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a b s t r a c t 

This investigation outlines a data-assisted approach that employs random forest classifiers for local and 

dynamic submodel assignment in turbulent-combustion simulations. This method is demonstrated in 

simulations of a single-element GOX/GCH4 rocket combustor; a priori as well as a posteriori assessments 

are conducted to (i) evaluate the accuracy and adjustability of the classifier for targeting different quan- 

tities of interest (QoIs), and (ii) assess improvements, resulting from the data-assisted combustion model 

assignment, in predicting target QoIs during simulation runtime. Results from the a priori study show 

that random forests, trained with local flow properties as input variables and combustion model er- 

rors as training labels, assign three different combustion models – finite-rate chemistry (FRC), flamelet 

progress variable (FPV) model, and inert mixing (IM) – with reasonable classification performance even 

when targeting multiple QoIs. Applications in a posteriori studies demonstrate improved predictions from 

data-assisted simulations, in temperature and CO mass fraction, when compared with monolithic FPV 

calculations. An additional a posteriori data-assisted simulation of a modified configuration demonstrates 

that the present approach can be successfully applied to different configurations, as long as thermophys- 

ical behavior can be represented by the training data. These results demonstrate that this data-driven 

framework holds promise for dynamic combustion submodel assignments in reacting flow simulations. 

© 2021 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 
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. Introduction 

High-fidelity simulations of turbulent reacting flows can in- 

ur high computational costs due to the complexity required for 

mploying finite-rate chemical mechanisms and resolving relevant 

cales. Numerous strategies [1] have been employed for reducing 

he computational cost of detailed chemical mechanisms, such as 

i) removing non-essential species and reactions [2,3] , (ii) lumping 

imilar species and reaction pathways [4,5] , (iii) time-scale analysis 

6,7] , and (iv) stiffness reduction [8,9] . 

Alternatively, a significant portion of combustion research 

as been devoted to the development of cost-efficient models 

or representing the combustion chemistry and turbulent scales 

10] . The most popular of these low-order manifold models are 

ategorized under flamelet methods, which represent combustion 

hemistry through solutions of representative flame configurations, 

uch as laminar counterflow diffusion flames, freely propagating 
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remixed flames, or homogeneous reactor systems. Examples of 

amelet methods include the Burke-Schumann solution [11] , the 

ame-prolongation in intrinsic lower-dimensional manifold (FPI) 

12] , the flamelet-generated manifold (FGM) method [13] , and the 

amelet/progress variable (FPV) method [14,15] . These reduced 

anifold models are commonly employed to describe specific 

ombustion regimes – a multitude of which can exist within prac- 

ical combustors. However, expert knowledge and experimental 

ata is often required to correctly assign the most appropriate 

ombustion model. 

One solution to this issue is provided by dynamic adaptive 

hemistry methods [16–18] that save computational cost by re- 

ucing detailed chemical mechanisms, and transitioning between 

maller sets of chemical models to represent combustion regimes 

f different chemical fidelity. A general mathematical framework 

as proposed by Wu et al. [19 , 20] through the Pareto-efficient 

ombustion (PEC) approach. In this approach, the compliance of 

 combustion submodel with the underlying flow-field represen- 

ation is assessed through the construction of a so-called drift 

erm, taking into consideration user-specific requirements about 

uantities of interest (QoI) and computational cost [21] . While 
. 
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athematically rigorous, these techniques are limited by their 

eliance on local information regarding the chemical composi- 

ion and the construction of the model-compliance indicator. In 

ontrast, data-driven methods can potentially offer a universal 

olution by allowing for the consideration of a wider range of con- 

itions and processes that cannot be easily represented in the form 

f mathematical expressions accessible to an indicator function. 

Data-driven methods involve the extraction of knowledge from 

ata [22] . These methods can be useful as long as a substantial cor- 

us of data is available to infer relationships between input vari- 

bles and QoIs. As such, the employment of learning algorithms 

re gaining popularity in the simulation of turbulent flows. These 

ethods have shown success in quantifying uncertainty [23] , and 

ugmenting closure models [24,25] in Reynolds-averaged Navier–

tokes (RANS) simulations and large eddy simulations (LES) [26] . 

In simulations of turbulent reacting flows, data-driven methods 

ave also been applied with generating additional subgrid-scale 

losure that arises from the inclusion of combustion chemistry. 

n particular, artificial neural networks have been employed for 

egressing thermophysical quantities in LES of turbulent flames 

27–31] . A priori studies have been performed to demonstrate that 

onvolutional neural-networks can provide accurate closure for 

urbulent combustion models [32] . Ranade and Echekki [33] con- 

ucted an a posteriori study to show that artificial neural networks 

ANNs) can be trained with experimental data to generate closure 

odels for chemical scalars in RANS simulations of turbulent jet 

ames. Henry de Frahan et al. [34] evaluated the use of ANNs, 

andom forests, and generative learning methods for predicting the 

ub-filter probability density function in a turbulent combustion 

ES. Seltz et al. [35] employed convolutional neural networks to 

enerate closure for unresolved terms in the filtered progress vari- 

ble transport equation. Yao et al. [36] demonstrated that ANNs 

an be used to approximate the conditional scalar dissipation rate 

n spray flame LES. 

To reduce computational costs that arise from complex com- 

ustion chemistry, various strategies have been employed through 

earning algorithms. Artificial neural networks were first success- 

ully integrated within simulations of turbulent reacting flows as 

n alternative for representing chemical reactions [27,28,37] . Chat- 

opoulos and Rigopoulos [38] , and Franke et al. [39] demonstrated 

hat training data extracted from 100 laminar flamelets was suffi- 

ient for training ANNs for representing chemistry in simulations 

ore complex turbulent flame configurations. With this generic 

raining set, ANNs showed a small capacity for extrapolation, but 

t was noted that accurate predictions were challenging if the tar- 

et predictions deviated too largely away from the training set. Sen 

nd Menon [31] , and Alqahtani and Echekki [40] also demonstrated 

hat ANNs can be used for replacing stiff ODE solvers in turbulent 

ame simulations, with good accuracy and CPU performance. Ihme 

t al. [29] , Kempf et al. [30] , and Owoyele et al. [41] used opti-

al ANN tabulation to replace conventional tabulation methods in 

anifold-based simulations. 

These aforementioned approaches typically involve the use of 

egression for estimating numerical predictions. Regression models 

n flow-physics problems are still in its infancy, and face challenges 

hen extrapolating without an appropriate training set – result- 

ng in errors that arise from numerical predictions that only match 

pecific flow configurations represented by the training data [25] . 

he present study ameliorates this issue by employing a classifica- 

ion algorithm that assigns well-tested physics-based combustion 

ubmodels of varying fidelity and complexity within the simula- 

ion domain. Thus, the potential approximation errors made by the 

achine-learning algorithm are limited by the predictive capability 

f the lowest performing submodel. 

In the approach that is proposed in this work, local thermo- 

hysical quantities in the flow field are utilized as features for a 
173 
andom forest algorithm that spatially and dynamically assigns 

ombustion submodels. Random forests are an ensemble learning 

ethod commonly used in both classification and regression prob- 

ems. Errors made by submodels, when predicting user-defined 

oI, are used to construct the labels used for training the random 

orest. Overall computational fidelity and cost of the simula- 

ion is determined by a user-defined submodel error threshold 

uring training. This approach couples the assigned combustion 

ubmodels in the a posteriori simulations by employing the mass- 

onserving approach developed by Wu et al. [20] , but with a 

ata-driven assignment approach that replaces the drift-term in 

he original PEC formulation. 

This investigation is performed with the following objectives: 

• To introduce classification algorithms for combustion submodel 

assignment, and assess the resulting data-assisted simulations. 

• To evaluate the suitability, accuracy, and adjustability of 

random forests for submodel assignment. 

To this end, random forests are assessed for the purpose of 

ocal and dynamic model assignment in simulations of a gaseous- 

xygen/gaseous-methane (GOX/GCH4) single-element rocket 

ombustor [42,43] . The mathematical models for simulating the 

urbulent combustion are presented in Section 2 . The experimental 

onfiguration, computational setup and baseline simulations using 

onolithic combustion models are discussed in Section 3 . The 

ata-driven framework is introduced in Section 4 . Results from 

 priori and a posteriori assessments of the random forests are 

resented and discussed in Section 5 , before offering concluding 

emarks in Section 6 . 

. Mathematical models 

.1. Computational method 

The governing equations that are solved in the present study 

re the Favre-filtered conservation equations for mass, momentum, 

nergy, and chemical species: 

 t ρ + ∇ · ( ρ˜ u ) = 0 (1a) 

 t ( ρ˜ u ) + ∇ · ( ρ˜ u ̃

 u ) = −∇ · ( p I ) + ∇ · ( τv + τt ) (1b) 

 t ( ρ˜ e ) + ∇ · [ ̃  u ( ρ˜ e + p )] = −∇ · ( q v + q t ) + ∇ · [( τv + τt ) ·˜ u ] 
(1c) 

 t ( ρ˜ φ) + ∇ · ( ρ˜ u ̃

 φ) = −∇ · ( J v + J t ) + 

˙ S (1d) 

ith density ρ, velocity vector u , specific total energy e, stress 

ensor τ, and heat flux vector q ; · denotes a filtered quantity and 

 · is a Favre-filtered quantity. Subscripts v and t denote viscous and 

urbulent quantities, respectively. Pressure p is computed from the 

deal gas equation of state. φ, J , and 

˙ S are the transported scalars, 

calar diffusive flux, and scalar source term for the candidate com- 

ustion models. Molecular fluxes are modeled using the mixture- 

veraged diffusion model. The combustion models that are em- 

loyed in the present study are described in detail in Section 2.2 . 

Simulations are performed by employing an unstructured com- 

ressible finite-volume solver [20,44,45] . A central scheme, which 

s 4th-order accurate on uniform meshes, is used along with 

 2nd-order ENO scheme. The ENO scheme is activated only in 

egions of high local density variation using a threshold-based sen- 

or. A Strang-splitting scheme is employed for time-advancement, 

ombining a strong stability preserving 3rd-order Runge-Kutta 

SSP-RK3) scheme for integrating the non-stiff operators with 

 semi-implicit Rosenbrock-Krylov scheme [46] for advancing 
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he chemical source terms. The dynamic Smagorinsky model 

47] is used as closure for the subgrid-scale stresses. Turbu- 

ence/chemistry interaction is accounted for using the dynamic 

hickened-flame model [48] , employing a maximum thickening 

actor of 3, which is estimated through 1D flame calculations 

 priori . Outside the flame region, both turbulent Prandtl and 

chmidt numbers are prescribed at constant values of 0.7. 

.2. Combustion models 

In this work, we perform LES calculations that employ three dif- 

erent combustion submodels, namely a finite-rate chemistry (FRC) 

odel, the flamelet/progress variable (FPV) model [14,15] , and an 

nert mixing (IM) model. The FRC model is defined by solving 

he species transport equation, Eq. (1d) , through direct integra- 

ion. This method does not rely on strong assumptions on flame 

tructure and is suitable for representing complex flows as well 

s intermediate species and unsteady effects. Despite the high- 

delity offered by FRC, since the cost of evaluating the chemical 

ource terms scale linearly with the number of species, the uti- 

ization of a large chemical mechanism can be prohibitively costly. 

PV approach aims to alleviate the computational cost of com- 

ustion chemistry by representing the thermochemical state space 

sing a low-dimensional manifold based on flamelets, a series of 

ne-dimensional diffusion flames. FPV relies on the observation 

hat laminar diffusion flames are weakly affected by the pres- 

nce of turbulence, which allows the turbulent diffusion flame to 

e represented by flamelets. While FPV is computationally effi- 

ient, it assumes adiabaticity and cannot model effects of heat-flux 

cross boundaries well. Lastly, IM models can only consider mixing 

ithout combustion chemistry. 

The representation of scalar ˜ φ between FRC and the two tabu- 

ated chemistry models is dissimilar: FRC uses a chemical state- 

ector ˜ φ = [ ̃  Y 1 , . . . , ̃
 Y N S ] 

T , consisting of N S number of chemical 

pecies, while the FPV and IM state-vector is represented in terms 

f a low-dimensional manifold 

˜ φ = M ( ˜ ψ ) , where ˜ ψ is the state 

ector that is used to parameterize the manifold. With the flame 

eing artificially thickened as discussed in Section 2.1 , FPV is pa- 

ameterized by the mixture fraction and progress variable ˜ ψ = 

 ̃

 Z , ̃  C ] T which differs from the conventional practice of using a 

resumed-PDF closure [20] . The progress variable is defined as 

 linear combination of species mass fractions [49] : C = Y CO 2 
+ 

 H 2 O 
+ Y CO + Y H 2 . For an inert and adiabatic mixture, the thermo-

hemical state is fully parameterized by a single scalar, ˜ ψ = [ ̃  Z ] . 

The present framework resolves the discrepancy in scalar 

epresentation when coupling different combustion models with 

he approach developed by Wu et al. [20] . In this approach, a 

ransport equation for mixture fraction is solved holistically in 

ll models. Reconstruction of the chemical state-vector needed 

or FRC involves interpolation from the chemistry tables that 

tores all species, whereas the reconstruction of the progress 

ariable needed for tabulated chemistry involves the sum of all 

ajor combustion product species: CO 2 , CO, H 2 O, and H 2 . To 

nsure consistency between the submodels, the aforementioned 

econstruction is applied for the inactive combustion model at 

he submodel interface at every timestep. Since the conservation 

aws for mass, momentum, and energy are universal among all 

ombustion submodels, these properties are conserved throughout 

he domain. In addition, the choice of the dynamically-thickened 

ame model for the FRC and both manifold-based models avoids 

otential complications, since this closure model has been suc- 

essfully applied to previous non-premixed flame simulations 

mploying FRC and tabulated chemistry models [20,50,51] . 

The GRI-3.0 model [52] , involving N S = 33 chemical species, is 

sed to describe the reaction chemistry in all combustion models. 
174 
RC is incorporated into the LES solver using the Cantera library 

nterface [53] . The molecular diffusion of chemical species is 

odeled with constant Lewis numbers, which are calculated at 

quilibrium condition of a stoichiometric CH 4 and O 2 mixture. 

he chemistry table employed in the FPV-model is constructed 

rom the solution of steady-state counterflow diffusion flames that 

re solved in composition space [54] . The Lewis numbers for the 

ixture fraction and progress variable are set at unity. 

. Experimental configuration, computational setup and 

aseline simulations 

.1. Experimental configuration 

To evaluate the merit of the data-assisted classification method, 

e perform simulations of a single-element GOX/GCH4 rocket 

ombustor [42,43] . The experimental configuration consists of a co- 

xial injector element where the oxidizer flows through a central 

et with diameter d o = 4 mm and the fuel is injected via an annulus

ith inner and outer diameters d f,i = 5 mm and d f,o = 6 mm. The

ombustion chamber with a total length of 285 mm has a cylindri- 

al shape with diameter d ch = 12 mm. A conical nozzle is attached 

t the end of the combustion chamber, having a contraction ratio 

f 2.5. This setup results in a Mach number of approximately 0.25 

n the combustion chamber, which is similar to typical flight con- 

gurations. The combustor operates at a nominal operating pres- 

ure of 20 bar and a global oxidizer-to-fuel ratio of 2.6, with mass 

ow rates of oxidizer ˙ m o and fuel ˙ m f measured at 34.82 g/s and 

3.39 g/s, respectively. The temperature of the oxidizer and the fuel 

upplied at the injector inlet are T o = 275 K and T f = 269 K . Static

all pressure and wall heat flux are measured through thermocou- 

les and pressure transducers, installed along the chamber wall. 

.2. Computational setup 

In this model-assignment problem, we consider an axisym- 

etrical domain that is representative of the single-element 

OX/GCH4 rocket combustor, as shown in Fig. 1 . The domain con- 

ists of a 3 ◦ combustor sector, with a truncation at 0.4 mm to re- 

ove the singularity at the centerline. Axisymmetric simulations 

f rocket combustors have been frequently employed to obtain in- 

ight in the turbulent combustion process [55,56] , while offering 

easible computational costs. This was found to be crucial for the 

xploration of a wider range of parameters in the data-assisted 

ethod, especially with the use of a detailed FRC-model consist- 

ng of 33 chemical species in the present study. 

At the inlets, the fuel and oxidizer mass flow rates and tem- 

erature are prescribed following the experimental measurements 

42,43] . At the chamber and nozzle walls, the temperature pro- 

le is defined as a Dirichlet boundary condition, which is obtained 

rom the measurements by Perakis and Haidn [57] . The bottom 

nd axisymmetric faces are prescribed with symmetry boundary 

onditions. All remaining boundaries are defined as adiabatic non- 

lip walls with the exception of the exhaust, which is modeled as 

 pressure outlet. The computational domain is discretized by a 

lock-structured mesh consisting of 2 × 10 5 cells. The wall-normal 

irection is resolved down to 30 μm, and a wall model [58] is em-

loyed for the viscous sublayer. Simulations are performed using 

00 Intel Xeon (E5-2680v2) processors. The solution is advanced 

sing a typical timestep of 25 ns, corresponding to a convective 

FL number of 1.0. 

.3. Baseline results from monolithic LES combustion simulations 

Simulations of the rocket combustor are first performed us- 

ng monolithic FRC and monolithic FPV simulations. Flow fields 
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Fig. 1. Computational domain presented in conjunction with instantaneous temperature (top) and axial velocity (bottom) fields from monolithic FRC simulations. 

Fig. 2. Temperature, CO mass fraction, and mixture fraction fields (from top to bottom) for (a) monolithic FRC and (b) monolithic FPV simulations. Upper half: instantaneous 

fields, bottom half: time-averaged fields. The location of the stoichiometric mixture, ̃  Z st = 0 . 2 , is shown by black lines. 
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re initialized with equilibrium products and temperature, thus 

llowing the monolithic FPV simulation to ignite. Instantaneous 

nd time-averaged fields of temperature, CO mass fraction, and 

ixture fraction from monolithic FRC calculations and monolithic 

PV simulations are shown in Fig. 2 (a) and (b), respectively. Re- 

ults from the FRC simulations are qualitatively similar to previous 

imulations [55,59] , where a non-uniform mixture fraction field, 

 long oxygen core, and an agglomeration of cold rich gases 

o the chamber wall are observed. In contrast, some notable 

ifferences are observable from the FPV simulations, shown in 

ig. 2 b. In particular, a thicker thermal boundary layer is seen for 

he FPV simulation. This difference is consistent with other LES 

tudies [60] which have shown that an adiabatic FPV model, as 

o  

175 
mployed in the present study, mispredicts the wall-heat loss and 

xothermic CO-recombination in the boundary layer [59] . 

. Data-assisted simulation framework 

In this investigation, the present data-driven framework uses 

 supervised learning algorithm for combustion submodel assign- 

ent. During training, the supervised learning algorithm learns a 

unction f : x �→ y that maps with data containing input vector 

 ∈ X , and the corresponding true response y ∈ Y . A trained super- 

ised learning model can then provide an approximation for any 

utput y ∈ Y, when fed with a new input set x . The procedure for
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ncorporating a supervised learning algorithm for combustion sub- 

odel assignment is as follows: 

1. Generate data either from experimental measurements or nu- 

merical simulations. In this work, we use the instantaneous 

flow-field solutions from the FRC simulation of the GOX/CH4 

rocket combustor as learning dataset, discussed in Section 3 . 

2. Assign labels to the training data. Prior to training, each train- 

ing datapoint is typically assigned a true response. In this 

work, we present a multiclass classification problem for optimal 

assignment of three combustion models Y = { IM, FPV, FRC } . 
Hence, we use the local combustion submodel error of two es- 

sential local QoIs, namely T and Y CO , to programmatically assign 

labels. Details are presented in Section 4.1 . 

3. Construct the feature vector x ∈ X . In this work, we apply a fea-

ture selection method based on the Maximal Information Co- 

efficient (MIC) [61] , as discussed in Section 4.2 , to construct 

a feature set consisting of local thermophysical quantities that 

include the mixture fraction, progress variable, density, local 

Prandtl number, and Euclidean norm of the mixture fraction 

gradient, viz., x = [ ̃  Z , ̃  C , ρ, ̃  T , P r �, ‖∇ ̃

 Z ‖ 2 ] . 
4. Train, validate, and test the classification algorithm. In this 

work, a random forest classifier is used for combustion sub- 

model assignment. Details of the algorithm are presented in 

Section 4.3 . 

.1. Label assignment 

We present a multiclass classification problem for optimal as- 

ignment of three combustion models Y = { IM, FPV, FRC } . In this 

roblem, we consider the FRC model as combustion model of 

ighest fidelity but at the expense of highest computational cost. 

ence, regions with local scalar predictions by IM and FPV mod- 

ls that match those of FRC can be considered optimally assigned. 

herefore, we assign labels in the training set based on the nor- 

alized combustion submodel error εy 
Q 

of quantities of interest 

∈ Q between FRC and the models of lower fidelity [19] : 

y 
Q 

= 

∑ 

α∈ Q 
w α

| αFRC − αy | 
‖ αFRC ‖ ∞ 

with y ∈ { FPV , IM } , (2) 

here the error for considering N quantities-of interest is a 

eighted linear combination of each individual submodel error. 

he weights for each QoI w α is subject to the following con- 

traints: 
∑ N 

α∈ Q w α = 1 and w α ≥ 0 . In this study, the use of tem-

erature and mass fractions of CO and OH as QoIs. In the com- 

ined use of both temperature and CO mass fraction, Q = { ̃  T , ̃  Y CO } ,
oth QoIs are equally weighted: w T = 0 . 5 and w CO = 0 . 5 . Similarly

or the combined use of three QoIs Q = { ̃  T , ̃  Y CO , ̃
 Y OH } , all QoIs are

qually weighted: w T = 0 . 33 , w CO = 0 . 33 , and w OH = 0 . 33 . Temper-

ture ˜ T is chosen as a proxy to describe the combustion efficiency 

nd engine performance. The CO mass fraction 

˜ Y CO is chosen to 

hallenge the deficiencies of tabulation methods in capturing inter- 

ediate species [20] . OH mass fraction ̃

 Y OH is selected since radical 

ormation is essential in combustion phenomena. 

FRC data is used to reconstruct FPV and IM quantities of in- 

erest α ∈ Q by interpolating the generated flamelet tables using 

econstructed values of mixture fraction and progress variable: 

y ≈ αy 

table 
( ̃  Z FRC , ̃

 C FRC ) where y ∈ { FPV , IM } . (3) 

he mixture fraction is computed using Bilger’s definition [62] , 

hile the progress variable is computed using the sum of major 

ombustion products, as described in Section 2.2 . We must note 

hat since αy is reconstructed from FRC data, the resulting error 

etric εy 
Q 

is an approximation of the true errors between FRC and 

abulated chemistry. However, the use of this error metric is well- 

ustified since Bilger’s mixture fraction and the sum of major com- 
176 
ustion products are robust quantities for bridging FRC and tab- 

lated methods. Labels are assigned programmatically as demon- 

trated in Algorithm 1 . In this algorithm, a model of higher fi- 

elity is assigned when the QoI submodel error εy 
Q 

exceeds a user- 

efined threshold θ y 
Q 
, with FRC chosen when all conditions for se- 

ecting FPV and IM are not met. While θ FPV 
Q 

and θ IM 

Q 
can be as- 

igned distinct values, throughout this study we will explore cases 

hat use the same threshold for both IM and FPV, viz., θ IM 

Q = θ FPV 
Q = 

Q for simplicity. 

.2. Feature selection 

Adding uninformative features to the learning dataset can re- 

uce accuracy and computational efficiency of learning algorithms 

63] . Carrying out appropriate feature selection beforehand can im- 

rove the interpretability of the predictions of the trained model. 

o this end, feature selection can be used for identifying the most 

escriptive and discriminative features from the raw dataset to 

se as inputs for our learning algorithms. In this work, we se- 

ect features from local quantities and group parameters that can 

haracterize the reacting flow, combustion state, and turbulence. 

For feature selection, we rely on the Maximal Information- 

ased Non-parametric Exploration (MINE) tools [61] that uti- 

ize mutual information between variable pairs to ascertain the 

trength of relationships between variables based on instantaneous 

ow-field representations from a monolithic FRC simulation. MINE 

tilizes the Maximum Information Coefficient (MIC) to ensure (i) 

enerality, where the association between the variables are not 

imited to a particular form such as linear associations, and (ii) 

quitability, where the effect of noise on different relationships is 

imilar. 

While Pearson’s correlation has been utilized to ascertain the 

trength of relationships between variables in scientific applica- 

ions, this does not account for any non-linear relationships. This 

s illustrated in Fig. 3 , where Pearson’s coefficient, or Pearson r, 

s compared to MIC for different scatter points. As can be seen 

n Fig. 3 (a), for linear relationships with noise, both coefficients 

re similar. However, in Figs. 3 (b) and (c), non-linear associa- 

ions between variables are ignored by Pearson’s correlation coeffi- 

ient while MIC is able to account for such complex relationships. 

utual-information-based measures that ensure generality and eq- 

itability, like MIC, can be used to compare different f eatures, rank 

hem and select subsets of the most descriptive and discrimina- 

ive features. Additionally, such mutual information based feature 

election is model agnostic and can be used across different ma- 

hine learning models, as a pre-processing step. In this vein, MIC 

easure has been utilized for feature selection in prior works with 

uccess [64] . 

Figure 4 (a) and (b) show MIC scores relating 16 potential 

eatures with IM model error εIM { T, CO } and FPV model error εFPV { T, CO } , 
espectively. These 16 potential features consist of thermophysical 

uantities and dimensionless quantities that characterize each 

ell within the domain. Dimensionless quantities include the 

ocal Prandtl number, P r � = ̃

 ν/ ̃  α, comparing the local ratio of 

iscosity and thermal diffusivity, and the local Reynolds number, 

e � = �| ̃  u | /ν, which is the ratio of inertial forces and viscous 

orce within each cell and � denotes the characteristic length of 

ach computational cell. It can be seen that the MIC scores for 
FPV { T, CO } are much lower than for εIM { T, CO } . This indicates that it is 

ore challenging to form statistical relationships between features 

nd FPV model errors than for IM model error. This observation 

s consistent with the intuition that it is much easier to identify 

ailure of the IM models than the shortfall of the FPV model. 

In the following, the top five features from both MIC 

ests are used to construct the feature set consisting of mix- 
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Fig. 3. Comparison between Maximum Information Coefficient (MIC) and Pearson’s Correlation Coefficient (Pearson r) for (a) near-linear scatter points, and (b,c) non-linear 

scatter points. 
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ure fraction, progress variable, density, local Prandtl number, 

nd Euclidean norm of the mixture fraction gradient: 

 = [ ̃  Z , ̃  C , ρ, ̃  T , P r �, ‖∇ ̃

 Z ‖ 2 ] T . The inclusion of P r � in the fea-

ure set is unexpected since P r � is approximately constant and 

as weak temperature dependence. However, given that P r � is 

lightly higher in fuel and oxidizer when compared to combustion 

roducts, small variations within flow field prove useful for the 

andom forests. We note that the data-driven framework in this 

tudy presently restricts the construction of feature and label 

ets to local quantities for simplicity. More elaborate methods for 

ncorporating spatial and temporal dependencies into present ap- 

roach, through the use of convolutional neural networks [32,35] , 

hould be subject to further study. 

.3. Random forest classifier 

Sections 4.1 and 4.2 detailed the procedures applied in this 

tudy for preprocessing the monolithic FRC LES data for train- 

ng. During training, the classification algorithm learns a function 

f : x �→ y that associates the input vector x ∈ X , with the corre-

ponding response y ∈ Y . After training, the learning algorithm can 

e used to predict the optimal combustion submodel when given 

ew sets of input vectors x ∈ X . These steps are summarized in 

ig. 5 . 

In this study, we employ the random forest as our classification 

lgorithm. Random forests [65] consist of an ensemble of decorre- 

ated Classification And Regression Trees (CARTs) [66] . CARTs are a 

achine learning approach for formulating prediction models from 

ata by recursively partitioning the inputted feature space, and fit- 

ing a simple prediction within each final partition. As a result, the 

artitioning can be represented graphically as a decision tree. Such 

ecision trees are a graph algorithm, where each node represents a 

elected feature or attribute, each edge represents a decision based 

n the properties of this feature, and the leaf nodes represent a 

nal outcome or classification. Decision trees are non-parametric 

nd can model arbitrarily complex relations without any a priori 

ssumptions. 

In a machine learning algorithm, the expected generalization 

rror is a key characteristic, measuring the accuracy in making 

redictions for previously unseen data. This error can be decom- 

osed into bias, variance and noise. The bias in the predictions 

s the deviation from the true value of the expectation (or mean) 

f the model predictions. In this context, the variance is the 

ariability in the predictions of models. Noise is the inherent 

tochastic noise in the data. Decision trees are prone to overfitting. 

n terms of the bias-variance decomposition, these overfitted 
177 
odels possess low bias but high variance. Ensemble methods 

ffer a sim ple amelioration by introducing random perturbations 

n the training procedure to produce several randomized models 

rom the same data, and then combining the predictions of the 

ndividual models to form the ensemble prediction. The decorre- 

ated nature of each constituent model reduces the variance of 

redictions while retaining the low bias. 

Random forests are an ensemble method, using ensembles of 

rees to create a forest. Here, the ensemble model is a collection 

f Classification And Regression Trees. The final prediction of this 

nsemble model is via a majority vote of trained individual trees. 

he key motivation is to create an ensemble model that has lower 

ariance than the individual trees, while maintaining the low bias. 

t can be shown that the variance of the ensemble model is directly 

roportional to the correlation between individual models in the 

nsemble [65] . Thus, the more uncorrelated our individual models 

re, the lower the variance of the ensemble model. To inject this 

ecorrelation between the individual decision trees in the Random 

orest, two concepts are utilized, explicitly: 

• Bagging [65] : Bagging (or Bootstrap aggregating) is an approach 

to create different machine learning models from the same 

data set. In the first step, we can generate multiple new train- 

ing datasets from the original by sampling from it, uniformly 

and with replacement (Bootstrapping). Each of these sampled 

datasets can be used to train a machine learning model. The fi- 

nal prediction is chosen by aggregating the predictions of these 

individual models (aggregating). In Random forests, each indi- 

vidual tree gets such a bootstrap sample of the original training 

dataset to learn from. This ensures that every tree has to train 

on a different dataset and, thus imparts a level of decorrelation 

to the individual trained tree based models in the ensemble. 

• Random subsampling over features [67] : During their training, 

CARTs are grown by learning splits (or partitions) at each node. 

Herein, the trees have to determine the best split over the en- 

tire set of features to partition the solution space. In random 

forests, only a small randomized subset of the total set of fea- 

tures is assigned to each tree during training. This introduces 

additional decorrelation between the trees in the ensemble. 

Using Bagging in conjunction with random subsampling over 

he features, introduces adequate decorrelation over the individ- 

al trees in the ensemble to reduce the variance, while maintain- 

ng the low bias. In prior investigations, it has been observed that 

andom forests outperform many other algorithms in classification 

ver scalar inputs from structured datasets [68,69] . 



W.T. Chung, A .A . Mishra, N. Perakis et al. Combustion and Flame 227 (2021) 172–185 

Fig. 4. Maximal information coefficient score for features and model error. 
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In the present investigation, the random forest classifier from 

he OpenCV library [70] is used. Classification cost scales with the 

umber of trees, tree depth and the number of training points [66] . 

ence, a random forest consisting of twenty decision trees, and 

aximum depth of ten nodes is employed. Additionally, 1 × 10 4 

raining points have been randomly sampled from a single LES 

napshot consisting of 2 × 10 5 cells. A similar approach is used in 

ther supervised learning problems [25] . We must note that the 

ow in the present configuration is statistically stationary, and thus 

raining data from a single snapshot was found to be sufficient for 

epresenting the thermophysical behavior of the combustor. The 

umber of trees, tree depth, and the number of training points are 

etermined a priori by ensuring that the classification performance 

emains unchanged on a validation set. Training is performed once 

 priori , and requires 530 ms of walltime with 1 CPU. In a posteri-

ri simulations, random forest evaluations for 2 × 10 5 cells at each 

imestep require 1 ms of wall time with 600 CPUs. 

. Results 

This section assesses the random forest classifier as a method 

or combustion submodel assignment in data-assisted simulations. 

 priori assessment is performed first to investigate the behavior of 

andom forests when targeting different QoIs. This is followed by 
178 
n a posteriori assessment to study improvements in target QoIs 

nd other quantities that result from the use of random forests in 

ransient data-assisted simulations. Table 1 summarizes the eight 

ases, with different QoIs and combustion submodel error thresh- 

ld values θQ , explored in both a priori and a posteriori assessment. 

.1. A priori assessment 

A priori assessment involves using the random forest classifier 

o assign suitable combustion submodels in a test dataset that is 

reated from a monolithic FRC simulation at an unseen timestep. 

emperature and CO and OH mass fraction α ∈ { ̃  T , ̃  Y CO , ̃
 Y OH } in 

he test set is then used as QoI for reconstructing the true re- 

ponse, through the procedure described in Section 4.1 , for com- 

arison with random forest predictions. Figure 6 shows the use 

f this labeling approach on the training data in 

˜ Z − ˜ C compo- 

ition space for θ{ T, CO } = 0 . 02 and θ{ T, CO } = 0 . 05 , respectively. In

oth cases, IM is shown to be assigned at points where ˜ C ≈ 0 , 

PV is assigned mostly to conditions near the equilibrium com- 

osition. The submodel assignment reverts back to FRC in re- 

ions dominated by non-equilibrium effects and heat-losses that 

re not captured by the adiabatic steady-state flamelet formulation. 

mploying θ{ T, CO } = 0 . 02 is seen to be more stringent than em- 
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Fig. 5. Application of random forest classifier for combustion submodel assignment of a single element GOX/GCH4 rocket combustor. 

Table 1 

Cases investigated in the present study. 

Case θT = 0.05 θT = 0.02 θCO = 0.05 θCO = 0.02 θ{ T, CO } = 0.05 θ{ T, CO } = 0.02 θ{ T, CO , OH } = 0.05 θ{ T, CO , OH } = 0.02 

QoI, Q ˜ T ˜ T ˜ Y CO 
˜ Y CO { ̃  T , ̃  Y CO } { ̃  T , ̃  Y CO } { ̃  T , ̃  Y CO , ̃

 Y OH } { ̃  T , ̃  Y CO , ̃
 Y OH } 

Model threshold, θQ 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 

Assessment A priori A priori A priori A priori A priori, A posteriori A priori, A posteriori A priori A priori 

Fig. 6. Training data for two different combustion submodel error thresholds θ{ T, CO } . 
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loying θ{ T, CO } = 0 . 05 , with a 0.18 greater fraction of scatter data

n the stable branch assigned as FRC, especially for fuel-rich mix- 

ures. It should be noted that while most out-of-flamelet regions 

ould be assigned FRC, some regions with low reactivity and far 

rom stoichiometry (eg. ̃  Z = 0 . 7 ) generate smaller errors which are 

hen be assigned FPV. 

Figure 7 demonstrates the a priori combustion submodel assign- 

ent on an unseen FRC-simulation snapshot using the six differ- 

nt random forest cases summarized in Table 1 . For all six cases, 

M is assigned at the injector and the oxidizer core. In general, 

RC is assigned at the near-wall and fuel-rich regions within the 

ombustor where intermediate reactions are not captured well by 
179 
abulated chemistry submodels. Using temperature as QoI and a 

odel threshold of θT = 0 . 05 results in an IM assignment of 5% 

f the domain, 28% FRC assignment, with the rest being described 

y the FPV model. Constraining the temperature model threshold 

T = 0 . 02 results in FRC assignment in 62% of the domain, with IM

ssignment remaining unchanged. 

Using ˜ Y CO as QoI and a model threshold of θCO = 0 . 05 results 

n greater (18% of the domain) IM assignment, since the CO mass 

raction in most of the oxidizer core is close to zero. FRC is as- 

igned to 34% of the domain. Reducing the CO model threshold 

CO = 0 . 02 results in 47% FRC assignment, with IM assignment un- 

hanged. Finally the combined use of both temperature and CO 
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Fig. 7. A priori analysis, comparing combustion model assignments. Instantaneous temperature, and mass fractions of CO and OH of the test set are also presented; stoichio- 

metric isocontour with ̃  Z st = 0 . 2 is shown in black. 

Table 2 

A priori analysis of classifier, summarizing submodel assignment and assignment accuracy. 

Case θT = 0.05 θT = 0.02 θCO = 0.05 θCO = 0.02 θ{ T, CO } = 0.05 θ{ T, CO } = 0.02 θ{ T, CO , OH } = 0.05 θ{ T, CO , OH } = 0.02 

IM:FPV:FRC 5:67:28 5:33:62 18:48:34 18:35:47 6:63:31 6:42:52 6:57:37 6:24:70 

True Classification 0.774 0.725 0.756 0.715 0.753 0.734 0.709 0.691 
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ass fraction as QoI, Q = { ̃  T , ̃  Y CO } , results in submodel assign-

ent with combined characteristics of employing each individual 

oI. θ{ T, CO } = 0 . 05 results in 31% FRC assignment within the do- 

ain, while θ{ T, CO } = 0 . 02 results in 52% FRC assignment. Adding 

H mass fraction to the QoI set Q = { ̃  T , ̃  Y CO , ̃
 Y OH } increases the

RC assignment to 37% and 70% for thresholds θ{ T, CO , OH } = 0 . 05 

nd θ{ T, CO , OH } = 0 . 02 respectively. Results demonstrate that reduc- 

ng model threshold θQ and increasing the number of QoIs in- 

reases submodel assignment of FRC. The submodel assignments 

or each case are summarized in Table 2 . 

Table 2 also summarizes the true classification of random 

orests for the eight different cases. Here, true classification is 

efined as the percentage of classifier assignments that correctly 

atch the true output responses evaluated directly from simula- 

ion data. The true classification fraction range from approximately 

.7 to 0.8, which is comparable to the use of random forests on an-

ther classification problem in a flow physics context [23] . Higher 

rue classification can be achieved through the use of complex 

eep learning classifiers, which requires (i) more elaborate efforts 

han the random forests in hyperparameter tuning and (ii) much 

arger datasets for good performance, and should be subject to fur- 

her study. 

From Fig. 7 , we observe that model assignment in all six cases 

s not spatially smooth, and that model assignment appears speck- 

ed. This is because the smoothness of classification boundaries 

ormed within the 6-dimensional feature space is not translated 
o

180 
hen transformed to physical space. This is a common issue in 

lassification problems involving spatial data, such as in medical 

maging or image processing. Two strategies can be employed to 

mprove spatial smoothness in classification problems [19,71] : (i) 

pplying the classification techniques to a neighborhood of cells, or 

ii) applying a spatial filter on the predicted labels and discretizing 

he filtered labels. In the a posteriori assessment in Section 5.2 , we 

pply the latter strategy since it is better suited with the current 

ramework that uses local quantities as QoIs and features. 

These results demonstrate that the present data-assisted frame- 

ork enables a fully adjustable level of simulation fidelity through 

he use of varying submodel error threshold values. Random 

orests are demonstrated to be a reasonably accurate and simple 

pproach for the combustion submodel assignment problems. 

.2. A posteriori assessment: data-assisted LES 

Data-assisted (DA) simulations using two different model 

hresholds, θ{ T, CO } = 0 . 05 and θ{ T, CO } = 0 . 02 are performed by em- 

loying random forest classifiers in-flight during simulation run- 

ime. The discussion from this section also includes comparisons 

ith monolithic FRC and FPV simulations. 

Figure 8 (a) shows that employing model threshold θ{ T, CO } = 

 . 05 on the DA simulation results in temperature predictions that 

re in good agreement with the monolithic FRC simulation, shown 

n Fig. 2 (a). However, time-averaged results show that a thin layer 

f CO develops at the chamber wall at 170 mm. Additionally, a 
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Fig. 8. Temperature, CO mass fraction, and mixture fraction fields (from top to bottom) from a posteriori DA LES for (a) θ{ T, CO } = 0 . 05 and (b) θ{ T, CO } = 0 . 02 . Upper half: 

instantaneous fields, bottom half: time-averaged fields; stoichiometric isocontour with ̃  Z st = 0 . 2 is shown in black. 
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hicker thermal boundary layer is also observed when compared 

o monolithic FRC simulations. Nonetheless, both species and ther- 

al boundary layers are thinner than the monolithic FPV simu- 

ations that were presented in Fig. 2 (b). Averaged FRC utilization 

ith θ{ T, CO } = 0 . 05 is at 34% of the domain with IM-utilization at 

%. In addition, a thin intermittent area close to the wall is also 

ssigned FRC. This indicates that the random forest recognizes the 

mportance of wall effects on CO and temperature but that the 

ser-defined model error threshold θ{ T, CO } = 0 . 05 is too large. 

Figure 4 (b) shows that tightening the model threshold θ{ T, CO } = 

 . 02 results in temperature, CO, and mixture fraction fields that 

gree with the monolithic FRC simulation, shown in Fig. 2 (a). 

odel assignment using this threshold results in 60% FRC uti- 

ization. Before x = 150 mm FRC is assigned to all fuel-rich and 

ear-wall regions. For x > 150 mm, FRC is assigned to most of the 

omain where incomplete combustion products and intermediate 

pecies are dominant. 

Figure 9 shows comparisons of radial profiles of time-averaged 

emperature and CO mass fraction at an axial distance of 250 mm. 

ffects of wall-heat loss on the monolithic FPV simulation is 

een to reduce the overall temperature and thicken the thermal 

oundary layer, which in turn results in greater CO mass fraction. 

sing a model threshold of θ{ T, CO } = 0 . 05 , DA-predictions for 

emperature and CO mass fraction profiles away from the wall are 

n good agreement with monolithic FRC simulations, and averaged 

RC submodel utilization ranges between 16% and 38%. At r = 5 
181 
m, the random forest is able to recognize when the absolute 

rror between temperature diminishes and thus assigns less FRC 

ccordingly, which results in greater temperature and CO mass 

raction deviation from monolithic FRC simulations. After r = 5 . 7 

m, the random forest begins to recognize the importance of 

ear-wall effects and assigns more FRC. However, this FRC utiliza- 

ion is still insufficient for recreating monolithic FRC simulations. 

urther constraining the DA-simulation threshold to θ{ T, CO } = 0 . 02 

mproves the agreement with monolithic FRC-simulations. How- 

ver, small errors can still be seen even with high FRC submodel 

tilization that ranges from 61% to 90%. 

Results from Fig. 9 show that the present data-assisted mod- 

ling approach can generate simulation results that are in agree- 

ent with monolithic FRC calculations. However errors observed 

re greater than the local model error threshold θ{ T, CO } used for 

raining the random forests. This is caused by small changes in 

ne state that can result in significant deviations in later states. 

his effect is illustrated by applying DA combustion modeling with 

ocal model error threshold θ{ T, CO } = 0 . 02 on CO mass fraction, us- 

ng a rich methane-air mixture ( Z = 0 . 55 ) in a constant pressure

omogeneous reactor at 20 bar and initial temperature of 1800 K, 

s shown in Fig. 10 . In this setup, it is observed that while the

andom forest correctly assigns the correct model based on local 

odel error at 5800 timesteps, the CO trajectory leads to a total 

rror exceeding the local error threshold of 0.02 as the DA simula- 

ion no longer has knowledge of the monolithic FRC CO production 
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Fig. 9. Comparisons of time-averaged radial profiles of (a) temperature and (b) CO mass fraction between monolithic FRC, monolithic FPV, and data-assisted (DA) simulations 

at an axial distance x = 250 mm. Time-averaged utilization of FRC is included. 

Fig. 10. FRC and DA-assisted calculation of CO mass fraction as a function of time 

step in a 0D homogeneous reactor. 
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eyond this timestep and cannot recover to the correct state. How- 

ver, the benefit of the present approach is that, in the worst-case, 

rrors made do not exceed errors made by the lowest fidelity com- 

ustion model employed. 

Generating numerical predictions that match experimental wall 

easurements are challenging for this rocket combustor case, since 

hese quantities are dependent on overall flow and temperature 

elds in a highly nonlinear system. Studies [59,72] comparing LES 

nd RANS results have reported up to 8% deviation from wall pres- 

ure measurements. Wall heat flux predictions are more sensitive 

o simulation parameters, where deviations up to 75% have been 

eported in the same studies. While the aim of the present study is 

ot to find simulation results that match the experimental results, 

ES calculations of wall pressure and wall heat flux are presented 

ith measurements by Perakis and Haidn [57] in Fig. 11 to quan- 
182 
ify effects of applying the DA formulation on overall combustor 

ehavior. 

Figure 11 (a) shows that wall pressure predictions between 

onolithic FRC agree well with experimental measurements. The 

A simulation with θ{ T, CO } = 0 . 02 shows a small underprediction, 

ut still possesses reasonable agreement with monolithic FRC. The 

A simulation with θ{ T, CO } = 0 . 05 shows a greater underprediction. 

all pressure underprediction can be caused by reduced fuel con- 

ersion [73] . This is likely the case since higher CO levels in both 

ases are observed in Fig. 9 . Additionally, the monolithic FPV simu- 

ation also demonstrates the lowest pressure and highest CO levels. 

Figure 11 (b) shows that wall heat flux predictions for FRC simu- 

ation are in good agreement with experimental data after x = 120 

m, but with a steeper heat flux rise. This steep heat flux rise 

s likely due to the misrepresentation of turbulent mixing in a 

hin axisymmetric domain, and is also seen in other axisymmet- 

ic studies [55,56] . Tightening the model threshold θ{ T, CO } results 

n better convergence with monoolithic FRC calculations. The DA 

imulation with θ{ T, CO } = 0 . 02 is in reasonable agreement with the 

RC simulation, while the FPV simulation demonstrates the lowest 

eat flux due to low overall temperatures from low combustion 

fficiency. 

Figure 12 shows FRC usage and corresponding computational 

ost (normalized by FRC cost) of the data-assisted simulation as 

 function of combustion submodel error threshold θ{ T, CO } when 

omputed using 600 Intel Xeon (E5-2680v2) processors. Each 

imestep in the FPV simulation requires 50 ms of wall time to 

olve, while each timestep in the FRC requires a wall time of 

300 ms. When θ{ T, CO } = 0 . 50 , the classifier does not assign FRC 

n the entire domain, resulting in a normalized cost of 8%. This 

dditional cost represents the overhead from the random forest 

valuation and the coupling of the three combustion submodels in 

he same domain. Simulations performed in this study utilized 34% 

 θ{ T, CO } = 0 . 05 ) and 60% FRC ( θ{ T, CO } = 0 . 02 ), which resulted in 70%

nd 80% of FRC cost, respectively. These results demonstrate that 

lassification algorithms can be utilized in high-fidelity simulations 

o reduce computational cost. Further reductions of the computa- 

ional cost is achievable by combining the method proposed in this 

ork with regression techniques [38,39] to reduce the complexity 

f the finite-rate chemistry representation. 
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Fig. 11. Comparison of simulation results for (a) wall pressure and (b) wall heat flux calculations with experimental measurements [57] . 

Fig. 12. FRC utilization and normalized computational cost versus combustion sub- 

model error threshold θ{ T, CO } . 
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Fig. 13. Comparison of time-averaged temperature and CO mass fraction fields for monoli

with three times the inlet mass flow rate. Time-averaged and instantaneous model assign

is shown in black. 
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.3. Generalization 

In order to demonstrate the ability of random forests to gen- 

ralize, additional LES are performed on a modified configuration 

ith three times the inlet mass flow, while keeping all other pa- 

ameters constant. Figure 13 compares time-averaged temperature 

Algorithm 1: Assigning labels in the training set. 

if εIM 

Q < θ IM 

Q then 

use inert mixing (IM) 

else if εFPV 
Q 

< θ FPV 
Q 

then 

use tabulated chemistry (FPV) 

else 
use finite-rate chemistry (FRC) 

end 

nd CO mass fraction fields for monolithic FRC, monolithic FPV, 

nd a posteriori DA LES ( θ{ T, CO } = 0 . 02 ) for this setup. All three

ES cases in this modified configuration demonstrate a longer oxy- 

en core than the original configuration ( Fig. 2 ) due to higher flow 
thic FRC, monolithic FPV, and a posteriori DA LES ( θ{ T, CO } = 0 . 02 ) on a configuration 

ment for DA LES is shown at the bottom. Stoichiometric isocontour with ̃  Z st = 0 . 2 
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elocity, indicating less complete combustion. When compared to 

RC, FPV overpredicts the thickness of the thermal boundary layer 

nd CO formation. DA LES with model threshold ( θ{ T, CO } = 0 . 02 )

redicts temperature and CO flow fields in good agreement with 

onolithic FRC calculations. Random forest assigns FPV to the lean 

ide of the flame, while assigning FRC to the rich side. This is also 

een in the DA case of the original configuration in Fig. 8 from 0 to

50 mm, where major combustion products have not fully formed. 

odel assignment using this threshold results in 51% FRC and 6% 

M utilization, resulting in 77% of the FRC cost. 

Results from this modified configuration demonstrate that the 

resent data-assisted approach can be applied to different config- 

rations as long as the training data can represent the underlying 

hermo-physical behavior. We note that all simulations and train- 

ng data from the present study employ the same mesh. Since the 

andom forest classifies well in this modified configuration, this 

ethod should still be effective for different mesh resolutions as 

ong as the flow can be represented by local points of the training 

ata. The generalizability of this method improves with increasing 

vailability of representative data. 

. Conclusions 

This study introduced a data-assisted modeling approach, em- 

loying random forest classifiers, as a method for dynamic and 

ocal combustion model assignment in reacting flow simulations. 

 priori assessment was conducted on the random forests, which 

ere fed with six input features based on local thermofluid prop- 

rties, to evaluate the behavior of the classifiers during submodel 

ssignment when targeting different QoIs. Random forests were 

hown to assign three different candidate combustion models –

nite-rate chemistry (FRC), flamelet progress variable (FPV) ap- 

roach, and inert mixing (IM) – based on predefined QoIs with 

raction of true classification ranging from approximately 0.70 to 

.80. 

Two cases of a posteriori simulations using random forest classi- 

ers for combustion submodel assignment during simulation run- 

ime, were performed. Time-averaged results of temperature and 

O mass fraction demonstrated that the data-assisted simulation 

roduced species and temperature profiles in better agreement 

ith monolithic FRC than monolithic FPV calculations. The use of 

he random forest with submodel error threshold of θ{ T, CO } = 0 . 02 

esults in significant improvements from monolithic FPV simula- 

ions in all quantities at a 20% lower cost than monolithic FRC 

alculations. An additional DA LES ( θ{ T, CO } = 0 . 02 ), performed on 

 modified configuration with three times the inlet mass flow rate, 

emonstrated that the present approach can be applied to differ- 

nt configurations as long as the training data can represent the 

elevant thermo-physical behavior. 

Results from a priori and a posteriori assessments demonstrated 

hat the present data-assisted framework is adjustable and effec- 

ive for the purpose of combustion model assignment, so long 

s high-quality data is available. While this method avoids the 

hallenging task of constructing a mathematical model-compliance 

ndicator [19] , the present approach is not Pareto-optimized 

ince only local submodel errors were utilized for training. Thus, 

dditional concepts from the Pareto-efficient combustion frame- 

ork can supplement the present data-assisted LES framework. 

dditionally, the exploration of other cost-efficient and accurate 

lassification algorithms could improve the classification accuracy 

f the present data-assisted approach. In particular, ANNs with 

eep learning architectures have shown high accuracy in numer- 

us classification problems. Other opportunities for extending 

his work include (i) the extension of the current framework to 

ridge local submodel error with non-local errors, (ii) the addition 

f non-local quantities in the feature and label set, and (iii) the 
184 
onsideration of a more extensive candidate combustion submodel 

et. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

cknowledgments 

The authors gratefully acknowledge financial support from the 

ir Force Office of Scientific Research under Award No. FA9300- 

9-P-1502 , NASA with award No. 80NSSC18C0207 , and Stanford 

niversity Harold and Marcia Wagner Engineering Fellowship. Re- 

ources supporting this work are provided by the High-End Com- 

uting (HEC) Program at NASA Ames Research Center. 

eferences 

[1] T. Lu, C.K. Law, Toward accommodating realistic fuel chemistry in large-scale 

computations, Prog. Energy Combust. Sci. 35 (2) (2009) 192–215, doi: 10.1016/ 

j.pecs.20 08.10.0 02 . 
[2] T. Turányi , Reduction of large reaction mechanisms, New J. Chem. 14 (1990) 

795–803 . 
[3] L.E. Whitehouse, A.S. Tomlin, M.J. Pilling, Systematic reduction of complex tro- 

pospheric chemical mechanisms, part I: sensitivity and time-scale analyses, 
Atm. Chem. Phys. 4 (7) (2004) 2025–2056, doi: 10.5194/acp- 4- 2025- 2004 . 

[4] G. Li, H. Rabitz, A general analysis of exact lumping in chemical kinetics, Chem. 
Eng. Sci. 44 (6) (1989) 1413–1430, doi: 10.1016/0 0 09- 2509(89)85014- 6 . 

[5] R. Fournet, V. Warth, P.A. Glaude, F. Battin-Leclerc, G. Scacchi, G.M. Cóme, 

Automatic reduction of detailed mechanisms of combustion of alkanes by 
chemical lumping, Int. J. Chem. Kin. 32 (1) (20 0 0) 36–51, doi: 10.1002/(SICI)

1097-4601(20 0 0)32:1 . 
[6] T. Lu, Y. Ju, C.K. Law, Complex CSP for chemistry reduction and analysis, Com- 

bust. Flame 126 (1) (2001) 1445–1455, doi: 10.1016/S0010- 2180(01)00252- 8 . 
[7] U. Maas, S. Pope, Simplifying chemical kinetics: intrinsic low-dimensional 

manifolds in composition space, Combust. Flame 88 (3) (1992) 239–264, 

doi: 10.1016/0010- 2180(92)90034- M . 
[8] D.A. Schwer, P. Lu, W.H. Green Jr., V. Semião, A consistent-splitting approach to 

computing stiff steady-state reacting flows with adaptive chemistry, Combust. 
Theor. Model. 7 (2) (2003) 383–399, doi: 10.1088/1364-7830/7/2/310 . 

[9] M.A. Singer, S.B. Pope, Exploiting ISAT to solve the reaction–diffusion equation, 
Combust. Theor. Model. 8 (2) (2004) 361–383, doi: 10.1088/1364-7830/8/2/009 . 

[10] S.B. Pope , Small scales, many species and the manifold challenges of turbulent 

combustion, Proc. Combust. Inst. 34 (2013) 1–31 . 
[11] S.P. Burke, T.E.W. Schumann, Diffusion flames, Ind. Eng. Chem. 20 (10) (1928) 

998–1004, doi: 10.1021/ie50226a005 . 
[12] O. Gicquel , N. Darabiha , D. Thévenin , Laminar premixed hydrogen/air coun- 

terflow flame simulations using flame prolongation of ILDM with differential 
diffusion, Proc. Combust. Inst. 28 (2) (20 0 0) 1901–1908 . 

[13] J. van Oijen, L. de Goey, Modelling of premixed laminar flames using flamelet- 

generated manifolds, Combust. Sci. Technol. 161 (1) (20 0 0) 113–137, doi: 10. 
1080/00102200008935814 . 

[14] C.D. Pierce, P. Moin, Progress-variable approach for large-eddy simulation of 
non-premixed turbulent combustion, J. Fluid Mech. 504 (2004) 73–97, doi: 10. 

1017/S0 0221120 040 08213 . 
[15] M. Ihme , C.M. Cha , H. Pitsch , Prediction of local extinction and re-ignition ef-

fects in non-premixed turbulent combustion using a flamelet/progress variable 

approach, Proc. Combust. Inst. 30 (20 05) 793–80 0 . 
[16] Y. Liang, S.B. Pope, P. Pepiot, A pre-partitioned adaptive chemistry method- 

ology for the efficient implementation of combustion chemistry in parti- 
cle PDF methods, Combust. Flame 162 (9) (2015) 3236–3253, doi: 10.1016/j. 

combustflame.2015.05.012 . 
[17] W. Xie , Z. Lu , Z. Ren , L. Hou , Dynamic adaptive chemistry via species time-s-

cale and Jacobian-aided rate analysis, Proc. Combust. Inst. 36 (1) (2017) 

645–653 . 
[18] S. Yang, R. Ranjan, V. Yang, S. Menon, W. Sun, Parallel on-the-fly adaptive ki- 

netics in direct numerical simulation of turbulent premixed flame, Proc. Com- 
bust. Inst. 36 (2) (2017) 2025–2032, doi: 10.1016/j.proci.2016.07.021 . 

[19] H. Wu , Y.C. See , Q. Wang , M. Ihme , A Pareto-efficient combustion framework
with submodel assignment for predicting complex flame configurations, Com- 

bust. Flame 162 (2015) 4208–4230 . 
20] H. Wu, P.C. Ma, T. Jaravel, M. Ihme, Pareto-efficient combustion modeling for 

improved CO-emission prediction in LES of a piloted turbulent dimethyl ether 

jet flame, Proc. Combust. Inst. 37 (2019) 2267–2276, doi: 10.1016/j.proci.2018. 
08.010 . 

[21] Q. Douasbin , M. Ihme , C. Arndt , Pareto-efficient combustion framework for 
predicting transient ignition dynamics in turbulent flames: application to a 

pulsed jet-in-hot-coflow flame, Combust. Flame 223 (2021) 153–165 . 

https://doi.org/10.13039/100000181
https://doi.org/10.13039/100000104
https://doi.org/10.1016/j.pecs.2008.10.002
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0002
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0002
https://doi.org/10.5194/acp-4-2025-2004
https://doi.org/10.1016/0009-2509(89)85014-6
https://doi.org/10.1002/(SICI)1097-4601(2000)32:1
https://doi.org/10.1016/S0010-2180(01)00252-8
https://doi.org/10.1016/0010-2180(92)90034-M
https://doi.org/10.1088/1364-7830/7/2/310
https://doi.org/10.1088/1364-7830/8/2/009
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0010
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0010
https://doi.org/10.1021/ie50226a005
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0012
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0012
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0012
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0012
https://doi.org/10.1080/00102200008935814
https://doi.org/10.1017/S0022112004008213
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0015
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0015
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0015
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0015
https://doi.org/10.1016/j.combustflame.2015.05.012
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0017
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0017
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0017
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0017
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0017
https://doi.org/10.1016/j.proci.2016.07.021
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0019
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0019
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0019
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0019
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0019
https://doi.org/10.1016/j.proci.2018.08.010
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0021
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0021
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0021
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0021


W.T. Chung, A .A . Mishra, N. Perakis et al. Combustion and Flame 227 (2021) 172–185 

[

[

[

[

[

[  

[  

[

[  

 

[

[

[  

[

[

[

[

[

[

 

[  

[  

[  

[  

[

[

[  

[

[

[

[

[

[

[

[

[  

 

[

[  

 

[

[  

[  

[

[  

[  

[  

[  

[

[  

[

22] V. Dhar, Data science and prediction, Commun. ACM 56 (12) (2013) 64–73, 
doi: 10.1145/2500499 . 

23] J. Ling, J. Templeton, Evaluation of machine learning algorithms for prediction 
of regions of high Reynolds-averaged Navier-Stokes uncertainty, Phys. Fluids 27 

(8) (2015) 085103, doi: 10.1063/1.4927765 . 
24] J.X. Wang, H. Xiao, Data-driven CFD modeling of turbulent flows through 

complex structures, Int. J. Heat Fluid Flow 62 (2016) 138–149, doi: 10.1016/j. 
ijheatfluidflow.2016.11.007 . 

25] J.-L. Wu, H. Xiao, E. Paterson, Physics-informed machine learning approach for 

augmenting turbulence models: a comprehensive framework, Phys. Rev. Fluids 
3 (2018) 74602, doi: 10.1103/PhysRevFluids.3.074602 . 

26] K. Duraisamy, G. Iaccarino, H. Xiao, Turbulence modeling in the age 
of data, Annu. Rev. Fluid Mech. 51 (1) (2019) 357–377, doi: 10.1146/ 

annurev- fluid- 010518- 040547 . 
27] F.C. Christo , A.R. Masri , E.M. Nebot , S.B. Pope , An integrated PDF/neural net-

work approach for simulating turbulent reacting systems, Proc. Combust. Inst. 

26 (1996) 43–48 . 
28] J.A. Blasco , N. Fueyo , J.C. Larroya , C. Dopazo , J.Y. Chen , Single-step time-integra-

tor of a methane-air chemical system using artificial neural networks, Comput. 
Chem. Eng. 23 (9) (1999) 1127–1133 . 

29] M. Ihme, C. Schmitt, H. Pitsch, Optimal artificial neural networks and tab- 
ulation methods for chemistry representation in LES of a bluff-body swirl- 

stabilized flame, Proc. Combust. Inst. 32 (2009) 1527–1535, doi: 10.1016/j.proci. 

20 08.06.10 0 . 
30] A. Kempf , F. Flemming , J. Janicka , Investigation of lengthscales, scalar dissipa-

tion, and flame orientation in a piloted diffusion flame by LES, Proc. Combust. 
Inst. 30 (2005) 557–565 . 

[31] B.A. Sen , S. Menon , Linear eddy mixing based tabulation and artificial neural
networks for large eddy simulations of turbulent flames, Combust. Flame 157 

(1) (2010) 62–74 . 

32] C.J. Lapeyre, A. Misdariis, N. Cazard, D. Veynante, T. Poinsot, Training convo- 
lutional neural networks to estimate turbulent sub-grid scale reaction rates, 

Combust. Flame 203 (2019) 255–264, doi: 10.1016/j.combustflame.2019.02.019 . 
33] R. Ranade, T. Echekki, A framework for data-based turbulent combustion clo- 

sure: a posteriori validation, Combust. Flame 210 (2019) 279–291, doi: 10.1016/ 
j.combustflame.2019.08.039 . 

34] M.T. Henry de Frahan , S. Yellapantula , R. King , M.S. Day , R.W. Grout , Deep

learning for presumed probability density function models, Combust. Flame 
208 (2019) 436–450 . 

35] A. Seltz, P. Domingo, L. Vervisch, Z.M. Nikolaou, Direct mapping from LES re- 
solved scales to filtered-flame generated manifolds using convolutional neural 

networks, Combust. Flame 210 (2019) 71–82, doi: 10.1016/j.combustflame.2019. 
08.014 . 

36] S. Yao, B. Wang, A. Kronenburg, O.T. Stein, Conditional scalar dissipation rate 

modeling for turbulent spray flames using artificial neural networks, Proc. 
Combust. Inst. (2020), doi: 10.1016/j.proci.2020.06.135 . In press 

37] J.A. Blasco, N. Fueyo, C. Dopazo, J. Ballester, Modelling the temporal evolution 
of a reduced combustion chemical system with an artificial neural network, 

Combust. Flame 113 (1–2) (1998) 38–52, doi: 10.1016/S0010-2180(97)00211-3 . 
38] A. Chatzopoulos, S. Rigopoulos, A chemistry tabulation approach via rate- 

controlled constrained equilibrium (RCCE) and artificial neural networks 
(ANNs), with application to turbulent non-premixed CH 4 /H 2 /N 2 flames, Proc. 

Combust. Inst. 34 (1) (2013) 1465–1473, doi: 10.1016/j.proci.2012.06.057 . 

39] L.L. Franke, A.K. Chatzopoulos, S. Rigopoulos, Tabulation of combustion chem- 
istry via artificial neural networks (ANNs): methodology and application to 

LES-PDF simulation of Sydney flame L, Combust Flame 185 (2017) 245–260, 
doi: 10.1016/j.combustflame.2017.07.014 . 

40] S. Alqahtani, T. Echekki, A data-based hybrid model for complex fuel chemistry 
acceleration at high temperatures, Combust Flame 223 (2021) 142–152, doi: 10. 

1016/j.combustflame.2020.09.022 . 

[41] O. Owoyele , P. Kundu , M.M. Ameen , T. Echekki , S. Som , Application of deep
artificial neural networks to multi-dimensional flamelet libraries and spray 

flames, Int. J. Engine Res. 21 (1) (2020) 151–168 . 
42] S. Silvestri , M.P. Celano , O.J. Haidn , O. Knab , Comparison of single element

rocket combustion chambers with round and square cross sections, 6th Euro. 
Conf. Aeronautics Space Sci. (EUCASS) (2015) . 

43] S. Silvestri , M.P. Celano , C. Kirchberger , G. Schlieben , O. Haidn , O. Knab , In-

vestigation on recess variation of a shear coax injector for a single element 
GOX-GCH4 combustion chamber, Trans. JSASS Aerosp. Tech. Jpn. 14 (ists30) 

(2016) 101–108 . 
44] Y. Khalighi , J.W. Nichols , F. Ham , S.K. Lele , P. Moin , Unstructured large eddy

simulation for prediction of noise issued from turbulent jets in various config- 
urations, AIAA Paper 2011-2886 (2011) . 

45] P.C. Ma , Y. Lv , M. Ihme , An entropy-stable hybrid scheme for simulations of

transcritical real-fluid flows, J. Comput. Phys. 340 (2017) 330–357 . 
46] H. Wu, P.C. Ma, M. Ihme, Efficient time-stepping techniques for simulating tur- 

bulent reactive flows with stiff chemistry, Comput. Phys. Commun. 243 (2019) 
81–96, doi: 10.1016/J.CPC.2019.04.016 . 
185 
[47] P. Moin, K. Squires, W. Cabot, S. Lee, A dynamic subgrid-scale model for com- 
pressible turbulence and scalar transport, Phys. Fluids A 3 (11) (1991) 2746–

2757, doi: 10.1063/1.858164 . 
48] O. Colin, F. Ducros, D. Veynante, T. Poinsot, A thickened flame model for large 

eddy simulations of turbulent premixed combustion, Phys. Fluids 12 (7) (20 0 0) 
1843–1863, doi: 10.1063/1.870436 . 

49] M. Ihme , L. Shunn , J. Zhang , Regularization of reaction progress variable for
application to flamelet-based combustion models, J. Comput. Phys. 231 (2012) 

7715–7721 . 

50] A. Felden, E. Riber, B. Cuenot, Impact of direct integration of analytically re- 
duced chemistry in LES of a sooting swirled non-premixed combustor, Com- 

bust. Flame 191 (2018) 270–286, doi: 10.1016/j.combustflame.2018.01.005 . 
[51] A. Vreman, B. Albrecht, J. van Oijen, L. de Goey, R. Bastiaans, Premixed and 

nonpremixed generated manifolds in large-eddy simulation of Sandia flame 
D and F, Combust. Flame 153 (3) (2008) 394–416, doi: 10.1016/j.combustflame. 

20 08.01.0 09 . 

52] G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty et. al., GRI-Mech 3.0, 
20 0 0, http://www.me.berkeley.edu/gri-mech/ . 

53] D.G. Goodwin, R.L. Speth, H.K. Moffat, B.W. Weber, Cantera: an object-oriented 
software toolkit for chemical kinetics, thermodynamics, and transport pro- 

cesses, 2018, https://www.cantera.org . 10.5281/zenodo.1174508 
54] H. Pitsch, FlameMaster v3.1 : a C++ computer program for 0D combustion and 

1D laminar flame calculations, 1998. 

55] J. Zips, H. Müller, M. Pfitzner, Non-adiabatic tabulation methods to predict 
wall-heat loads in rocket combustion, AIAA Paper 2017-1469 (2017), doi: 10. 

2514/6.2017-1469 . 
56] P.E. Lapenna, R. Amaduzzi, D. Durigon, G. Indelicato, F. Nasuti, F. Creta, Simu- 

lation of a single-element GCH4/GOx rocket combustor using a non-adiabatic 
flamelet method, AIAA Paper (2018) 2018–4872, doi: 10.2514/6.2018-4872 . 

57] N. Perakis, O.J. Haidn, Inverse heat transfer method applied to capacitively 

cooled rocket thrust chambers, Int. J. Heat Mass Transf. (2019) 150–166, doi: 10. 
1016/j.ijheatmasstransfer.2018.11.048 . 

58] S. Kawai, J. Larsson, Dynamic non-equilibrium wall-modeling for large eddy 
simulation at high Reynolds numbers, Phys. Fluids 25 (1) (2013) 015105, 

doi: 10.1063/1.4775363 . 
59] N. Perakis , O.J. Haidn , M. Ihme , Investigation of CO recombination in the

boundary layer of CH 4 /O 2 rocket engines, Proc. Combust. Inst. 38 (2020) . In

press 
60] P.C. Ma, H. Wu, M. Ihme, J.-P. Hickey, Nonadiabatic flamelet formulation for 

predicting wall heat transfer in rocket engines, AIAA J. 56 (6) (2018) 2336–
2349, doi: 10.2514/1.J056539 . 

61] D.N. Reshef , Y.A. Reshef , H.K. Finucane , S.R. Grossman , G. McVean , P.J. Turn-
baugh , E.S. Lander , M. Mitzenmacher , P.C. Sabeti , Detecting novel associations

in large data sets, Science 334 (6062) (2011) 1518–1524 . 

62] R.W. Bilger, Turbulent jet diffusion flames, Prog. Energy Combust. Sci. 1 (2–3) 
(1976) 87–109, doi: 10.1016/0360- 1285(76)90022- 8 . 

63] J. Li, K. Cheng, S. Wang, F. Morstatter, R.P. Trevino, J. Tang, H. Liu, Feature selec-
tion: a data perspective, ACM Comput. Surv. 50 (2017), doi: 10.1145/3136625 . 

64] R. Ge , M. Zhou , Y. Luo , Q. Meng , G. Mai , D. Ma , G. Wang , F. Zhou , McTwo:
a two-step feature selection algorithm based on maximal information coeffi- 

cient, BMC Bioinform. 17 (142) (2016) 14pages . 
65] L. Breiman , Random forests, Mach. Learn. 45 (1) (2001) 5–32 . 

66] L. Breiman , J. Friedman , R. Olshen , C. Stone , Classification and Regression Trees,

Routledge, 1984 . 
67] Y. Amit , D. Geman , K. Wilder , Joint induction of shape features and tree clas-

sifiers, IEEE Trans. Pattern Anal. and Mach. Intell. 19 (11) (1997) 1300–1305 . 
68] M. Fernández-Delgado , E. Cernadas , S. Barro , D. Amorim , Do we need hundreds

of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15 
(1) (2014) 3133–3181 . 

69] A.J. Wyner , M. Olson , J. Bleich , D. Mease , Explaining the success of Adaboost

and random forests as interpolating classifiers, J. Mach. Learn. Res. 18 (1) 
(2017) 1558–1590 . 

70] G. Bradski , The OpenCV Library, Dr. Dobb’s J. Softw. Tools, 20 0 0 . 
[71] K. Schindler, An overview and comparison of smooth labeling methods for 

land-cover classification, IEEE Trans. Geosci. Remote Sens. 50 (11 PART1) (2012) 
4534–4545, doi: 10.1109/TGRS.2012.2192741 . 

72] H. Müller, J. Zips, M. Pfitzner, D. Maestro, B. Cuenot, L. Selle, R. Ranjan, P. Tud-

isco, S. Menon, Numerical investigation of flow and combustion in a single- 
element GCH4/GOX rocket combustor: a comparative LES study, AIAA Paper 

2016-4997 (2016), doi: 10.2514/6.2016-4997 . 
73] C. Roth, O. Haidn, A. Chemnitz, T. Sattelmayer, Y. Daimon, G. Frank, H. Müller, 

J. Zips, M. Pfitzner, R. Keller, P. Gerlinger, D. Maestro, B. Cuenot, H. Ried- 
mann, L. Selle, Numerical investigation of flow and combustion in a single- 

element GCH 4 /GOX rocket combustor, AIAA Paper 2016-4995 (2016), doi: 10. 

2514/6.2016-4995 . 

https://doi.org/10.1145/2500499
https://doi.org/10.1063/1.4927765
https://doi.org/10.1016/j.ijheatfluidflow.2016.11.007
https://doi.org/10.1103/PhysRevFluids.3.074602
https://doi.org/10.1146/annurev-fluid-010518-040547
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0027
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0027
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0027
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0027
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0027
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0028
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0028
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0028
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0028
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0028
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0028
https://doi.org/10.1016/j.proci.2008.06.100
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0030
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0030
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0030
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0030
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0031
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0031
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0031
https://doi.org/10.1016/j.combustflame.2019.02.019
https://doi.org/10.1016/j.combustflame.2019.08.039
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0034
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0034
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0034
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0034
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0034
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0034
https://doi.org/10.1016/j.combustflame.2019.08.014
https://doi.org/10.1016/j.proci.2020.06.135
https://doi.org/10.1016/S0010-2180(97)00211-3
https://doi.org/10.1016/j.proci.2012.06.057
https://doi.org/10.1016/j.combustflame.2017.07.014
https://doi.org/10.1016/j.combustflame.2020.09.022
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0041
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0041
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0041
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0041
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0041
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0041
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0042
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0042
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0042
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0042
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0042
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0043
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0043
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0043
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0043
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0043
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0043
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0043
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0044
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0044
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0044
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0044
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0044
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0044
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0045
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0045
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0045
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0045
https://doi.org/10.1016/J.CPC.2019.04.016
https://doi.org/10.1063/1.858164
https://doi.org/10.1063/1.870436
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0049
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0049
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0049
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0049
https://doi.org/10.1016/j.combustflame.2018.01.005
https://doi.org/10.1016/j.combustflame.2008.01.009
http://www.me.berkeley.edu/gri-mech/
https://www.cantera.org
https://doi.org/10.2514/6.2017-1469
https://doi.org/10.2514/6.2018-4872
https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.048
https://doi.org/10.1063/1.4775363
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0059
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0059
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0059
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0059
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0059
https://doi.org/10.2514/1.J056539
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0061
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0061
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0061
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0061
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0061
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0061
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0061
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0061
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0061
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0061
https://doi.org/10.1016/0360-1285(76)90022-8
https://doi.org/10.1145/3136625
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0064
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0064
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0064
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0064
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0064
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0064
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0064
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0064
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0064
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0065
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0065
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0066
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0066
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0066
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0066
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0066
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0067
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0067
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0067
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0067
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0068
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0068
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0068
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0068
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0068
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0069
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0069
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0069
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0069
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0069
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0070
http://refhub.elsevier.com/S0010-2180(20)30596-4/sbref0070
https://doi.org/10.1109/TGRS.2012.2192741
https://doi.org/10.2514/6.2016-4997
https://doi.org/10.2514/6.2016-4995

	Data-assisted combustion simulations with dynamic submodel assignment using random forests
	1 Introduction
	2 Mathematical models
	2.1 Computational method
	2.2 Combustion models

	3 Experimental configuration, computational setup and baseline simulations
	3.1 Experimental configuration
	3.2 Computational setup
	3.3 Baseline results from monolithic LES combustion simulations

	4 Data-assisted simulation framework
	4.1 Label assignment
	4.2 Feature selection
	4.3 Random forest classifier

	5 Results
	5.1 A priori assessment
	5.2 A posteriori assessment: data-assisted LES
	5.3 Generalization

	6 Conclusions
	Declaration of Competing Interest
	Acknowledgments
	References


