ . The P# − P#

velocity-pressure spaces are used, so both the velocity and pressure are �1 functions over the domain, Ω [17]. The
time-discretization is handled using a BDF:/EXT: scheme where the linear terms are treated implicitly and the
non-linear terms are treated explicitly [18]. Globally, the solution is represented on a Lagrange interpolating basis:

D(x) =
#2∑
8=1

D
8
q8 (x), (5)

where D
8
is the 8th basis coefficient, q8 (x) are continuous basis functions on Ω, and #2 is the total number of coefficients

for all basis functions. In order to solve for the solution coefficients, the domain,Ω, is partitioned into #4 non-overlapping
discrete elements such that Ω = ∪#4

4=1Ω4. In this study, quadrilateral and hexahedral elements were used. Within each
element the basis functions are formed by isoparametrically mapping the element to a reference element Ω̂ B [−1, 1]3 .
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From there, the solution is approximated by a high-order polynomial of order %:

D =

#1∑
8

D4
8
q48 (x) =

%+1∑
8

%+1∑
9

%+1∑
:

D4
8 9:
ℎ8 (A)ℎ 9 (B)ℎ: (C), (6)

where #1 = (% + 1)3 is the number of basis functions in an element, 3 is the dimension of the problem, and ℎ8 is the
8th 1-D Lagrangian polynomial constructed on % + 1 Gauss-Lobatto-Legendre (GLL) points in the reference space
coordinates ABC. Then in the elements, the integrals in Eqs. (3)-(4) are computed using GLL quadrature and a local
system of equations is formed to solve for the solution coefficients [16]. Continuity between elements is strongly
enforced by equating degrees of freedom at co-located nodes and a global system of equations is formed by performing
a direct stiffness sum on neighboring elements. At each timestep, the global system of equations is solved for the basis
coefficients.

As previously mentioned, the time-discretization is a semi-implicit BDF:/EXT: scheme where the linear terms are
treated implicitly with a :th-order backward difference formula and the non-linear terms are treated explicitly with a
:th-order extrapolation. The resulting discretization in time at step C= is

:∑
9=0

V 9

ΔC
(v=− 9 , u=− 9 ) =(∇ · v=, ?=) − (∇v=, a(∇u= + ∇u=,) )) (7)

−
:∑
9=1
U 9 (v=− 9 , u=− 9 · ∇u=− 9 ),

(∇ · u=, @=) =0, (8)

where V 9 and U 9 are standard BDF:/EXT: coefficients [16]. The scheme is accurate to $ (ΔC: ). Rearranging Eqs. (7)
and (8) so that all terms at C= are on the left side gives

V0
ΔC
(v=, u=) + (∇v=, a(∇u= + ∇u=,) )) − (∇ · v=, ?=) =A=, (9)

(∇ · u=, @=) =0, (10)

where

A= =

:∑
9=1

[
U 9 (v=− 9 , u=− 9 · ∇u=− 9 ) −

V 9

ΔC
(v=− 9 , u=− 9 )

]
. (11)

Within each timestep, the full Stokes problem in Eqs. (9)-(10) is solved using the Uzawa algorithm [19].

C. Enrichment Method
The overall idea is that in a subset of the domain, Ωk the polynomial solution is enriched with a non-polynomial

enrichment function 7(x). This non-polynomial function represents a feature in the solution that cannot be accurately
captured by the polynomial basis. Typically such features have too large of gradients to capture with the polynomial
basis without unphysical oscillations. To use the enrichment function to augment the solution in the enriched domain,
the solution is represented as:

u(x, C) = up (x, C) + 7(x), (12)

where up is the polynomial component of the solution defined on the standard SEM basis:

up =

#1∑
8

u
8
q8 (x). (13)

With this representation, the enrichment function is able to capture the difficult flow feature and the polynomials can
capture other features. This enrichment method was inspired by the method of Lv et al. [9] as opposed to the extended
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finite-element method (XFEM) based enrichment methods [11] [12] [13] [14]. The key difference between the two is
that in this formulation the enrichment functions are fit to the flow through use of the matching points at each timestep,
as will be expanded upon in Section III, while the XFEM approach adds additional basis coefficients that are adapted to
the flow in the Galerkin procedure. This choice was made to keep the method similar to traditional WMLES methods
and to avoid the additional degrees of freedom and added solver complexity of XFEM To complete the definition of the
enrichment method, the enriched solution representation is then substituted into Eqs. (1)-(2):

m (up + 7)
mC

= − ∇? + ∇ ·
[
a

(
∇(up + 7) + ∇(up + 7))

)]
(14)

− (up + 7) · ∇(up + 7),
∇ · (up + 7) = 0, (15)

and then the equations are put into variational form and are algebraically manipulated to separate the enrichment terms
from the polynomial terms:

3

3C
(v, up) = (∇ · v, ?) − (∇v, a(∇up + ∇u)p )) − (v, up · ∇up) (16)

− (∇v, a
(
∇7 + ∇7)

)
) − (v, up · ∇7) − (v,7 · ∇up)

− (v,7 · ∇7),
(∇ · up , @)+(∇ · 7, @) = 0. (17)

With the governing equations in this form, the left-hand side and the first three terms on the right-hand side are the
same as in the traditional SEM and the last four terms on the right-hand side are additions from the enrichment. The
enrichment terms are computed using numerical integration and are treated explicitly in the timestepping scheme. From
here, the local equations for the polynomial coefficients are formulated in the same way as in the traditional SEM.
Formulating the enrichment method in this way shows the impact of enrichment on the spatial discretization and also
enables easy implementation in existing SEM solvers, because the existing methods can still be used to solve for the
polynomial coefficients, and the enrichment terms can be treated similar to forcing terms and added to the right-hand
side.

An additional step to consider in the enrichment method is the enforcement of continuity between the enriched and
unenriched parts of the domain. At this boundary, in order to ensure continuity, a difference equal to the value of the
enrichment function at the node must be enforced between the co-located nodal coefficients:

u
8
= u

?,8
+ 7(x8), (18)

where u
8
is the 8th coefficient in the unenriched domain, u

?,8
is 8th coefficient in the enriched domain, and x8 is the

location of the 8th node. One way to ensure continuity in the solution is to solve for Δu
8
, the change in u

8
, at each

timestep and then updating the solution with u=+1
8

= u=
8
+ Δu=

8
, where = is the timestep number. This ensures continuity

because Δu is continuous and u=
8
has the correct offset from the previous timestep. Otherwise, this difference must be

enforced when creating the global system of equations via direct stiffness sums.
In summary, the enrichment method enables one to augment the solution representation with a non-polynomial

function. The choice of enrichment function is critical to the success of the method. The enrichment function represents
a feature that is known to be in the flow that the polynomial bases cannot accurately represent, such as a high gradient in
a large function. If the enrichment function represents a feature that is not in the flow, it may put an additional load on
the polynomial solution because the polynomials would need to counteract the bad enrichment function in order to
satisfy the governing equations. Hence, one must have a strong analytical backing for the choice of enrichment function.

III. Wall-Modeling with Enrichment
Now we will discuss how the wall-model is formulated using the enrichment method. When performing LES of

wall-bounded flows, a large number of small elements are needed near the wall to accurately resolve the turbulent
boundary layer and to transfer the correct shear stress to the bulk of the flow. If larger elements are used, the polynomial
solution will have unphysical oscillations due to the large gradients near the wall. Traditionally, this problem is addressed
using a shear stress wall-model which computes the desired shear stress in the turbulent flow and enforces it via a

4

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
E

R
SI

T
Y

 o
n 

A
pr

il 
7,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
2-

12
06

 



Neumann boundary condition at the wall and uses a slip wall to ease the load on the polynomial solution. This makes the
solution in the modeled region near the wall unphysical, but it is able to transfer an accurate wall friction force to the bulk
of the domain [7]. The core idea of the enrichment wall-model is that the enrichment formulation discussed in Section
II.C can be used enrich the solution representation with a law-of-the-wall enrichment function that represents the correct
mean profile in large elements. Because the enrichment function represents the large-gradients in the mean profile, the
polynomial modes are left to represent the turbulent fluctuations to improve the accuracy of the method. Figure 1 shows
an example of how the enrichment maintains the bulk of the gradient near the wall and the polynomial helps it adapt to
local fluctuations in the flow. Also, because the enrichment wall-model improves the solution representation in the
wall-adjacent elements, the solution near the wall remains physical and a no-slip boundary condition can be used.

y

u

Fig. 1 Schematic showing how the enrichment function maintains the large-gradients in the boundary layer
and the polynomial modes adapt to the local flow.

First, like in shear stress wall-models, a set of matching points off the wall are selected from where the LES solution
is fed to a law-of-the-wall function and the equation is iteratively solved for the friction velocity. In FD and FV methods,
these points are taken to be grid points a few points away from the wall, sufficiently out of the near-wall region to
prevent log-layer mismatch [20]. Since high-order methods have multiple grid points per element, we take the matching
points to be at the far end of the wall-adjacent elements to avoid the near-wall region, as this has been shown to be
robust in other studies [7]. Since this wall-model is targeted at under-resolved simulations, it is assumed that the entire
law-of-the-wall profile is contained in the first element, so the matching point is within the log-layer and higher quality
LES region, so this choice will prevent log-layer mismatch. Then we consider a law-of-the-wall function. Although any
algebraic law-of-the-wall function would fit into the method, in this study, we use the Reichardt law-of-the-wall due to
its popularity in WMLES methods and its smoothness, which allows for more accurate integration when compared to a
piece-wise function:

5F (;F (x), Dg) = Dg
(
1
0.41

log(1 + 0.41H+) + 7.8(1 − 4−
H+
11 − H

+

11
4−

H+
3 )

)
, (19)

where Dg is the friction velocity, H+ = ;FDg/a is the non-dimensional distance from the wall, ;F (x) is the normal
distance from the wall of point x. Next, the location of the matching points, x | | and velocity parallel to the wall at the
matching points, D | | , are inputted into:

D | | = 5F (;F (x | |), Dg) (20)

and the equation is solved for Dg . For each node on the wall, the node location on the top of the element away from the
wall is taken as the matching location and a value of Dg is computed. Then, the enrichment function is constructed by
evaluating the law-of-the-wall function in the wall-normal direction at each of the node locations on the wall and then
connected using a polynomial basis in the wall-parallel directions. The enrichment function is constructed in element 4
as:

74
F (x) =

%+1∑
8=1

%+1∑
9=1

5F (;F (x), Dg, (8, 9) )q48 (G)q49 (I) t̂F (x), (21)
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where 8 and 9 are the nodal indices in the wall-parallel directions, G and I, Dg, (8, 9) is the friction velocity found at
matching point (8, 9), q4

8
(G) is the 8th local polynomial basis in the G direction, and t̂F is the unit tangent vector to

the wall. This function uses the law-of-the-wall function to improve the resolution in the wall-normal direction. The
polynomial basis is used in the wall-parallel directions, as opposed to the local averaging of [9] because the solution
must be continuous in the SEM. The enriched domain is defined as only the wall adjacent elements because that is the
only area where the law-of-the-wall function is valid and the polynomials sufficiently resolve the turbulence outside of
this area. As opposed to traditional wall-models, the boundary condition associated with the enrichment wall-model is
no-slip at the walls because the enrichment function is used to resolve the shear stress at the wall. At each timestep,
the values of Dg at the matching points and as a result, the enrichment function are recomputed and the polynomial
solution is projected from one enrichment function to the next. Within each timestep, Eqs. (16)-(17) are solved using
the enrichment function in Eq. (21).

IV. Enrichment Wall-Model Implementation in Nek5000
This section will discuss the implementation of the enrichment method in the open-source SEM solver, Nek5000, to

serve as a reference for future implementations. The majority of the enrichment method was implemented in the .usr
file. Specifically, the enrichment source terms in Eq. (16) are computed at each time step in the usrchk function. The
last three terms in Eq. (16) are implemented like traditional source terms in Nek5000 and are included in the varitional
formulation. However, the first enrichment term on the RHS of Eq. (16) involves integration against the gradient of the
polynomial basis, so it cannot be directly added to the varitional form of a source term and is computed explicitly in
usrchk. Then the source code of Nek5000 is modified to add this additional pre-integrated RHS term with the source
terms after they are integrated. Additionally, the source code is modified to account for the enrichment when the total
solution is evaluated. This was necessary for post-processing and integrating the momentum in the domain as part
of the channel driving force. No changes to Nek5000 were made in order to ensure continuity between the enriched
and non-enriched domain because Nek5000 solves for the change in u, as discussed in subsection II.C. Hence, the
implementation of the enrichment method in Nek5000 is simple and the enrichment wall-model can be implemented
with minimal modifications to the source code in other solvers as well.

V. Results and Discussion
This section will discuss the performance of the enrichment wall-model and application to turbulent flow in an

infinite channel for both RANS simulations and WMLES. In this case, two parallel walls are set a distance 2X apart
in the wall-normal direction, H, and the streamwise, G, and spanwise, I, directions are assumed to be periodic. The
domain is of size 2cX and cX in the streamwise and spanwise directions, respectively. No-slip boundary conditions are
enforced at the walls. The channel is driven by a time-varying pressure gradient that enforces constant momentum flux
through the channel. The flow was allowed to develop without the enrichment for 8 flow-through times and then the
enrichment was enabled. From there, the flow was run for 300 flow through times and turbulent statistics were collected
over 100 flow through times. The enriched domain is defined as only the wall-adjacent elements and the Reichardt
law-of-the-wall enrichment function as defined in Eq. (21) was used as the enrichment function.

A. RANS Results
First, tests were performed using the enrichment wall-model to improve log-law mismatch in the context of

RANS simulations while using coarse grids. This also served as initial validation of the enrichment method and its
implementation. The RANS model used is the regularized low-'4 : − l RANS model as detailed in [21]. The case
considered has bulk Reynolds number of '4 = 10000 and a friction Reynolds number of '4g = 543, and compares
the RANS results with the DNS result from [22]. Simulations used % = 4 and a 2D mesh of uniform elements with 3
elements in the streamwise direction and 6 elements in the channel height. This grid resolution corresponds to large
wall-adjacent elements that extend to H+ = 183. The results from the enrichment method compared to the non-enriched
SEM are shown in Fig. 2. The vertical line shows the location of the end of the first element. The purely polynomial
solution struggles to represent the gradient near the wall as expected, and has a '4g = 335 causing large inaccuracies in
the normalized profile. However, the enrichment wall-model allows the entire near-wall region to be captured in a single
large element with good agreement with the DNS. The solution, when using the wall-model, reports '4g = 525 and has
much better agreement with the DNS result in the log-layer than the standard SEM. This RANS test case served as a
proof-of-concept and shows the power of the enrichment methodology for wall-modeling.

6

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
E

R
SI

T
Y

 o
n 

A
pr

il 
7,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
2-

12
06

 



10
-1

10
0

10
1

10
2

10
3

y
+

0

5

10

15

20

25

30

35

40

u
+

DNS [Lee and Moser 2015]

Standard SEM

Enriched SEM

Fig. 2 '4g = 543 RANS turbulent channel with 6 uniform elements in the channel height and 4th order basis
polynomials. The enriched solution uses a law-of-the-wall enrichment function in the wall-adjacent elements.
The vertical lines indicate the edge of the first element for the enriched solution.

B. LES Results
Next, simulations were performed to test the enrichment wall-model for WMLES. For these cases, ILES was used

so the dissipation of the high-order method is relied upon instead of an explicit subgrid-scale model. The domains were
meshed with # x # x #

2 uniform elements to minimize the aspect ratios in the streamwise and spanwise directions.
First, Figure 3 shows the velocity contours of the WMLES showing the turbulent structures for the '4g = 1000 case
with # = 10 % = 4 elements.

Fig. 3 '4g = 1000WMLES of turbulent channel with 10 uniform elements in the channel height and % = 4
order basis polynomials. The solution uses a law-of-the-wall enrichment function in the wall-adjacent elements.

Then, the method was compared to the traditional SEM shear stress wall-model of Pal et. al. [4], and the DNS data
from Moser et. al. [22]. The case shown uses a bulk Reynolds number of '4 = 10000 and '4g = 543 as shown in Fig.
4 for % = 3 and # = 10 for the standard SEM and enriched SEM and % = 4 and # = 40 for the shear stress wall-model.
This corresponds to the boundary of the first element at H+ = 112 for standard/enriched SEM simulation cases. The
standard SEM solution has significant discrepancies with the profile of the DNS data while both wall-models show
good agreement. Additionally, with this coarse mesh, the enriched solution reports '4g = 564 whereas the polynomial
solution reports '4g = 448 indicating a significant improvement in the wall friction force that is transferred to the flow.
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Although the results are comparable, the shear stress wall-model requires 4 times more elements in the channel height
and a higher polynomial order than the enrichment model. For lower polynomial orders or coarser meshes, the shear
stress wall-model fails to converge. Hence, the enrichment method shows good agreement with the log-law profile with
coarser meshes and improved stability compared to the traditional shear stress wall-model. This advantage comes from
the solution augmentation and no-slip wall more strongly enforcing the modeled shear stress in the enrichment method
than the slip-wall shear stress boundary condition is able to in under-resolved cases.

10
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u
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DNS [Lee and Moser 2015]

Standard SEM P=3, N=10

Shear Stress WM SEM P=4, N=40

Enriched SEM P=3, N=10

Fig. 4 '4g = 543 WMLES of turbulent channel with 10 uniform elements in the channel height and % = 3
order basis polynomials for the standard and enriched SEM solutions and 40 % = 4 elements for the shear stress
wall-model. The enriched solution uses a law-of-the-wall enrichment function in the wall-adjacent elements.
The vertical lines indicate the edge of the first element for the enriched solution.

Next, the enrichment wall-model was tested at varying Reynolds numbers to evaluate the strength of the method
in more challenging flows. The cases tested were '4g = 1000, 2000, and 5200 and their respective bulk Reynolds
numbers of 20000, 43478, and 125000. Figures 5-7 shows the wall-model compared to purely polynomial solutions
for % = 3 with # = 10 elements for '4g = 1000, % = 3 with # = 20 for '4g = 2000, and % = 3 with # = 30 for
'4g = 5200. The first element ends at H+ = 206, H+ = 207, and H+ = 354, respectively. For all of these cases, the
enrichment wall-model greatly improves the agreement with the DNS data in both the near-wall region and the log-layer.
The enrichment wall-model does a good job improving the wall friction force in the flow as shown by their '4g = 1028,
'4g = 2068, and '4g = 5320 compared to the polynomial results of '4g = 668.5, '4g = 1342, and '4g = 2729.
Hence, the enrichment wall-modeled solution is in much better agreement with DNS data over a range of Reynolds
numbers. In fact, its benefits are even greater as the Reynolds number is increased because the polynomial solution
becomes increasingly bad and the wall-model still shows consistent results.

VI. Conclusions
An enrichment based wall-model was developed for the spectral element method as a way to augment the polynomial

solution with a non-polynomial enrichment function that represents a known feature in flow that cannot be well captured
by the polynomial bases, such as large gradients. We apply this method to the problem of wall-modeling, where the
wall-adjacent elements are enhanced with a law-of-the-wall enrichment function that represents the mean behavior of
the flow. This allows for large elements to be used near the wall without unphysical oscillations or log-layer mismatch.
The enrichment function is able to adapt to the local flow features by matching the law-of-the-wall model with the
solution at select matching points and forming the enrichment function from the resulting wall functions.

The enrichment method was implemented in the high-order SEM solver Nek5000. One goal of the method was ease
of implementation in existing SEM solvers. Through manipulation of the enriched discretization, the implementation
only requires the addition of a few source terms and accounting for the enrichment when evaluating physical quantities,
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Fig. 5 '4g = 1000WMLES of turbulent channel with 10 uniform elements in the channel height and % = 3
order basis polynomials. The enriched solution use a law-of-the-wall enrichment function in the wall-adjacent
elements. The vertical lines indicate the edge of the first element for the enriched solution.

like integrating over the domain and post-processing. As a result, the solver retains the computational efficiency of
Nek5000.

The performance of the wall-model was tested in a number of computational tests of turbulent channel flow
configuration. The method was shown to greatly outperform the standard polynomial SEM and a shear-stress equilibrium
wall-model for under-resolved cases. Additionally, the method was shown to provide great benefits to the prediction of
log-layer profile and the wall shear stress over a wide range of turbulent Reynolds number. Even large wall-adjacent
elements of size H+ ≈ 100 − 350 showed good agreement with DNS data in the log-layer. At present, the method is still
under active development and testing with regard to extending its benefits to non-equilibrium boundary layers and other
more complex flows.
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