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Abstract. The increasing incidence and severity of wildfires underscores the necessity

of accurately predicting their behavior. While high-fidelity models derived from first
principles offer physical accuracy, they are too computationally expensive for use in
real-time fire response. Low-fidelity models sacrifice some physical accuracy and gen-

eralizability via the integration of empirical measurements, but enable real-time simu-
lations for operational use in fire response. Machine learning techniques have
demonstrated the ability to bridge these objectives by learning first-principles physics
while achieving computational speedups. While deep learning approaches have

demonstrated the ability to predict wildfire propagation over large time periods, time-
resolved fire-spread predictions are needed for active fire management. In this work,
we evaluate the ability of deep learning approaches in accurately modeling the time-

resolved dynamics of wildfires. We use an autoregressive process in which a convolu-
tional recurrent deep learning model makes predictions that propagate a wildfire over
15 min increments. We apply the model to four simulated datasets of increasing com-

plexity, containing both field fires with homogeneous fuel distribution as well as real-
world topologies sampled from the California region of the United States. We show
that even after 100 autoregressive predictions representing more than 24 h of simu-
lated fire spread, the resulting models generate stable and realistic propagation

dynamics, achieving a Jaccard score between 0.89 and 0.94 when predicting the
resulting fire scar. The inference time of the deep learning models are examined and
compared, and directions for future work are discussed.
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1. Introduction

In recent decades, climate change and excessive fire suppression have resulted in
an increase in both the size and severity of wildfires [1–3]. In addition to the
impact of wildfires on property damage and loss of life [4], they also have long-
term effects on both health [5] and the environment [6]. Understanding and mod-
eling wildfire spread is critical to informing a direct response to ongoing fires and
is an important tool for evaluating fire risk.

Computational models predicting wildfire behavior for fire management, risk
assessment, and wildfire mitigation have seen significant advancements [7]. These
models can be categorized as physical, empirical, and mathematical analogues [8–
10]. Physical models are built from first principles and provide a high level of fide-
lity in predicting the fire behavior by solving conservation equations to capture
relevant physical processes. Notable examples of these include FIRETEC [11],
models developed by IUSTI [12], and WFDS [13]. The computational complexity
of these models currently prevents their application to real-time simulations, so
that they are often used in augmenting field experimentation or in the detailed
analysis of wildfire dynamics [8].

In contrast, purely empirical models rely solely on data, making no assumptions
about fire behavior based on theory [9]. Quasi-empirical models combine observa-
tions from real fires and laboratory experiments with knowledge of the underlying
combustion and heat-transfer processes. One such model is Rothermel’s formula-
tion [14], which serves as cornerstone for several fire prediction methods used in
the United States, such as BEHAVE [15] and FARSITE [16]. While these models
offer real-time simulations, enabling their use in operational settings, their devel-
opment typically relies on a manual process of model calibration, based on cur-
rent understanding of wildland-fire spread.

In the past decade, the potential of machine learning (ML) methods for applica-
tion to wildfires has been recognized, with ML techniques used across tasks such
as: fuel characterization, risk assessment, fire behavior modeling, and fire manage-
ment [17, 18]. While there are various approaches within the ML community, the
sub-field of deep learning and the development of deep neural networks (DNNs)
have led to breakthroughs in many domains [19]. However, only a few studies
have examined the utility of deep learning methods for predicting the dynamics of
wildfire propagation [20–23]. Hodges and Lattimer [20] demonstrated that a speci-
fic DNN, the Deep Converse Inverse Graphical Model (DCIGN) [24], could effec-
tively predict the state of a fire six hours into the future in a single time step.

They used FARSITE to generate a database to train the model, and this single
6-h prediction was computed orders of magnitude faster than explicitly time-ad-
vancing the FARSITE simulation. This was possible because DNN models do not
rely on time-step limitations present in many other simulations, e.g., the CFL con-
straints made in PDE-based methods, or the low-order estimation of the fire’s rate
of spread made in FARSITE. Further demonstrating the flexibility of DNNs,
Radke et al. [21] performed a similar study by modeling an even longer duration:
the 24-h evolution of fire propagating over the geography of the Rocky Mountain
region of the United States using real-world data instead of simulated data.
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While performing a single 6- or 24-h prediction with a DNN was shown to be
much faster than running FARSITE over the required number of simulation
steps, the lack of temporally resolving the wildfire dynamics limits the application
for active fire interventions and fire management and may ultimately constrain
predictive efficacy. By addressing this issue, our objective is to examine the utility
of DNNs for modeling the wildfire propagation dynamics on fine temporal scales
with time increments of minutes. To provide predictions over larger time frames,
we use an autoregressive process where the output for the prediction at time s is
used as input for the prediction at time sþ Ds, where Ds 2 f15; 30; 60g minutes.

We show that when dealing with temporal dynamics, the DCIGN model is not
capable of accurately replicating propagation beyond, at most, ten autoregressive
predictions before failing to make any realistic predictions at all. To address this
issue, we employ an Encoder-Processor-Decoder (EPD) model [25, 26] to repre-
sent the spatial relationships in the data and add recurrent transformations to rep-
resent temporal relationships that have not been considered in prior work.

The remainder of this paper has the following structure. In Sect. 2, we describe
the generation of our training and evaluation datasets. Our model, the EPD-
ConvLSTM model, is summarized in Sect. 3, and the process for training and
evaluating the models are presented in Sect. 4. Results are discussed in Sect. 5 and
the manuscript closes in Sect. 6 with conclusions and potential future research
directions.

2. Generation of Dataset

All DNN models were trained and evaluated using synthetic datasets created from
FARSITE [16]. A total of 40,000 fire simulations were generated. Each of these
used a domain that was discretized by 128� 128 cells with a cell size of 30 m.
This resolution was selected as it was the highest resolution available from the
LANDFIRE dataset based on Landsat imagery [27], which was used to collect
real-world patches of terrain data. The domain size was selected to facilitate large-
scale, heterogeneous landscapes while remaining computationally tractable.

The ranges for parameters and operating conditions used to generate the data-
set are summarized in Table 1. All parameters are held constant over time. Fuel
types across all four datasets were chosen from the dynamic fuel models defined
by Scott and Burgan [28], without considering ground fuels. The method intro-
duced by Finney [16] was applied for calculating the crown fire potential, with a
specified foliar moisture content of 100%. Spotting was not considered. The start-
ing location for each fire was randomly selected to be within the central 50% of
the field. An octagonal fire front with a width of approximately 75 m (� 2% of
the width of the field) was then placed at this location, and allowed to propagate.
The duration of each simulation was held constant at 72 h with a time step size of
15 min, yielding sequences with 289 time steps. Note that the fire dynamics were
not constrained by this time frame. Some fires burned quickly through the patch
in far fewer steps, and some fires burned more slowly and never fully burnt out in
the simulation.
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The effects of varying solar radiation due to the earth’s rotation were not con-
sidered, with the latitude, longitude, and elevation of each landscape set identi-
cally for each simulation to 0�, 0�, and 0 m, respectively. The sun’s position in the
sky was held constant at 90� of elevation and 0� of azimuth. Finally, in order to
eliminate boundary effects within FARSITE, one cell was trimmed from the bor-
der, resulting in a final field size of 126� 126 cells.

The output of each simulation is a series of data points for the position of the
fire front as it advances over time. To transform the results into gridded data for
training DNN models, the burned area for each cell was computed as the fraction
of the burned region inside each cell.

From these simulations, a dataset was constructed with 17 channels, where each
channel represents a specific parameter. The state of the fire at a fixed point in time is

represented by a three dimensional tensor: X 2 RH�W�C, where H is the height, W is
the width, and C is the number of channels; here H ¼ W ¼ 126 and C ¼ 17. The first
three channels were derived from the burn fraction described above: (1) vegeta-
tion, the fraction of vegetation that remains unburnt, (2) fire_front, the frac-
tion of vegetation that burned in the previous time step, and (3) scar, the fraction of
vegetation that is currently burnt. The remaining 14 channels were taken directly from
the following field variables tracked in FARSITE [16]: (4) wind_east, (5)
wind_north, (6) moisture_1_hour, (7) moisture_10_hour, (8)
moisture_100_hour, (9) moisture_live_herbaceous, (10)
moisture_live_woody, (11) cover, (12) height, (13) base, (14)
density, (15) slope_east, (16) slope_north, and (17) fuel. All
channels contain continuous data, with the sole exception of the fuel channel, which
contains a discrete index, ranging between 1 and 40, that specifies the fuel model.

Table 1
Parameter Ranges Used for Generating Synthetic Datasets from
FARSITE

Parameter [units] Range

Slope [�] [0, 45]

Aspect [�] [0, 360]

Wind direction [�] [0, 360]

Wind velocity [km/h] [0, 50]

Fuel model [#] [1, 40]

1-h moisture [%] [2, 40]

10-h moisture [%] [2, 40]

100-h moisture [%] [2, 40]

Live herbaceous moisture [%] [30, 100]

Live woody moisture [%] [30, 100]

Canopy cover [%] [0, 100]

Canopy height [m] [3, 50]

Crown ratio [–] [0.1, 1]

Canopy bulk density [kg/m3] [0, 4000]
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Four datasets with varying complexity and characteristics were designed to eval-
uate specific components of the ML models.

� single fuel—Every simulation used the same fuel model across the entire land-
scape: GR1, or ‘‘short, sparse dry climate grass‘‘. All other parameters were
held uniform across a given landscape, but vary randomly across individual
simulations, and were selected from a uniform distribution within the ranges
described in Table 1. The terrain is planar, with a constant slope and aspect.
This dataset was designed to evaluate the DNN models’ ability to respond to
each of the changing parameters without spatial variation.

� multiple fuel—Generated identically to single fuel, except that for each fire
sequence, a random fuel model is used for the entire domain. This seemingly
minor deviation from the single fuel dataset results in approximately 40 times
less coverage of the possible combinations of wind magnitudes, terrain slopes
and fuel types, which are the three primary drivers of propagation dynamics.
Therefore, this dataset is designed to test the performance of the DNN models
when dealing with far less training data per fuel type than before.

� California—Real-world Landscape (LCP) 40 data was obtained from the
LANDFIRE program [27] for the continental United States, which was then
bounded by the north–south and east–west extents of the state of California
and includes a significant portion of Nevada as well. For each simulation, a
random (128� 128) field was selected from the region. If the field did not con-
sist of at least 70% burnable fuel, it was resampled. Wind data was randomly
generated in the same manner as the single fuel and multiple fuel datasets.

� California-WN—Generated identically to the California dataset, but with spa-
tially-varying wind. WindNinja [29] was used to compute a realistic wind pat-
tern based on the prevailing wind vector and the topography of the landscape.
While this spatial variation was used in the FARSITE simulations, only the
prevailing wind vector was provided as an input to the DNN models, reflecting
the sparse availability of such data in real-world applications.

A representative sample from each of the four datasets is shown in Figure 1. In
the sample taken from the single fuel dataset, note the expected elliptical fire
spread pattern, where the direction is influenced by both the slope of the terrain
and the presence of the wind. In the multiple fuel dataset, while the fuel is still
homogeneous, a different fuel has been selected when compared to the first sam-
ple. Despite the significantly higher wind speed, the fire has a much faster upwind
spread rate, demonstrating the significantly different properties of this fuel. The
California dataset demonstrates complex spread patterns over its heterogeneous
landscape. The fire front is seen responding to different fuels by spreading at dif-
ferent rates, and is even blocked completely in some regions, including a road
crossing the terrain in the southwest corner. The primary direction of spread is
influenced by the wind, while there are also modulations associated with the ter-
rain, where steep downward slopes impede the rate of spread. Finally, in the Cali-
fornia-WN dataset, there are significant spatial variations in the wind field,
especially in the valley running vertically across the landscape. Here, the wind is
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significantly attenuated and redirected along the valley, and the fire spread is
impacted both by this adverse gradient and the resulting wind variation.

These simulations were performed in parallel on a high-performance computing
cluster, with each simulation taking an average of 30 s to run single-threaded on 1
CPU, for a total cost of 330 CPU-hours, or 12,000 core-hours on 36-core proces-
sors, though this could be significantly accelerated via multithreading. The post-
processing of the simulations to compute the fractional burned area of each cell as

Figure 1. Sample results from the four datasets used for training the
DNN models. Isocontours of arrival time are overlaid in black. In the
California-WN dataset, the prevailing wind direction is indicated in
the lower-left corner as in the other datasets, while the local speed
and direction variation is indicated by the vector field.
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described above consumed an additional 17,000 core-hours, for a total of approxi-
mately 29,000 core-hours.

3. Machine-Learning Models

In the present work, we use DNNs to model fire-spread behavior. A detailed dis-
cussion of DNNs is beyond the scope of this paper, but for readers unfamiliar
with the commonly employed transformations used in our DNNs, we provide a
summary in Appendix 1. For more detail, we refer the interested reader to the
text by Foster [30].

In the remainder of this paper, we describe the structure of the DCIGN model,
the EPD model and the EPD-ConvLSTM model. We represent the input to any
of the models as X. The DCIGN and EPD models require input that contains a

single point in time, so for them: X 2 RB�H�W�C. The EPD-ConvLSTM model

requires temporal input, thus X 2 RB�T�H�W�C, where T is the length of the time
series.

3.1. DCIGN Model

Many DNNs can be broken up into two distinct stages. First, an encoder trans-
forms the input into a latent space and second, a decoder transforms the latent
space into the desired output. The DCIGN model used in prior wildland spread
models [20, 21] is an instance of such a model, Figure 2. The encoder starts by
adding some zero-padding to get the spatial dimensions to be powers of 2. Then,
a repeated set of convolutional transformations and downsampling steps are
applied. The downsampling stages help the DCIGN model make predictions that
can efficiently make large structural changes to the current state of the fire. This
ultimately transforms the input of shape ðB;H ¼ 126;W ¼ 126;C ¼ 17Þ into the
latent space of shape ðB;H ¼ 8;W ¼ 8;C ¼ 64Þ. In essence, the convolutional
transformations have moved the input with 17 distinct channels into a new latent
space that has 64 distinct channels but a much smaller spatial resolution. The
decoder transforms this latent space by using a fully connected layer into 15,876
scalar values, which are subsequently reshaped into a ðB;H ¼ 126;W ¼ 126Þ field
that is the output of the DNN model.

The hyperparameters for the model were selected to be as close to the work of
Hodges and Lattimer [20] as possible. Thus, the convolutional kernels had the size
(10,10) and the number of filters for the five repeated convolutions were set to: 8,
8, 16, 32 and 64 (i.e., these are the values for Cr in the shape of the convolutions

in Figure 2). The ideal learning rate was empirically found to be 10�4.

3.2. EPD Model

Figure 3 provides the structure of the EPD model [25]. The EPD’s encoder first
uses an embedding layer to convert the discrete fuel channel into a continuous
embedding space (highlighted in orange). Discrete channels can be challenging for
DNNs to incorporate directly since small changes in the discrete value can lead to
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large changes in the underlying dynamics. The embedding layer transforms the
discrete fuel values into a higher dimensional latent space such that similarly
behaving fuel types are close to each other in the embedding space, even if the
discrete values are far apart. This allows the information within the fuel index to
potentially be more efficiently considered by subsequent layers of the DNN.

The output of the embedding layer is concatenated with the other 16 continu-
ous input channels, and fed into a single convolutional transformation. A total of
15 convolutional transformations are sequentially applied in the processor portion
of the model. Long sequences of transformations can be difficult to train, so skip
links are added around every block of five sequential convolution layers [31]. The
EPD model finishes with a few convolutional transformations as its decoder.

Input
(B,126,126,17)

Zero-padding
(B,128,128,17)

Input Dropout
(B,128,128,17)

Conv2D
(B,128,128,8)

Reshape
(B,4096)

Fully-Connected
(B,15876)

Reshape
(B,126,126)

Transpose Conv2D
(B,126,126)

Encoder Decoder

MaxPooling
(B,H/2,W/2,Cr)

Conv2D
(B,H/2,W/2,Cr)

5

Figure 2. Schematic of DCIGN architecture employed in the present
work. Parenthesis provide the shape of the data produced by the
corresponding layer in the model.

+

Conv2D
(B,126,126,64)

Conv2D
(B,126,126,64)

Activation
(B,126,126,64)

Output: Conv2D
(B,126,126,1)

Conv2D
(B,126,126,128)

Activation
(B,126,126,128)

5

3

Input
Fuel Channel: (B,126,126,1)

Other Channels: (B,126,126,16)

Encoder Processor Decoder

One-hot encoding
(B,126,126,40)

Conv2D
(B,126,126,5)

Concatenate
(B,126,126,16+5)

Figure 3. Schematic of EPD architecture employed in the present
work. The path taken by the discretely-valued fuel channel is
highlighted in orange (Color figure online).
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The main differentiators between the DCIGN model and the EPD model are
the removal of the fully-connected layers, the removal of the Max Pooling down-
sampling stages and using substantially smaller convolutional kernels. These chan-
ges allow the EPD model to focus more specifically on local relationships between
neighboring cells, potentially at the cost of not recognizing large-scale relation-
ships.

The hyperparameters for the EPD model were empirically determined and
include: the number of blocks of convolutions in the processor (3 blocks of 5 con-
volutions each), the number of filters in each convolution (encoder: 64, processor:
128, decoder: 64), the activation function (encoder: identity, processor: ReLU,
decoder: ReLU), the size of the convolutional kernels (encoder: 5, processor: 3,

decoder: 5), the training batch size (64) and the learning rate (10�4).

3.3. EPD-ConvLSTM Model

While the EPD model effectively considers spatial relationships, it does not
account for temporal relationships in the data. For those, we use ConvLSTM
recurrent transformations. The ConvLSTM transformation iteratively processes
each time step in the input that it receives, building up a memory as it does so,
and outputs a final prediction that is directly dependent on both the input and
that built up memory. The exact mechanism for doing this are outside the scope
of this paper. See Appendix 1 for additional details and Foster [30] for further
reading.

Like the EPD model, the output is still the location of the fire front at the next
time step, but unlike the EPD model, the input is an entire time series. By adding
the recurrent layers to the EPD model, we introduce the EPD-ConvLSTM model,
Figure 4. Note that the visualization of some of the stages in Figure 4 are verti-
cally split into eight slices. This indicates that that the input to these stages con-
tains a time series. As such, the data shape for each stage in Figure 4 has five
dimensions as opposed to the four dimensions in the shapes seen in Figure 3, with
the additional dimension being time. The recurrent stages are highlighted in green
and the vertical arrow indicates that the recurrent stage is repeated eight times
(once for each of the time steps in the temporal dimension).

The input to the EPD-ConvLSTM model can be thought of as eight different
inputs for the EPD model, concatenated together into a single data point. As seen
in Figure 4, the EPD-ConvLSTM model uses the same encoder, processor and
decoder as the EPD model. To facilitate that, the EPD-ConvLSTM model merges
the batch and time dimensions together before passing the data to the EPD Enco-
der. The EPD Processor output is then split back up to restore the time dimension
for the recurrent stages of the network.

For simplicity, we have presented the EPD-ConvLSTM model such that it
makes all predictions completely independently. Thus, e.g., for predictions made
at times s and sþ Ds, seven of the eight time steps are reprocessed when making
the second prediction. This inefficiency can be addressed by storing the memory
built up in the recurrent stages when making the first prediction, and using that
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memory in lieu of the overlapping seven time points, when making the second
prediction.

The EPD-ConvLSTM model uses the same hyperparameters as the EPD model,
with the following additional hyperparameters that were empirically determined:
the number of ConvLSTM blocks to use (3), the number of sequential convolu-
tions within each block (5) and the size of the time series (8), where the choice of
the latter parameter was constrained by memory.

4. Evaluation Methods

In this section, we describe the evaluation process used to measure the efficacy of
the DCIGN, EPD and EPD-ConvLSTM models.

4.1. Autoregressive Predictions and Post-processing

To assess the accuracy of the DNN models in predicting the dynamics of wildfire
propagation, we measure the accuracy of each DNN model over a time period of
1500 min (100 autoregressive predictions). The prediction made at time s is used
to construct the input for the prediction made at time sþ Ds. The state of the fire
at time s is denoted Xs and the resulting prediction is denoted Ys. For the DCIGN
and EPD models, Xs has the shape ðB;H ¼ 126;W ¼ 126;C ¼ 17Þ. For the EPD-
ConvLSTM model, Xs has the shape ðB; T ¼ 8;H ¼ 126;W ¼ 126;C ¼ 17Þ. As all
three models make the exact same prediction, the fraction of a cell’s fuel that will
burn away at time s, Ys always has the shape ðB;H ¼ 126;W ¼ 126;C ¼ 1Þ for
both the EPD and EPD-ConvLSTM models.

Ys and Xs are used to construct XsþDs in the autoregressive process. Recall from
Sect. 2, that there are seventeen channels. Fourteen of these channels are constant
across time, so when constructing XsþDs, they can simply be copied from Xs. Three
of the channels represent the state of fuel: the vegetation, fire_front

EPD
Decoder

Merge Batch & Time
(B 8,126,126,64)

Output
(B,8,126,126,1)

8

Split Batch & Time
(B,8,126,126,128)

Merge Batch & Time
(B 8,126,126,17)

EPD
Encoder

EPD
Processor

Temporal Input
(B,8,126,126,17)

ConvLSTM2D
(B,8,126,126,64)

+

3

Figure 4. Schematic of EPD-ConvLSTM architecture employed in the
present work. The EPD encoder, processor and decoder are the same
ones provided in Figure 3. For steps that have a temporal dimension,
this visualization breaks up the layer into eight stacked levels to
correspond to the eight consecutive time steps in the data. The
recurrent layers are highlighted in green (Color figure online).
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and scar channels. We denote these channels by Xveg, X front and Xscar, and

thus: X front
sþDs ¼ Ys, X

veg
sþDs ¼ Xveg

s � Ys and X scar
sþDs ¼ X scar

s þ Ys.
After each prediction, negative results were clipped to 0.0 to prevent invalid

predictions due to round-off errors. No other regularization or limiting operations
were applied to the EPD or EPD-ConvLSTM models, though, as was also
observed in Hodges and Lattimer [20], the DCIGN model’s predictions needed to
be regularized with a mean filter using a ð3� 3Þ kernel.

4.2. Additional Training Details

We follow common practice and split each dataset into training, validation, and
testing sets with a ratio of 80:10:10 [18], resulting in a total of 8000 unique train-
ing fire sequences, 1000 validation fire sequences and 1000 testing fire sequences.
Each model was trained only on data from a single dataset. Training convergence
was defined to be the earliest point at which validation loss stopped improving for
24 h of clock time. L1 and L2 regularization and drop-out was considered to
resolve minor training-loss overfitting that was observed, but always resulted in
worse validation loss and ultimately found not to be helpful.

Each hyperparameter for a model was determined individually by training mul-
tiple models across a range of values, with all other hyperparameters set to a con-
stant value. The model with the lowest validation loss was used to determine the
value for the hyperparameter. Hyperparameter sweeps were done on the single
fuel dataset, then used across all other datasets. The EPD and EPD-ConvLSTM
models were trained four times independently on each dataset with the same set of
best-performing hyperparameters, and the model with the lowest validation loss
was selected to do a full evaluation on.

All DNN models were built in TENSORFLOW 2.0 [32], with EAGER MODE enabled.
Keras APIs [33] were used to build each of the DNN models. Models were
trained on a single machine with 16 CPU cores and eight NVIDIA P100 GPUs.
Training models on the single fuel dataset took approximately 4 days for the EPD
model and 6 days for EPD-ConvLSTM model. Training on the multiple fuel and
both California datasets took 8 days for the EPD model and 13 days for the
EPD-ConvLSTM model. The ADAM optimizer [34] was used.

4.3. Performance Metrics

To quantify the accuracy of the DNN model in predicting the transient fire
dynamics, we consider different metrics. Mean squared error (MSE) is one of the
most common metrics used to measure the regression efficacy of a prediction, Y,

for data point, X, with label, bY :

MSEðY ; bY Þ ¼ 1

HW

X
H

i¼1

X
W

j¼1

ðYij � bYijÞ2: ð1Þ

We use MSE as the loss function during training, but for evaluating how well a
model does over an entire dataset, D, we use root mean squared error (RMSE):
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RMSEðDÞ ¼ 1

HW jDj
X
D

Y ;bY

X
H

i¼1

X
W

j¼1

ðYij � bYijÞ2

0

B

@

1

C

A

1
2

: ð2Þ

Given that predicting the speed of the fire is often of utmost importance, we also
measure the error in the size of the predicted fire front, regardless of the location,
with the summed total error metric, STE:

STEðDÞ ¼ 1

jDj
X
D

Y ;bY

X
H

i¼1

X
W

j¼1

Yi;j �
X
H

i¼1

X
W

j¼1

bYi;j

�

�

�

�

�

�

�

�

�

�

ð3Þ

The STE metric provides a measure for the number of cells worth of fire that the
prediction was off by, regardless of whether the predicted fire was in the correct
location. Thus, models that have low STE are predicting the correct rate of the
fire growth whereas models that have low RMSE are predicting the correct loca-
tion of the fire.

In addition to tracking regression statistics, we also track classification statistics
by converting the regressed value into a binary classification. This is done by
introducing a threshold, below which a cell is considered to be not on fire and
above which a cell is said to be on fire. We use a threshold of 0.1 as a general
indicator that the cell at this point is quite noticeably on fire though quantitative
results are robust to reasonable changes in this threshold.

We use the Jaccard Similarity Coefficient (JSC) [35] to measure the quality of
the classifications. JSC grows as the intersection between the prediction and the
ground truth grows, resulting in a maximal score when the intersection and union
are identical (for those that prefer the F1 score, the results are qualitatively simi-

lar). The Jaccard score can be defined with indicator variables. Let IYi;j be an indi-
cator variable that is 1 when the value in cell (i, j) is greater than the classification
threshold:

JSCðDÞ ¼

PD

Y ;bY
\ðY ; bY Þ

PD

Y ;bY
[ðY ; bY Þ

ð4Þ

\ðY ; bY Þ ¼
X
H

i¼1

X
W

j¼1

IYij ^ I
bYij ð5Þ

[ðY ; bY Þ ¼
X
H

i¼1

X
W

j¼1

IYij _ I
bYij : ð6Þ
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JSC ranges between 0.0, in which the prediction and the ground truth do not
overlap, and 1.0, in which the ground truth and prediction are perfectly aligned.

In addition to tracking the location of the fire front over time, the location of
the resulting scar left by the fire is also tracked. All of the same statistics are eval-
uated for the fire scar.

4.4. Bootstrapping Confidence Intervals

When assessing the performance of the different DNN models on a given metric,
it is important to determine whether an observed difference is real or coinciden-
tally caused by the stochastic process of placing data in the testing, training and
validation datasets. To account for this, we use bootstrapping [36] to estimate
confidence intervals for each metric. For each of the four test datasets, we build
20 new resampled datasets. Each resampled dataset is constructed by randomly
sampling fire sequences from the 1000 sequences in the original testing dataset,
with replacement, until the bootstrapping dataset also contains 1000 fire sequen-
ces. Data points are then generated from the fire sequences in the resampled data-
set, and the metric is computed over those data points. After this is repeated 20
times, there is a distribution of values for the metric. We compute 50% confidence
intervals by taking the 0.25 and 0.75 quantiles of this distribution. 90% confidence
intervals are computed by taking the 0.05 and 0.95 quantiles.

5. Results

5.1. Time-to-Arrival Maps

In this section, we present results of autoregressive predictions from the DNN
models via time-to-arrival (TTA) maps. These maps demonstrate how the models
have learned to realistically represent the complex physical interaction between the
fire front and aspects of the environment such as fuel type, terrain-slope and
wind. Fire sequences were chosen that had roughly the average amount of error
for each model, so they are good visualizations of how well predictions are doing
on average across the entire dataset.

5.1.1. DCIGN Model Figure 5 shows TTA maps for a typical fire sequence in the
single fuel dataset generated by the DCIGN model. The DCIGN model immedi-
ately made errors in predicting the direction the wildfire propagates. After just
120 min (eight autoregressive predictions), the DCIGN model started making
unrealistic predictions of spurious fire spotting in regions far away from the actual
fire front. The contour lines in Figure 5a show the small distance the fire travelled
in the FARSITE simulation, whereas the contour lines in Figure 5b highlight the
errors the DCIGN model made during that same time frame.

Qualitatively, results were similar on the multiple fuel and California datasets
and while our work reveals some shortcomings of the DCIGN model in predicting
short-time fire dynamics, it is important to note that it was successfully employed
for predictions at larger time scales (6 or 24 h) [20, 21].
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5.1.2. EPD and EPD-ConvLSTM Models Figure 6 provide results for the EPD
and the EPD-ConvLSTM models on predicting the same single fuel fire sequence
seen in Figure 5, but after 1500 min instead of just 90 min. Unlike the DCIGN
model, both the EPD and EPD-ConvLSTM models made realistic, accurate and
stable predictions. Even though there are no physical constraints enforced in the
training of these models, both EPD and EPD-ConvLSTM models were able to
reproduce the elliptical fire scars that are expected in field fires with constant wind
and planar sloped terrain. In this context, we note that the introduction of physi-
cal principles during the training is expected to further improve the model accu-
racy and reduces the amount of data needed for training [18].

Figure 7 provides results for the EPD and EPD-ConvLSTM models in predict-
ing the dynamics of a fire sequence in the multiple fuel dataset. Because there are
variations in the fuel types used across fire sequences in this dataset, training and
prediction are more difficult than in the single fuel dataset. In Figure 7, both the
EPD and EPD-ConvLSTM models make some errors in their predictions. The
EPD model struggles to maintain the proper elliptical shape of the fire front, and
dramatically overpredicts the fire-spread rate. Conversely, predictions from the
EPD-ConvLSTM model achieves a more elliptical shape and more accurately esti-
mates the fire-spread rate. As expected, errors are more significant than in the sin-
gle fuel dataset.
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Figure 5. TTA maps for DCIGN model on a randomly selected fire
sequence in the single fuel test dataset. a Arrival time in the ground
truth generated by FARSITE; background color denotes that the
homogeneous fuel type is GR1. b Arrival time predicted by the DCIGN
model. c Elevation and wind with TTA contours. d Error in arrival time
prediction. Blue and red colors denote overprediction and
underprediction of fire spreading, respectively (Color figure online).
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Figure 8 shows a comparison between the EPD and EPD-ConvLSTM models’
predictions on a fire sequence randomly selected from the California dataset. The
majority of the field is covered by timber litter fuel (green), with many small pat-
ches of slash burn fuel (light green). Thus, the general shape of the fire scar is
roughly elliptical. The wind pushes the fire in the northeasterly direction but there
are patches of grass shrub (light red) in the southern and northern regions where
the fire accelerates more quickly than on the timber litter fuel. The southern patch
of grass shrub is located on terrain that slopes upward, further accelerating the
fire in the opposite direction of the wind. This acceleration can clearly be seen in
the TTA contour lines near the bottom of the field.

Both the EPD and EPD-ConvLSTM models performed well and correctly con-
sidered the complex interactions between the various fuel types, the changes in ele-
vation and the wind. The EPD model did not make any egregious errors, but did
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Figure 6. TTA maps for EPD and EPD-ConvLSTM models on the same
single fuel fire sequence seen in Figure 5 after 1500 min. a TTA map
for the ground truth generated by FARSITE; the background color
denotes that the fuel type, in this case the homogeneous fuel type is
GR1. TTA maps predicted by b EPD model and c EPD-ConvLSTM model.
d Elevation of the field and direction of the wind with the TTA
contours from (a). e, f Errors in the predictions made in (b, c). Blue (or
red) regions indicate predictions that were too fast (or too slow). The
colorbar is symmetric around zero for readability, but underlying
errors are not necessarily symmetric. Black regions indicate locations
the fire was never supposed to reach (false positives) or regions that
the fire never did reach (false negatives). The EPD’s fire scar JSC was
0.86 (dataset average: 0.82). The EPD-ConvLSTM’s fire scar JSC was
0.95 (dataset average: 0.94) (Color figure online).
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not estimate the speed of the fire propagation as accurately as the EPD-
ConvLSTM model. The dark blue boundary in Figure 8e) denotes cells the EPD
model predicted the fire would reach after 1500 min, but never actually did in the
ground truth (false positives). Conversely, in Figure 8f, there are far fewer dark
blue cells, but there are also some dark red cells, indicating locations the fire was
supposed to reach, but were never predicted to do so (false negatives).

Figure 9 provides an example of a fire burning in the California-WN dataset.
The EPD model’s final Jaccard score for the scar was 0.86 and the EPD-
ConvLSTM’s final Jaccard score was 0.89, so both models did fairly well,
although the EPD-ConvLSTM model did better. The fire can be seen adhering to
changes in vegetation (note the lack of spread in the notch on the western front)
as well as the prevailing wind. The models were trained only on the prevailing
wind direction (the red arrow), but the FARSITE simulation used the more com-
plex wind patterns determined by Wind Ninja. Both models accelerated the fire a
little too quickly on the eastern front, but the EPD model also slowed the fire
spread down too much on the south-western front.

5.2. Full Evaluation

This section provides the full evaluation made across all four datasets on the three
metrics defined in Sect. 4.3: (1) The Jaccard score (higher is better), which mea-
sures the success of a binary classification of the cells in the prediction. 0.0 means
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Figure 7. TTA maps for EPD and EPD-ConvLSTM models on a fire
sequence in the multiple fuel dataset. Panels follow the same layout
as in Figure 6. EPD’s fire scar JSC was 0.47 (dramatically worse than
dataset average of 0.74). EPD-ConvLSTM’s fire scar JSC was 0.87
(dataset average: 0.89).
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no cells in the label overlapped with the cells in the prediction. 1.0 indicates a per-
fect overlap. (2) The RMSE score (lower is better), which provides a general sense
for how much regressive error exists on average across all cells predicted. (3) The
STE scores (lower is better), which measures how much error exists in the total
size of the predicted fire front and fire scar.

Figures 10, 11, 12 and 13 provides results for each of the four datasets. Solid
lines correspond to results computed from one of the test datasets, whereas the
dark-shaded and light-shaded regions correspond to 50% and 90% confidence
intervals (respectively) estimated from the 20 bootstrapping datasets described in
Sect. 4.4. Each column of graphs provides the results across all datasets for a sin-
gle metric. The top row of graphs in each section provides results for the fire front
predictions, and the bottom row of graphs provides results for the fire scar predic-
tions. The same graph in each of the three sections uses the same scale for the
vertical axis, allowing the same metric to easily be compared across the four data-
sets. Table 2 provides the numeric values for each metric on the 1st, 25th, 50th,
75th and 100th autoregressive predictions.

The fire front JSC and fire scar JSC values (first column) are the classification-
based metrics that we used to evaluate the models. The results across all four
datasets demonstrated that the EPD-ConvLSTM model consistently outperformed
the EPD model. Across all six graphs, the EPD-ConvLSTM’s JSC was statisti-
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Figure 8. TTA maps for the EPD and EPD-ConvLSTM model on a fire
sequence in the California dataset. Panels follow the same layout as
in Figure 6, except d provides the magnitude of the slope instead of
the elevation. EPD’s fire scar JSC was 0.94 (exactly the dataset
average). EPD-ConvLSTM’s fire scar JSC was 0.99 (better than the
dataset average of 0.94) (Color figure online).
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cally significantly higher than the corresponding EPD model’s score, with the
exception of the 75th and 100th JSC on the fire front. This indicates that the
EPD-ConvLSTM model did a better job selecting the specific cells that the fire-
front spread transitioned to during each of the autoregressive predictions.
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Figure 9. TTA maps for the EPD and EPD-ConvLSTM model on the
California-WN dataset. Panels follow the same layout as in Figure 8,
except the countour lines in d are replaced with the dynamics
generated by Wind Ninja. EPD’s fire scar JSC was 0.86 (much better
than dataset average of 0.38). EPD-ConvLSTM’s fire scar JSC was
0.89 (slightly worse than dataset average of 0.93) (Color
figure online).

Figure 10. Full evaluation results for the single fuel dataset. Axis
arrows show direction of better score.
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Also note the stark differences between the JSCs on the Front metrics versus the
Scar metrics. The front metrics drop much more quickly than the scar metrics do,
which is expected given the significantly increased difficulty of predicting the exact
time-resolved location of the small fire-front. Consider, for example, that the fire

Figure 11. Full evaluation results for the multiple fuel dataset. Axis
arrows show direction of better score.

Figure 12. Full evaluation results for the California dataset. Axis
arrows show direction of better score.

Figure 13. Full evaluation results for the California-WN dataset.
Axis arrows show direction of better score.
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front may only be one cell wide, and thus, even when the prediction is off by just
a single cell, the front JSC drops to 0.0. A low front JSC is not an indicator that
the front is misplaced by much, and indeed, a high scar JSC score can only exist
if the front’s misplacement is minor.

Figure 9f provides a TTA map for a prediction made by the EPD-ConvLSTM
model in this dataset. The black areas visualize the error in the final scar, but
there are many more non-black cells than black cells, which explains the high scar
JSC. However, the blue and pink cells correspond to regions in which the fire
front was slightly misplaced and the front JSC will be low for all the pink/blue
cells in the TTA map, and since at most time steps, there is some error in the
exact placement of the front, the front JSC remains low even though throughout
the predicted simulation, the fire scar remains highly accurate.

The second column of graphs provides the RMSE metric. As expected, the
RMSE results are qualitatively similar to the Jaccard results. The pattern of
increased performance on this metric roughly mirrors the same increased perfor-
mance seen in the JSC results.

The third column of graphs provides the results for the STE metric. This metric
measures the overall ability for the DNN models to predict the correct size of the
fire front and fire scar, regardless of whether the location was correct. On predict-
ing the overall size of the fire scar, the EPD-ConvLSTM model clearly outper-
formed the EPD model on all four datasets. On predicting the overall size of the
fire front, the EPD-ConvLSTM model clearly outperformed the EPD model on
the single fuel, multiple fuel and California-WN datasets, but only outperformed
the EPD model in the first 50 autoregressive predictions on the California dataset.
The strong performance of the EPD-ConvLSTM model on this metric indicates
that adding temporal layers to the EPD model results in the model more success-
fully estimating the speed at which the fire propagates.

The results on the California-WN dataset demonstrate that the EPD-
ConvLSTM model was capable of effectively coping with the hidden spatially
nonuniform wind dynamics. Compared to the California dataset, the JSC for the
fire scar only decreased from 0.94 to 0.93 and decreased from 0.10 to 0.06 for the
fire front. The EPD model’s behavior was more nuanced. It outperformed the
EPD-ConvLSTM model on the fire front prediction as measured by RMSE (and
recall, this metric is basically the same used for the loss function during training),
however, results on all other metrics worsened.

This was the only occurrence when the RMSE metric and the JSC metrics dis-
agreed significantly. We suspect this disagreement is due to poor performance of
the EPD model on slow-growth fires that impact only small fractions of the fire
patch. The EPD model tends to overburn these fires, which only has a nominal
impact on the RMSE (since the majority of the unburnt cells are correctly classi-
fied), but has a significant impact on JSC (since it takes relatively few errant cells
to get a low score from a fire that also only affects a few cells).

We had anticipated that the two California datasets would be the most difficult
to predict. They contain realistic and complex arrangements of vegetation, mois-
ture content, elevation, wind, etc., whereas the other two datasets contain entirely
homogeneous distributions of fuel on planar landscapes. However, the realistic

DNNs for Modeling Time-Resolved Wildfire Spread Behavior



landscapes result in patches of terrain that often significantly constrain the direc-
tion and speed that a fire can reasonably propagate. It was not hard for either
model to learn, e.g., that fires propagate more slowly through some fuels than
others, and patches with either slow-burning fuel or even nonburnable fuel are
easier to predict than the freedom the fire has to move in the single fuel and espe-
cially multiple fuel fires.

Indeed, the most difficult dataset to classify was the multiple fuel dataset. Con-
sider that if a particular cell is on fire in a multiple fuel fire, it will propagate to
some degree into all eight neighboring cells. Our models are, intentionally, entirely
empirical and make no assumptions about the shape or propagation dynamics
that the fire will take. This allows the same method for training a model to be
learned on any of the fire datasets.

While the accuracy of the EPD model is clearly improved with the addition of
the temporal ConvLSTM layers, that improvement comes at the cost of increased
inference time. The EPD model alone takes approximately 7ms to perform a sin-
gle inference. The EPD-ConvLSTM model takes approximately 61ms to perform
the same inference. FARSITE takes anywhere between 20 ms and 100 ms (de-
pending on how much fire is in the patch).

5.3. Time Step Analysis

This section provides an analysis on how the EPD and EPD-ConvLSTM models
performed with increasing step sizes on the most realistic dataset, the California-
WN dataset. The original datasets used 15 min time increments. By computing the
union of the fire growth on sequential time steps, 30-min and 60-min versions of
the original 10,000 fire sequences were generated. New models were trained fol-
lowing the same process detailed in Sect. 4.2.

Figure 14a shows how the performance degrades over the increased time-step
size. While the 30- and 60-min COLOUR models need fewer time steps to cover
the same duration, and thus will suffer less from compounding errors in the
autoregressive process, a clear preference for smaller time steps is observable in
the results. Performance across all metrics degrades as the time step increases. Fig-
ure 14b shows the performance on the EPD model. Note that the fire front
RMSE score is basically the same as the score used in the training loss function
and thus the decayed performance as the time step increases is clearly present
here. However, the 15-min version of the model actually performed more poorly
than the 30-min version on all other metrics. This appeared, at least in part, due
to the EPD model performing more poorly on slow-burning fires (making errors
on slow-burning fires results in only small penalties to the RMSE metric, but
much more significant penalties to the Jaccard metric).

6. Conclusions

Our primary contribution is evaluating the efficacy of recurrent convolutional neu-
ral networks to predicting the time-dependent behavior of wildfires. Previous stud-
ies demonstrated that convolutional neural networks can make effective
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predictions of the fire scar in one single large time step [20, 21]. We instead focus
on an autoregressive process in which many small predictions are sequentially
made to predict the fire scar after a large amount of time. This method allows for
the model to continuously adapt to changing dynamic environment conditions
and more precisely models the evolution of the fire front by not only modeling
when the fire reached a particular location, but also by explicitly predicting how
much fuel burns at each location at each time step.

We demonstrate that a popular previously employed model for similar predic-
tions, the Deep Convolutional Inverse Graphics Network (DCIGN) model, was
not well-suited for making the fine-grained temporal autoregressive predictions, as
the transformations in that model facilitate large-scale changes to the input state,
resulting in the model generalizing poorly in this context. We replace the transfor-
mations in the DCIGN model with more suitable transformations, leading basi-
cally to the same structure seen in the Encoder-Processor-Decoder (EPD) model.
We demonstrate that the EPD model is stable and can realistically propagate a
fire front forward in time for upwards of 100 autoregressive predictions. We
added recurrent layers to the EPD model, resulting in the EPD-ConvLSTM
model, which significantly improves the accuracy of the predictions, achieving

(a) EPD-ConvLSTM.

(b) EPD.

Figure 14. Full evaluation of the EPD-ConvLSTM and EPD models on
different time steps.
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JSCs on the 100th autoregressive prediction of the fire scar of: 0.94 (single fuel),
0.89 (multiple fuel), 0.94 (California) and 0.94 (California-WN).

The poor performance of the EPD model on the California-WN dataset also
suggests that using MSE as the loss function may be introducing a bias against
modeling the dynamics of small fires, since errors on small fires do not negatively
impact the MSE score nearly as much as they would a metric like the JSC.
Updating the loss function to contain a JSC-like term may help.

We believe a primary direction for future work is to identify a DNN model that
combines the strengths of our approach (fine-scale time-resolved predictions) with
the strengths of prior work (single long-term predictions over large periods of
time). Incorporating uncertainty estimation into such a model would allow it to
determine the optimal time step to make predictions given the current state of the
fire. Complex periods in the simulation could use fine-scaled time-resolved predic-
tions to maintain accurate time-resolved predictive efficacy, whereas less challeng-
ing periods could use large time-step predictions to minimize computational
overhead. Further, the uncertainty estimates themselves would be particularly
valuable, as typical approaches to estimating uncertainty in fire propagation simu-
lations often require running the underlying simulation multiple times.
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Appendix 1: Deep Neural Network Transformations

While a full summary of deep neural networks is outside the scope of this paper,
we provide a brief description of the transformations used in the DNNs described
in this work. For a deeper background on DNNs, we refer the interested reader
to [30].
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The fundamental unit processed by a DNN is a tensor. A tensor is an n dimen-
sional collection of scalar values, n � 0. For example, a single field specifying how
much fuel exists in a 2D patch of ground could be stored in a 2D tensor with
shape (H, W) where H is the height of the field and W is the width. That field
represents a channel of information and if there are additional channels, they can
be stored in a tensor of shape (H, W, C) where C is the number of channels. A
time series of fields can be stored in a tensor of shape (T, H, W, C) where T is the
number time points in the series. Training a DNN is usually done in batches, so a
DNN that works on (T, H, W, C) data will actually take (B, T, H, W, C) data
where B is the number of data points in a single batch.

DNNs are often said to predict some outcome based on a given data point
though in reality, the output is merely the input after its been passed through a
potentially large number of transformations. We sometimes refer to sets of trans-
formations as a layer. Some layers contain parameters such that the process of
training a DNN attempts to find the optimal set of values that result in trans-
forming as much of the training input into as correct a set of output as possible.
These are the primary transformations used in this work:

fully connected: Every value in the output is a parameterized combina-
tion of every value in the input. Given an input shape (B, M) and output shape
(B, N), there are M � N total parameters. This layer can be useful when many
output values need to consider many input values, but can be particularly prone
to overfitting and parameter bloat.
convolutional (2D): This layer is appropriate for inputs that contain
2D fields. A 2D convolutional kernel is swept across both dimensions of the
input field. At each location, the dot product between the kernel and the 2D field
is computed, which generates a new field that is the convolution of the input
field with the kernel. There can be multiple independent kernels, resulting in mul-
tiple field outputs. Given an input shape of (B, H, W, C), the output shape is
(B, H, W, K) where K is the number of kernels.
recurrent: A layer which explicitly considers temporal relationships in the
input data when generating the output. Unlike spatial relationships, temporal
relationships often cannot effectively be modeled by simply considering neighbor-
ing input. Temporal dynamics often require considering events that occurred at
more distant times in the past. Recurrent layers build up a memory by iterating
over individual time points one at a time. Cells in the output depend on the
memory instead of actual time points in the past. If the input contains fields, the
layers will also leverage convolutions such that an output cell can depend on the
memory of itself, and the memory of neighboring cells. If the convolutions have
K kernels and the input shape is (B, T, H, W, C), then the output shape will be
(B, T, H, W, K). Given its wide-spread success at modeling image-to-image type
tasks, we use the Convolutional Long-Short Term Memory layer (ConvLSTM)
[37].
activation: Passes each value in the input through an often non-linear and
potentially parameterized function. The output shape is equal to the input shape.
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skip link: Taking the input for some transformation and concatenating (or
adding) it with the output of the transformation. This effectively gives a path for
the gradients of the model’s parameters to skip the transformation during train-
ing, significantly increasing the efficacy of training large networks.
max pooling (2D): A field transformation that downsamples the spatial
dimensions of the input and while typically doubling the number of channels. If
the input has shape (B, H, W, C), then the output will have shape
ðB;H=2;W =2;C � 2Þ.
zero padding: This layer adds padding around the field. If the input shape
is (B, H, W, C) and the padding size is P then the output shape will be
ðB;H þ 2P ;W þ 2P ;CÞ.
one hot encoding: This layer transforms integer values in the input into
a list of all zeros with the exception of a single element in the list corresponding
to the integer value being given a value of one. If the input shape is
(B, H, W, C), the output will be (B, H, W, C, E) where E is the maximum value
the input can take.
embedding: This layer converts a field that contains discrete valued cells into
an field where each cell is replaced by a set of floating-point values. Values in the
input that result in similar predictions are placed close to each other in the
embedding space, which subsequent layers in the model can leverage more effec-
tively than the discrete values alone. If the input has shape (B, H, W, 1) and the
embedding space has rank E, then the output shape will be (B, H, W, E).
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