
SoftwareX 17 (2022) 100982

D

e
d
A
f
e
d
i
n
i
s
i

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

Quail: A lightweight open-source discontinuous Galerkin code in
Python for teaching and prototyping
Eric J. Ching, Brett Bornhoft ∗, Ali Lasemi, Matthias Ihme
epartment of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA

a r t i c l e i n f o

Article history:
Received 25 January 2021
Received in revised form 2 December 2021
Accepted 11 January 2022

Keywords:
Discontinuous Galerkin method
High-order methods
Python

a b s t r a c t

In this paper, we present Quail, a lightweight discontinuous Galerkin solver written in Python. The
aim of this code is to serve not only as a teaching tool for newcomers to the rapidly growing field,
but also as a prototyping platform for testing algorithms, physical models, and other features in the
discontinuous Galerkin framework. Code readability, modularity, and ease of use are emphasized.
Currently, Quail solves first- and second-order partial differential equations on 1D and 2D unstructured
meshes. A variety of time stepping schemes, quadrature rules, basis types, equation sets, and other
features are included. The structure and capabilities of the code, as well as representative examples
involving propagation of a 2D isentropic vortex and a 2D Riemann problem with a gravity source term,
will be discussed.

Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Code metadata

Current code version v1.0.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-21-00020
Code Ocean compute capsule None
Legal Code License GNU General Public License v3.0
Code versioning system used git
Software code languages, tools, and services used Python 3.7
Compilation requirements, operating environments & dependencies NumPy [1], Matplotlib [2], SciPy [3]
If available Link to developer documentation/manual https://github.com/IhmeGroup/quail/blob/main/docs/documentation.pdf
Support email for questions bornhoft@stanford.edu
1. Motivation and significance

Numerical solutions to partial differential equations are rel-
vant to many areas of science and engineering, including fluid
ynamics, solid mechanics, electrodynamics, and astrophysics.
variety of numerical methods, such as finite difference and

inite volume schemes, can be used to discretize the governing
quations describing these problems. In recent years, high-order
iscontinuous Galerkin (DG) methods have gained considerable
nterest [4,5]. These methods combine aspects of classical fi-
ite volume and finite element schemes. The global solution
s approximated using piecewise discontinuous polynomials, re-
ulting in multiple degrees of freedom per element. Discontinu-
ties between elements are accounted for with numerical flux

∗ Corresponding author.
E-mail address: bornhoft@stanford.edu (Brett Bornhoft).
ttps://doi.org/10.1016/j.softx.2022.100982
352-7110/Published by Elsevier B.V. This is an open access article under the CC BY
functions. Benefits of DG schemes include high-order accuracy
(typically defined as greater than second-order), desirable dissi-
pation and dispersion properties, geometric flexibility, and suit-
ability for hp-adaptation, where h refers to the mesh and p
refers to the order of accuracy. In addition, DG methods can
achieve very good scalability and efficiency on high-performance
computing systems. Encouraging performance has been demon-
strated in aerodynamics [6,7], multiphase flows [8,9], plasma
physics [10,11], astrophysics [12,13], and solid mechanics [14,15].
However, DG schemes and related high-order methods, such as
flux reconstruction [16] and spectral difference schemes [17,18],
are generally less robust and more memory-intensive than low-
order schemes. Furthermore, curved meshes, often required for
these high-order methods, are difficult to generate, and nontrivial
extensions can be required to account for additional physics.
These factors currently hinder widespread use of DG schemes for
industrial applications.
license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2022.100982
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2022.100982&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-21-00020
https://github.com/IhmeGroup/quail/blob/main/docs/documentation.pdf
mailto:bornhoft@stanford.edu
mailto:bornhoft@stanford.edu
https://doi.org/10.1016/j.softx.2022.100982
http://creativecommons.org/licenses/by/4.0/

Eric J. Ching, Brett Bornhoft, Ali Lasemi et al. SoftwareX 17 (2022) 100982

a
c
n
f
r
t
a
o
2
w
a
a
c

s
b
s
a
C
a
o
T
a

p
t
t
v
o

2

f

∂

w
i
P
d
n
i

˜

Another difficulty associated with DG schemes is that they
re considered more complicated to learn and implement than
onventional low-order methods [19]. This barrier to entry can
ot only discourage engineers and scientists from entering the
ield, but also impede progress in both implementation and algo-
ithmic development. Reliable learning resources can help lower
his barrier. Good textbooks are available that describe the theory
nd application of DG schemes [5,20]. There are also a handful of
pen-source codes on DG and related high-order methods [21–
6]. However, these are typically large, production-level codes,
hich can be overwhelming for newcomers and difficult to set up
nd run. The textbook by Hesthaven and Warburton [5] includes
well-known set of routines written in MATLAB and C++, but it
an be difficult to add new features in a modular fashion.
In this paper, we present Quail, a lightweight DG code de-

igned to address the above issues. The code is written in Python
ecause it is open-source (unlike MATLAB), well-documented,
uited for object-oriented programming, growing in popularity,
nd easier to read and use than lower-level languages such as C,
++, and Fortran. The primary objective of Quail is to serve as
teaching and prototyping tool. To support this goal, we focus
n code modularity, clarity, and straightforward setup and usage.
he simplicity of Quail allows users to easily peruse, understand,
nd add to the code without the intricacies of large codebases.
The remainder of this paper is organized as follows. Section 2

rovides a brief overview of the discretization. Section 3 describes
he software architecture and functionalities, followed by an illus-
rative example consisting of the propagation of a 2D isentropic
ortex. The final two sections comprise a discussion of the impact
f this code and concluding remarks, respectively.

. Mathematical background

Quail solves linear and nonlinear systems of PDEs of the
ollowing form:

tU + ∇ · F = S, (1)

here U is the vector of state variables, F is the flux, and S
s the source term. For brevity, this section assumes first-order
DEs, although Quail can also solve second-order PDEs. Let Ω
enote the computational domain, which is partitioned into Ne
on-overlapping discrete elements such that Ω = ∪

Ne
e=1Ωe. ∂Ωe

s the boundary of element Ωe. The approximation to the global
solution, U h ≃ U , can be expanded as

U h = ⊕
Ne
e=1U

e
h, (2)

where U e
h is the local discrete solution,

U e
h(x, t) =

Nb∑
n=1

Ũ e
n(t)φn(x). (3)

U e
n (t) is the nth vector of basis coefficients, and φn is the nth

basis polynomial. Common choices for the basis include Lagrange
polynomials and Legendre polynomials. The nominal order of
accuracy in space for smooth solutions is p + 1, where p is the
order of the polynomial approximation.

To solve for the local discrete solution, we require U e
h to satisfy

∫
Ωe

φm∂tU e
hdΩ+

∫
Ωe

φm∇·F (U e
h)dΩ =

∫
Ωe

φmS(U e
h)dΩ ∀ φm.

(4)

Inserting Eq. (3) into the first term in Eq. (4) allows us to write∫
Ωe

φm∂tU e
hdΩ =

Nb∑
n=1

dt Ũ e
n (t)

∫
Ωe

φmφndΩ =

Nb∑
n=1

dt Ũ e
n (t)M

e
mn,
(5)
2

where Me
mn =

∫
Ωe

φmφndΩ represents the element-local mass
matrix.

Integration by parts is performed on the second term in Eq. (4),
yielding∫

Ωe

φm∇ · F (U e
h)dΩ = −

∫
Ωe

∇φm · F (U e
h)dΩ

+

∮
∂Ωe

φmF̂ (U e+
h ,U e−

h , n̂)dΓ , (6)

where n̂ is the outward-pointing unit normal vector, (·)+ and (·)−
denote interior and exterior information on ∂Ωe, respectively,
and F̂ is the numerical flux function.

Combining Eqs. (4), (5), and (6) gives the following semidis-
crete form:
Nb∑
n=1

dt Ũ e
n (t)M

e
mn =

∫
Ωe

∇φm · F (U e
h)dΩ

−

∮
∂Ωe

φmF̂ (U e+
h ,U e−

h , n̂)dΓ

+

∫
Ωe

φmS(U e
h)dΩ. (7)

The time derivative on the LHS can be treated using classical
explicit time stepping schemes. The integrals are evaluated using
numerical quadrature. Additional details on the discretization can
be found in the documentation (Code metadata), as well as in
Ref. [5].

3. Software description

Quail uses an object-oriented programming paradigm to
achieve flexibility. Therefore, when a new feature is implemented,
it is simple to inherit and build on existing class structures.
Readability is attained by employing a Pythonic coding style and
extensively using Python docstrings and comments. All math-
ematical operations are performed using the popular NumPy
library [1], which enhances performance by utilizing fully vec-
torized array operations. For modularity, Quail is split into five
Python packages, each responsible for encapsulating different
aspects of the DG solution procedure. This software architecture
is depicted in the diagram in Fig. 1, with specific capabilities listed
in Table 1. A brief description of each package is given below:

• The meshing package handles the generation of the com-
putational mesh and its data structures. High-order curved
elements are supported. Built-in routines are provided to
generate 1D and 2D regular meshes with quadrilateral and
triangular elements. Periodicity can be imposed on user-
specified boundaries as well. This package can also import
meshes from the open-source meshing software Gmsh [27],
which can generate curved unstructured meshes for com-
plex geometries.

• The numerics package is responsible for the available
numerical methods. These include various choices of quadra-
ture rules for evaluating integrals, basis functions for the so-
lution and geometric approximation, time-stepping schemes,
and limiters and artificial viscosity for stabilization. The
quadrature rules and basis types support segments in 1D
and triangles and quadrilaterals in 2D, and there are both
nodal and hierarchic bases available for all of these shapes.
A Gauss–Lobatto collocated scheme, in which the solu-
tion nodes and the quadrature points are the same, is also

included.

Eric J. Ching, Brett Bornhoft, Ali Lasemi et al. SoftwareX 17 (2022) 100982

s
s
w
l
f
t
c
t
a
s
t

c
t
o
o

Fig. 1. Software architecture diagram depicting the tasks performed by each package, as well as the overall flow of the code.
t
c
a
p
f
i

4

4

m
t
t
p
p
i
m
B
D
u
c
f
i

• The physics package includes the equation sets and cor-
responding physical models. It contains the definitions of
fluxes, initial conditions, boundary conditions, and source
terms. Supported equation sets include constant scalar ad-
vection, the inviscid Burgers equation, and the compressible
Euler equations. We have also recently added the capability
to handle second-order PDEs such as the scalar advection–
diffusion and compressible Navier–Stokes equations, which
is undergoing further development.

• The solver package combines physics-related information
stored in physicswith the numerical algorithms in numer-
ics to update the solution at each time step. The solution
can be computed with not only the standard DG discretiza-
tion, but also the ADERDG scheme [28,29], which is a space–
time predictor–corrector method that allows for high-order
accuracy in both space and time while maintaining robust-
ness with stiff source terms.

• The processing package performs tasks on the solution
data, such as computing error and generating visualiza-
tions, including 1D line plots, 2D contour plots, line probes,
and animations. Matplotlib [2] subroutines are employed to
allow for easy setup, implementation, and modification.

Solution data files for processing and simulation restarts are
aved using the pickle module, which is part of the Python
tandard library. Simple subroutines allow for easy reading and
riting of data. Entire Python objects can be saved with one

ine of code, a major advantage of this module. Another user-
riendly feature of Quail is the option to define custom functions
o perform case-specific data processing at each time step. These
ustom functions are written outside of the source code and
herefore do not require a full understanding of the codebase,
llowing for simple implementation. Also included is built-in
upport for continuous integration and a testing infrastructure
hat encompasses both functional and unit tests.

A suite of test cases can be found in the repository. These in-
lude a 1D damping sine wave, 2D advection of a Gaussian pulse,
he Sod shock tube problem, a moving shockwave, steady flow
ver a bump, the steady inviscid Taylor–Green vortex [30], and
thers. The illustrative examples in Section 4 are also available.
3

Additional learning tools are included in Quail. For example,
he basis functions for segments, quadrilaterals, and triangles
an be visualized, as shown in Fig. 2. Furthermore, dissipation
nd dispersion analysis for various polynomial orders can be
erformed. To illustrate, the dissipation and dispersion relations
or p = 1 to p = 7 with an upwind flux are given in Fig. 3. More
nformation on this analysis can be found in Ref. [5].

. Illustrative examples

.1. Isentropic vortex propagation

To illustrate the functionality of Quail, we present the nu-
erical solution of a propagating isentropic vortex governed by

he compressible Euler equations. This is a classical case for
esting the order of accuracy of higher-order schemes. The in-
ut deck relies on Python dictionaries to prescribe solver and
hysics parameters, allowing for easy simulation setup. These
nput dictionaries are organized as follows: TimeStepping, Nu-
erics, Mesh, Physics, InitialCondition, ExactSolution,
oundaryConditions, SourceTerms, Output, and Restart.
efault parameters located in src/defaultparams.py allow
sers to modify only the necessary parameters for each individual
ase. Since Python scripts are used as input files, any Python
unctionality can be employed directly in the input deck. The
nput file for this case is shown below.

Input deck for the setup of a
propagating isentropic vortex
TimeStepping = {

" FinalTime " : 1.0,
" CFL " : 0.1,
" TimeStepper " : " LSRK4 " ,

}
Numerics = {

" SolutionOrder " : 3,
" SolutionBasis " : " LagrangeTri " ,

}
Mesh = {

" ElementShape " : " Triangle " ,
" NumElemsX " : 16,
" NumElemsY " : 16,
" xmin " : -5.,

Eric J. Ching, Brett Bornhoft, Ali Lasemi et al. SoftwareX 17 (2022) 100982

w
o

Fig. 2. Sample basis functions for (a) segments and (b) quadrilaterals.
o
p
c
e
h
r
(

4

a
u
w
e
d

(

" xmax " : 5.,
" ymin " : -5.,
" ymax " : 5.,

}
Physics = {

" Type " : " Euler " ,
" ConvFluxNumerical " : " Roe " ,
" GasConstant " : 1.,

}
InitialCondition = {

" Function " : " IsentropicVortex " ,
}
ExactSolution = InitialCondition.copy()
d = {

" BCType " : " StateAll " ,
" Function " : " IsentropicVortex " ,

}
BoundaryConditions = {

" x1 " : d,
" x2 " : d,
" y1 " : d,
" y2 " : d,

}

The initial conditions are based on the work of Yu et al. [31],
here velocity and temperature perturbations are superposed
nto a uniform flow. The domain is a square of size [−5, 5] ×

[−5, 5]. The exact solution corresponds to advection of the isen-
tropic vortex at constant velocity. Fig. 4 shows density contours
at a final time of one second on two different meshes: a q =

1 triangular mesh (Fig. 4(a)), where q refers to the order of
the geometry approximation, and a curved q = 2 quadrilateral
mesh (Fig. 4(c)). After the simulation is completed, the solver
(optionally) searches for a post-processing script in the working
directory. With the tools detailed in Section 3, users can create
contour and line plots such as those in Fig. 4. The post-processing
script for this case is as follows:

import processing.post as post
import processing.plot as plot
import processing.readwritedatafiles as

readwritedatafiles
Read data file
fname = " Data_final.pkl "
solver = readwritedatafiles.read_data_file(fname)
Unpack
mesh = solver.mesh
physics = solver.physics
Compute L2 error
4

post.get_error(mesh, physics, solver, " Density ")
Plot density contour
plot.prepare_plot(linewidth=0.1)
plot.plot_solution(mesh, physics, solver, " Density " ,

legend_label= " DG " , include_mesh=True, regular_2D
=True)

plot.save_figure(file_name=’vortex’, file_type=’pdf’
)

plot.show_plot()

This script reads in a pickle data file, unpacks the relevant
bjects from the solver, computes the L2-error of density, and
lots the density contour. This data can then be used to construct
onvergence plots such as that in Fig. 4(d), which shows that the
xpected convergence rate is obtained. Additional information on
ow to construct input files and post-processing scripts, including
epresentative examples, can be found in the Quail repository
Code metadata).

.2. 2D Riemann problem with gravity source term

Quail’s object-oriented framework makes adding source terms
nd numerical algorithms straightforward. Here, we illustrate the
se of these functionalities by simulating a 2D Riemann problem
ith a gravity source term governed by the compressible Euler
quations. As done in Ref. [32], the case is set up on a 2 × 2
omain with the following initial conditions:

ρ, u, v, P) =

{
(7, −1, 0, 0.2) , x ≤ 1,
(7, 1, 0, 0.2) , x > 1,

(8)

where ρ is the density, u and v are the x- and y-components
of the velocity, respectively, and P is the pressure. The source
term is given as S = [0, 0, −ρg, −ρvg]T , with g = 1. Under
these conditions, both pressure and density can approach non-
physical negative values. To improve robustness, we employ the
positivity-preserving limiter by Zhang and Shu [33]. The polyno-
mial order is p = 1. In Fig. 5, we show numerical results of the
Riemann problem at t = 0.6 s, which are comparable to those in
the literature [32].

5. Impact

Although DG methods are increasing in popularity, the barrier
of entry remains high since they are generally more complicated

Eric J. Ching, Brett Bornhoft, Ali Lasemi et al. SoftwareX 17 (2022) 100982

Fig. 3. (a) Dissipation and (b) dispersion relations for p = 1 to p = 7 with an upwind flux.

Fig. 4. Numerical solution for the propagation of an isentropic vortex. (a) Density contours at t = 1.0 s on 1024 triangular elements. (b) Line slice at y = 1
comparing the initial, exact, and numerical solutions. (c) Variation of convergence rate with

√
Ne for different polynomial orders based on L2 density error. The

expected convergence rate is represented with solid lines.

5

Eric J. Ching, Brett Bornhoft, Ali Lasemi et al. SoftwareX 17 (2022) 100982

s
r

t
u
f
t
t
d
u
c
n

g
P
m
a
m
a
u
w
a
(
t
m

Table 1
Current set of features implemented in Quail.
Basis and Geometry
Shape Segment Triangle Quadrilateral

Nodal Basis Lagrange Lagrange Lagrange

Modal Basis Legendre Legendre H1 Hierarchic [34]

Quadrature Rules Gauss–Legendre,
Gauss–Lobatto

Gauss–Legendre,
Dunavant [35]

Gauss–Legendre,
Gauss–Lobatto

Stabilization Time-steppers
Positivity-Preserving Limiter [33] Forward Euler
WENO Limiter [36] RK4
Artificial Viscosity LSRK4 [37]

Solvers SSPRK3 [38]

DG ADER [39]
ADERDG [39] Strang [40]

Physics Simpler [41]

Scalar advection–diffusion
Burgers’ Equation
Euler/Navier–Stokes Equations
Fig. 5. Numerical solution for the 2D Riemann problem with a gravity source term. (a) Density contours at t = 0.6 s on 25,600 quadrilateral elements. (b) Line
lice at y = 1.7875 comparing the numerical solution of a 6400 element case (blue symbols) to the 25,600 element case (solid black line). (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)
P
u
i
1
T
t
g
a
r
a
o
n

D

c

han conventional low-order numerical schemes, like finite vol-
me and finite difference methods, and there are comparatively
ewer learning resources. To help address this issue, Quail aims
o facilitate learning for students, scientists, and engineers eager
o enter the field. Key implementation details that are not readily
iscussed in the literature are made clear with this lightweight,
ser-friendly code. The simplicity of Quail, contrasted with the
omplexity of large-scale codebases, makes it more digestible to
ewcomers who desire hands-on access to DG schemes.
This simplicity, along with modularity and Python as the lan-

uage of choice, makes Quail also conducive to rapid prototyping.
hysical models can be easily incorporated to assess the perfor-
ance of DG schemes in new contexts. In addition, novel features
nd methods can be quickly implemented, tested, and applied to
odel problems before being added to production codes. This can
ccelerate the process of algorithmic development. The extensive
se of vectorized NumPy operations [1] enables simulations of a
ide range of 1D and 2D configurations of relevant physical scale
nd resolution. Links to video tutorials provided in the repository
Code metadata) further illustrate how to use Quail and add cer-
ain features, such as boundary conditions, in a straightforward
anner.
 t

6

6. Conclusions

Quail is a lightweight discontinuous Galerkin code written in
ython. It is designed for teaching and prototyping without the
nwieldy intricacies of production codes. Code clarity, modular-
ty, and ease of use are major focuses. Currently, Quail solves
D and 2D first- and second-order partial differential equations.
he software architecture and functionalities are discussed. Isen-
ropic vortex propagation and a 2D Riemann problem with a
ravity source term governed by the Euler equations are used
s illustrative examples. Quail can impact the community by
educing the barrier of entry for newcomers and accelerating
lgorithmic developments. Future work will entail incorporation
f new features, such as additional limiters, equation sets, and
umerical schemes.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

Eric J. Ching, Brett Bornhoft, Ali Lasemi et al. SoftwareX 17 (2022) 100982

A

f
t
D

R

cknowledgments

Funding from an Early Career Faculty grant (NNX15AU58G)
rom the NASA Space Technology Research Grants Program, Na-
ional Science Foundation (DGE-1656518 and 1909379), and the
oD SMART Scholarship are gratefully acknowledged.

eferences

[1] Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cour-
napeau D, Wieser E, Taylor J, Berg S, Smith NJ, Kern R, Picus M,
Hoyer S, van Kerkwijk MH, Brett M, Haldane A, del Río JF, Wiebe M,
Peterson P, Gérard-Marchant P, Sheppard K, Reddy T, Weckesser W,
Abbasi H, Gohlke C, Oliphant TE. Array programming with NumPy. Nature
2020;585(7825):357–62.

[2] Hunter JD. Matplotlib: A 2D graphics environment. Comput Sci Eng
2007;9(3):90–5.

[3] Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D,
Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M,
Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E,
Carey CJ, Polat I, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J,
Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH,
Pedregosa F, van Mulbregt P, SciPy 10 Contributors. SciPy 1.0: Funda-
mental Algorithms for scientific computing in python. Nature Methods
2020;17:261–72.

[4] Cockburn B, Karniadakis GE, Shu CW. The development of discontinuous
Galerkin methods. In: Cockburn B, Karniadakis GE, Shu CW, editors.
Discontinuous Galerkin Methods. Springer, Berlin, Heidelberg; 2000, p.
3–50.

[5] Hesthaven JS, Warburton T. Nodal Discontinuous Galerkin Methods:
Algorithms, Analysis, And Applications. Springer; 2007.

[6] Hartmann R, Held J, Leicht T, Prill F. Discontinuous Galerkin methods for
computational aerodynamics – 3D adaptive flow simulation with the DLR
PADGE code. Aerosp Sci Technol 2010;14(7):512–9.

[7] Brazell MJ, Mavriplis DJ, Yang Z. Mesh-resolved airfoil simulations
using finite volume and discontinuous Galerkin solvers. AIAA J
2016;54(9):2659–70.

[8] Zwick D, Balachandar S. Dynamics of rapidly depressurized multiphase
shock tubes. J Fluid Mech 2019;880:441–77.

[9] Ching EJ, Brill SR, Barnhardt M, Ihme M. A two-way-coupled Euler-
Lagrange method for simulating multiphase flows with discontinuous
Galerkin schemes on arbitrary curved elements. J Comput Phys 2020;405.

[10] Jacobs G, Hesthaven JS. High-order nodal discontinuous Galerkin particle-
in-cell method on unstructured grids. J Comput Phys 2006;214:96–121.

[11] Pfeiffer M, Hindenlang F, Binder T, Copplestone SM, Munz C-D, Fasoulas S.
A particle-in-cell solver based on a high-order hybridizable discontinuous
Galerkin spectral element method on unstructured curved meshes. Comput
Methods Appl Mech Eng 2019;349:149–66.

[12] Chu R, Endeve E, Hauck CD, Mezzacappa A. Realizability-preserving DG-
IMEX method for the two-moment model of fermion transport. J Comput
Phys 2019;389:62–93.

[13] Teukolsky SA. Formulation of discontinuous Galerkin methods for
relativistic astrophysics. J Comput Phys 2016;312:333–56.

[14] Kabaria H, Lew AJ, Cockburn B. A hybridizable discontinuous Galerkin
formulation for non-linear elasticity. Comput Methods Appl Mech Eng
2015;283:303–29.

[15] Nguyen VP. Discontinuous Galerkin/extrinsic cohesive zone modeling:
Implementation caveats and applications in computational fracture
mechanics. Eng Fract Mech 2014;128:37–68.

[16] Huynh HT. A flux reconstruction approach to high-order schemes includ-
ing discontinuous Galerkin methods. In: 18th AIAA Computational Fluid
Dynamics Conference. AIAA 2007-4079; 2007.

[17] Liu Y, Vinokur M, Wang ZJ. Spectral difference method for unstructured
grids I: Basic formulation. J Comput Phys 2006;216(2):780–801.

[18] Wang ZJ, Liu Y, May G, Jameson A. Spectral difference method for
unstructured grids II: extension to the Euler equations. J Sci Comput
2007;32(1):45–71.
7

[19] Wang ZJ, Fidkowski K, Abgrall R, Bassi F, Caraeni D, Cary A, Deconinck H,
Hartmann R, Hillewaert K, Huynh H, Kroll N, May G, Persson P-O, van
Leer B, Visbal M. High-order CFD methods: Current status and perspective.
Int J Numer Methods Fluids 2013;72:811–45.

[20] Riviere B. Discontinuous Galerkin Methods For Solving Elliptic And
Parabolic Equations: Theory And Implementation. SIAM; 2008.

[21] Cantwell CD, Moxey D, Comerford A, Bolis A, Rocco G, Mengaldo G,
De Grazia D, Yakovlev S, Lombard J-E, Ekelschot D, Jordi B, Xu H,
Mohamied Y, Eskilsson C, Nelson B, Vos P, Biotto C, Kirby RM, Sherwin SJ.
Nektar++: An open-source spectral/hp element framework. Comput Phys
Comm 2015;192:205–19.

[22] Hindenlang F, Gassner GJ, Altmann C, Beck A, Staudenmaier M, Munz C-D.
Explicit discontinuous Galerkin methods for unsteady problems. Comput
& Fluids 2012;61:86–93.

[23] Alnæs M, Blechta J, Hake J, Johansson A, Kehlet B, Logg A, Richardson C,
Ring J, Rognes ME, Wells GN. The FEniCS project version 1.5. Arch Numer
Softw 2015;3(100).

[24] Witherden FD, Farrington AM, Vincent PE. PyFR: AN open source
framework for solving advection–diffusion type problems on streaming
architectures using the flux reconstruction approach. Comput Phys Comm
2014;185(11):3028–40.

[25] Arndt D, Bangerth W, Davydov D, Heister T, Heltai L, Kronbichler M,
Maier M, Pelteret J-P, Turcksin B, Wells D. The deal.II finite element library:
Design, features, and insights. Comput Math Appl 2021;81:407–22.

[26] Klöckner A, Warburton T, Hesthaven JS. Solving wave equations on un-
structured geometries. In: GPU Computing Gems Jade Edition. Elsevier;
2012, p. 225–42.

[27] Geuzaine C, Remacle JF. Gmsh: A 3-D finite element mesh generator
with built-in pre- and post-processing facilities. Int J Numer Methods Eng
2009;79(11):1309–31.

[28] Dumbser M, Zanotti O. Very high order PNPM schemes on unstructured
meshes for the resistive relativistic MHD equations. J Comput Phys
2009;228:6991–7006.

[29] Bornhoft BJ, Ching EJ, Ihme M. Time integration considerations for the
solution of reacting flows using discontinuous Galerkin methods. In: AIAA
Scitech 2021 Forum. AIAA 2021-0745; 2021.

[30] Wang C. Reconstructed discontinous Galerkin method for the compressible
Navier-Stokes equations in arbitrary Langrangian and Eulerian formulation.
(Ph.D. Thesis), North Carolina State University; 2017.

[31] Yu M, Wang Z, Liu Y. On the accuracy and efficiency of discontinuous
Galerkin, spectral difference and correction procedure via reconstruction
methods. J Comput Phys 2014;259:70–95.

[32] Zhang X, Shu C-W. Positivity-preserving high order discontinuous Galerkin
schemes for compressible Euler equations with source terms. J Comput
Phys 2011;230(4):1238–48.

[33] Zhang X, Shu C-W. On positivity-preserving high order discontinuous
Galerkin schemes for compressible Euler equations on rectangular meshes.
J Comput Phys 2010;229(23):8918–34.

[34] Solin P, Segeth K, Dolezel I. Higher-Order Finite Element Methods. CRC;
2003, p. 55–60.

[35] Dunavant D. High degree efficient symmetrical Gaussian quadrature rules
for the triangle. Int J Numer Methods Eng 1985;21:1129–48.

[36] Zhong X, Shu C-W. A simple weighted essentially nonoscillatory lim-
iter for Runge–Kutta discontinuous Galerkin methods. J Comput Phys
2013;232(1):397–415.

[37] Carpenter MH, Kennedy C. Fourth-order 2N-storage Runge-Kutta schemes.
NASA Langley Research Center, NASA Report TM 109112, Richmond, VA,
USA; 1994.

[38] Spiteri R, Ruuth S. A new class of optimal high-order strong-
stability-preserving time discretization methods. SIAM J Numer Anal
2002;40(2):469–91.

[39] Dumbser M, Enaux C, Toro E. Finite volume schemes of very high
order of accuracy for stiff hyperbolic balance laws. J Comput Phys
2008;227:3971–4001.

[40] Strang G. On the construction and comparison of difference schemes. SIAM
J Numer Anal 1968;5(3).

[41] Wu H, Ma P, Ihme M. Efficient time-stepping techniques for simulat-
ing turbulent reactive flows with stiff chemistry. Comput Phys Comm
2019;243:81–96.

http://refhub.elsevier.com/S2352-7110(22)00005-X/sb1
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb1
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb1
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb1
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb1
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb1
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb1
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb1
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb1
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb1
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb1
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb2
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb2
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb2
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb3
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb3
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb3
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb3
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb3
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb3
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb3
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb3
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb3
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb3
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb3
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb3
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb3
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb3
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb3
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb4
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb4
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb4
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb4
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb4
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb4
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb4
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb5
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb5
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb5
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb6
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb6
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb6
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb6
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb6
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb7
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb7
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb7
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb7
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb7
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb8
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb8
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb8
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb9
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb9
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb9
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb9
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb9
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb10
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb10
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb10
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb11
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb11
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb11
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb11
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb11
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb11
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb11
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb12
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb12
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb12
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb12
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb12
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb13
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb13
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb13
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb14
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb14
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb14
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb14
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb14
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb15
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb15
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb15
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb15
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb15
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb16
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb16
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb16
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb16
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb16
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb17
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb17
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb17
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb18
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb18
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb18
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb18
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb18
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb19
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb19
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb19
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb19
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb19
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb19
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb19
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb20
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb20
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb20
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb21
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb21
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb21
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb21
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb21
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb21
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb21
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb21
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb21
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb22
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb22
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb22
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb22
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb22
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb23
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb23
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb23
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb23
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb23
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb24
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb24
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb24
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb24
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb24
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb24
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb24
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb25
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb25
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb25
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb25
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb25
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb26
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb26
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb26
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb26
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb26
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb27
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb27
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb27
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb27
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb27
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb28
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb28
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb28
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb28
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb28
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb29
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb29
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb29
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb29
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb29
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb30
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb30
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb30
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb30
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb30
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb31
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb31
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb31
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb31
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb31
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb32
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb32
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb32
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb32
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb32
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb33
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb33
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb33
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb33
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb33
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb34
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb34
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb34
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb35
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb35
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb35
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb36
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb36
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb36
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb36
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb36
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb37
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb37
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb37
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb37
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb37
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb38
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb38
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb38
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb38
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb38
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb39
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb39
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb39
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb39
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb39
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb40
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb40
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb40
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb41
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb41
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb41
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb41
http://refhub.elsevier.com/S2352-7110(22)00005-X/sb41

	Quail: A lightweight open-source discontinuous Galerkin code in Python for teaching and prototyping
	Motivation and significance
	Mathematical background
	Software description
	Illustrative examples
	Isentropic vortex propagation
	2D Riemann problem with gravity source term

	Impact
	Conclusions
	Declaration of competing interest
	Acknowledgments
	References

