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a b s t r a c t 

Although data-driven methods have shown high accuracy as closure models for simulating turbulent 

flames, these models are often criticized for lack of physical interpretability, wherein they provide an- 

swers but no insight into their underlying rationale. In this work, we show that two interpretable ma- 

chine learning algorithms, namely the random forest regressor and the sparse symbolic regression, can 

offer opportunities for discovering analytic expressions for subgrid-scale (SGS) terms of a turbulent tran- 

scritical flame. These transcritical conditions are found in various combustion systems that operate under 

high pressures that surpass the thermodynamic critical limit of fuel-oxidizer mixtures, and require the 

consideration of complex fluid behaviors that can cast doubts on the validity of existing subgrid-scale 

(SGS) models in large-eddy simulations. To this end, direct numerical simulations (DNS) of transcriti- 

cal liquid-oxygen/gaseous-methane (LOX/GCH4) inert and reacting flows are performed. Using this data, 

a priori analysis is performed on the Favre-filtered DNS data to compare the accuracy of random for- 

est SGS-models with conventional physics-based SGS-models. SGS stresses calculated with the gradient 

model are shown to have good agreement with the exact terms extracted from filtered DNS. Results 

demonstrate that random forests can perform as effectively as algebraic models when modeling subgrid 

stresses, when trained on a sufficiently representative database and with a suitable choice of the feature 

set. The employment of the random forest feature importance score is shown to enable the discovery of a 

analytic model for subgrid-scale stresses through sparse symbolic regression. The generalizability of ran- 

dom forest and sparse symbolic regression is demonstrated by modeling the subgrid-scale temperature, 

a term that arises from filtering the non-linear real-fluid equation-of-state, with good accuracy. 

© 2021 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 
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. Introduction 

The development of accurate computational tools is essential 

or studying turbulent flames within high pressure combustors. 

arge-eddy simulations (LES) provide a feasible computational ap- 

roach in capturing the behavior of flows within practical com- 

ustors. However, high pressure combustors in rockets and diesel 

ngines operate under conditions that exceed the thermodynamic 

ritical limits of both fuel and oxidizer. Consequently, these condi- 

ions generate trans- and supercritical flows – with complex be- 

aviors that pose challenges for numerical modeling and simu- 

ations [1] . In many simulations, Lagrangian droplet methods are 

ypically employed for simulating, which assumes the presence 

f liquid and gas phases. Simulations employing the Lagrangian 

roplet method have been shown to have good agreement with 
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xperimental measurements [2,3] . However, these models often 

nvolve careful selection of the breakup and evaporation models 

long with parameter tuning. 

Another approach for investigating high-pressure flows involves 

he use of the diffuse-interface method. In contrast to sharp inter- 

ace techniques, where interfaces are explicitly tracked or resolved 

n the computational domain, this method artificially diffuses the 

nterface and treats the entire flow with a single real-fluid state 

quation. While LES incorporating real-fluids effects have success- 

ully been employed to simulate transcritical combustion [4–6] , 

any of these simulations employ existing subgrid-scale (SGS) 

odels that were developed for applications in subcritical pres- 

ure conditions [7,8] . As a consequence, the application of these 

odels to non-ideal flow regimes introduces uncertainties. One 

ethod for evaluating SGS models involves a priori analysis, where 

odeled SGS terms are compared with exact unclosed terms ex- 

racted from filtered DNS. Selle et al. [9] performed a priori analysis 

n a three-dimensional DNS database of supercritical binary mix- 

ures in turbulent mixing layers to demonstrate that the Smagorin- 
. 

retable data-driven methods for subgrid-scale closure in LES for 
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ky model [10] performed poorly when predicting SGS stresses, 

hile the gradient [8] and scale-similar [11] models performed 

ell. In the same work, the consideration of previously neglected 

nclosed terms for pressure and heat flux were shown to be es- 

ential under supercritical conditions. Unnikrishnan et al. [12] per- 

ormed a priori analysis on two-dimensional DNS of a transcrit- 

cal reacting liquid-oxygen/gaseous-methane (LOX/GCH4) mixture 

o demonstrate that the mixed SGS model incorporating the dy- 

amic Smagorinsky [13] was three times more accurate than the 

ole use of the dynamic Smagorinsky. 

One approach for developing closure models in turbulent re- 

cting flows involves the use of data-driven methods [14] . A priori 

tudies have been performed to demonstrate that neural-networks 

an provide accurate closure for turbulent combustion models [15–

7] . Henry de Frahan et al. [18] demonstrated that deep learning 

odels can generate as accurate results as random forests with 25- 

old improvement in computational costs when predicting the sub- 

lter probability density function. Ranade and Echekki [19] con- 

ucted an a posteriori study to show that deep learning models 

an be trained with experimental data to generate closure mod- 

ls for chemical scalars in Reynolds-averaged Navier-Stokes (RANS) 

imulations of turbulent jet flames. These deep learning models 

re highly accurate and flexible approaches to data-driven model- 

ng. The employment of convolutional architectures enable an au- 

omatic end-to-end processing of unstructured spatial data, which 

s useful when treating simulation data, while the manipulation of 

ts loss functions and network structure enables the inclusion of 

hysics-specific information [20,21] . However, these methods tend 

o be uninterpretable, thereby offering little insight towards the 

iscovery of physical properties. 

Computational studies of high-pressure non-premixed flames 

ere pioneered by Bray et. al. [2,3,22] . One work [22] examined 

he effect of different Damköhler numbers (Da) on autoignition in 

igh-pressure non-premixed flames under decaying homogeneous 

sotropic turbulence. In the present work, we perform DNS calcu- 

ations of inert and reacting LOX/GCH4 non-premixed mixtures in 

he presence of decaying turbulence, under different Da-conditions, 

n order to evaluate algebraic and data-driven models for predict- 

ng unclosed SGS terms for high pressure applications. Within this 

ontext, the present study has the following objectives: 

• To identify and quantify limitations of conventional algebraic 

SGS stresses in transcritical flows. 

• To utilize interpretable machine learning algorithms, namely 

the random forest regressor and the sparse symbolic regression, 

in constructing data-informed models for SGS stresses. 

• To apply these machine learning methods towards modeling 

additional SGS terms that can arise from real-fluid effects. 

The mathematical models for simulating the turbulent trans- 

ritical flows are presented in Section 2 . Details regarding the DNS 

onfiguration are discussed in Section 3 . Section 4 describes the 

GS models and data-driven methods employed in the present 

ork. Results from this a priori study are discussed in Section 5 , 

efore offering concluding remarks in Section 6 . 

. Mathematical models 

The governing equations that are solved in the present study 

re the conservation equations for mass, momentum, energy, and 

hemical species: 

 t ρ + ∇ · (ρu ) = 0 (1a) 

 t (ρu ) + ∇ · (ρu u ) = −∇p + ∇ · τv (1b) 

 t (ρe t ) + ∇ · [ u (ρe t + p)] = −∇ · q v + ∇ · [( τv ) · u ] (1c) 
2 
 t (ρY k ) + ∇ · (ρu Y k ) = −∇ · j v + ˙ ω k where k = 1 , 2 , . . . , N s − 1
(1d) 

ith density ρ , velocity vector u , pressure p, specific total energy 

 t , stress tensor τ , and heat flux q . Y k , j k , and ˙ ω k are the mass

raction, diffusion flux, and source term for the k th species, while 

ubscript v denotes viscous quantities. 

In the a priori analysis carried out in this study, a top-hat filter 

with a desired filter size � is applied on a arbitrary quantity φ
rom the DNS data through a volume integral: 

( x ) = 

∫ 
V 

φ( x ) H( x − y , �) d y (2) 

ith: 

( x − y , �) = 

{
1 

�
for | x − y | ≤ �/ 2 , 

0 otherwise. 
(3) 

nd Favre-averaged quantity: 

˜ = 

ρφ

ρ
(4) 

here · denotes a filtered quantity and ̃  · is a Favre-filtered quan- 

ity. After filtering, the governing equations become: 

 t ρ + ∇ · ( ρ˜ u ) = 0 (5a) 

 t ( ρ˜ u ) + ∇ · ( ρ˜ u ̃

 u ) = −∇ p + ∇ · ( τv + τsgs ) (5b) 

 t ( ρ˜ e t ) + ∇ · [ ̃  u ( ρ˜ e t + p )] = −∇ · ( q v + q sgs ) + ∇ · [( τv + τsgs ) ·˜ u ] 

(5c) 

 t ( ρ˜ Y k ) + ∇ · ( ρ˜ u ̃  Y k ) = −∇ · ( j v + j 
sgs ) + ˙ ω k where k = 1 , 2 , . . . , N s − 1

(5d) 

ith superscript sgs denoting subgrid-scale quantities. For the 

ow-conditions considered in this study, a filter width of 16 � is 

quivalent to the integral lengthscale. Since LES should resolve the 

nertial subrange, we employ a maximum filter width of 8 � in the 

resent study. Exact subgrid-scale quantities can then be extracted 

irectly from the filtered DNS or approximated through the models 

escribed in Section 4 . 

The Peng-Robinson (PR) cubic equations-of-states [23] (EoS) is 

mployed to model real-fluid thermodynamics under transcritical 

onditions: 

p = 

ρRT 

1 − bρ
− aρ2 

1 + 2 bρ − b 2 ρ2 
(6) 

ith mixture-specific gas constant R . The coefficients a and b ac- 

ount for effects of intermolecular forces and volumetric displace- 

ent, and are dependent on temperature and composition [24] . 

ince oxygen and methane mixtures are a miscible system, where 

he effects of phase separation are not encountered due to the sim- 

larity of the critical states and molecular properties, this transcrit- 

cal configuration can be represented by a cubic EoS [25] . Details 

egarding the evaluation of specific heat capacity, internal energy, 

nd partial enthalpy from the Peng-Robinson state equation is de- 

cribed in Ma et al. [26] . Fig. 1 compares Peng-Robinson and ideal 

oS for methane and oxygen. At the initial conditions of 120 K and 

00 K for O 2 and CH 4 , specific heat capacity evaluated from the PR 

oS is in excellent agreement with NIST data. However, it can be 

een that the PR EoS overpredicts the oxidizer density but provides 

ccurate results for the fuel. Since this study is primarily focus- 

ng on the development and assessment of a data-driven modeling 

ramework for the constructing SGS-closures, we believe that this 

iscrepancy is acceptable for the present study. 
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Fig. 1. Comparison of Peng-Robinson (PR) and ideal equations-of-states (EoS) for (a,b) oxygen and (c,d) methane with NIST [27] data at p = 10 MPa. 
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In this study, the two-step five-species CH4-BFER mecha- 

ism [28] is employed, which was applied to investigate a super- 

ritical gas-turbine combustor at 20 MPa in another study [29] . 

n DNS of trans- and supercritical combustion, reduced chemi- 

al mechanisms [30,31] have been employed to circumvent large 

omputational costs incurred by solving non-ideal state equations. 

akahashi’s high-pressure correction [32] is used to evaluate the 

inary diffusion coefficients. Since only two species are used in 

he inert simulations, the binary diffusion coefficients are exact. 

hermal conductivity and dynamic viscosity are evaluated using 

hung’s method with high-pressure correction [33] . For multi- 

pecies mixtures in the reacting cases, Chung’s pressure correction 

s known to produce oscillations [26,34] , especially for dynamic 

iscosity. Hence, transport properties of the mixture are evaluated 

hrough mole-fraction-averaging, after employing Chung’s method 

n each individual species. A similar approach has been applied in 

rior studies [5,12] . 

Simulations are performed by employing an unstructured com- 

ressible finite-volume solver [26,35,36] . A central scheme, which 

s 4th-order accurate on uniform meshes, is used along with a 2nd- 

rder ENO scheme. The ENO scheme is activated only in regions 

f high local density variations using a threshold-based sensor to 

escribe sharp interfaces present in transcritical flows. Due to the 

ensity gradients present at trans- and supercritical conditions, an 

ntropy-stable flux correction technique [26] is used to dampen 

on-linear instabilities in the numerical scheme. The double-flux 

ethod by Ma et al. [26] is used with a dynamic sensor to elim-

nate spurious pressure oscillations. A Strang-splitting scheme is 
3 
mployed for time-advancement, combining a strong stability pre- 

erving 3rd-order Runge-Kutta (SSP-RK3) scheme for integrating 

he non-stiff operators with a semi-implicit scheme [37] for ad- 

ancing the chemical source terms. 

. DNS configuration 

Inert and reacting direct numerical simulations are performed 

n a three-dimensional cubic domain, with length L , a mixture of 

OX/GCH4 shown in Fig. 2 . In this setup, a spherical liquid oxy- 

en core, with a radius r = 0 . 25 L , is initialized in gaseous methane,

here the radial profile of the initial condition is chosen to match 

nert and reacting steady one-dimensional Cantera [38] counter- 

ow diffusion flame calculations, solved in mixture-fraction space 

nd incorporating the Peng-Robinson equation-of-state, under the 

ame fuel and oxidizer conditions. For the reacting cases, the ini- 

ial temperature and composition profile corresponds to maxi- 

um strain rates (from one-dimensional flames) of 2 × 10 5 s −1 

nd 2 × 10 6 s −1 for cases Da 780 and Da 10, respectively. Fuel and

xidizer temperatures are set to T CH4 = 300 K and T O2 = 120 K,

espectively, while the pressure is set at 10 MPa. The laminar flame 

peed S L of a stoichiometric premixed flame of S L = 0 . 306 ms −1 is

valuated through Cantera [38] at a pressure of 10 MPa and ini- 

ial temperature of 210 K (the average of fuel and oxidizer tem- 

erature). Note that the critical temperature T c and pressure P c for 

xidizer and fuel are T 
c, O2 = 154 . 6 K and P 

c, O2 = 5 . 04 MPa, and

 

c, CH4 = 190 . 6 K and P 
c, CH4 = 4 . 60 MPa, respectively. 
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Fig. 2. DNS investigated at initial time t = 0 and one eddy turnover time t = t I . Isosurface shows stoichiometric mixture fraction Z = 0 . 2 for the inert case. 
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These operating conditions are chosen to match practical 

OX/GCH4 combustors, and were investigated in previous stud- 

es [39,40] . Periodic boundary conditions are used for all bound- 

ries for the inert case. For the reacting cases, non-reflecting pres- 

ure outlets are used in both boundaries in the x -direction, while 

he remaining boundaries are periodic. 

The initial velocity profile was generated with a synthetic 

sotropic turbulence generator by Saad et al. [41] with zero mean 

elocity, based on the von Kármán-Pao energy spectrum: 

(κ) = α
u 

′ 2 
κI 

(κ/κI ) 
4 

[1 + (κ/κI ] 17 / 6 
exp 

[ 

−2 

(
κ

κη

)2 
] 

, (7a) 

= 1 . 453 , (7b) 

I = 0 . 746834 /l I , (7c) 

here u ′ is the RMS velocity, κ is the wave number, and κη

he Kolmogorov wave number. The chosen scaling constant α and 

arge-eddy wavenumber κI are typical for isotropic turbulence [42] . 

n all cases, the integral lengthscale l I and root-mean-squared 

RMS) velocity fluctuation u ′ have been chosen to produce a tur- 

ulent Reynolds number Re t of 80, which has been computed with 

he averaged kinematic viscosity of oxygen and methane at 120 K 

nd 300 K, respectively. 

In the reacting cases, two different Damköhler numbers, Da, of 

80 and 10 are investigated, corresponding to flamelet and un- 

teady regimes [43] , respectively. The Damköhler number is given 

y the ratio of physical timescale t con v and chemical timescale 

 chem 

: 

a = 

t con v 

t chem 

, (8) 

here t chem 

= 0 . 412 μs is approximated from the extinction 

train rate of a one-dimensional counterflow diffusion flame of a 

OX/GCH4 mixture under similar conditions, and physical time is 

valuated from the eddy turnover time t con v = t I . Fig. 3 a shows

hat the mean temperature 〈 T 〉 is lower when Da = 10 than when

a = 780, due the presence of local extinction. This is also re- 

ected in Fig. 3 b where the consumption of CH 4 is slower in the

ase Da = 10 than the case Da = 780. This decrease in temperature

nd composition also results in a slower decay of the turbulence, 
4 
s shown by the mean turbulent kinetic energy 〈 TKE 〉 , normalized 

y the initial TKE, shown in Fig. 3 c. 

An additional inert simulation with ideal gas law is performed 

o demonstrate real-fluid effects on subgrid-scale terms that can 

rise from the non-linearities of the Peng-Robinson EoS. For this 

deal configuration, atmospheric conditions p = 101 . 325 kPa at 

oom temperature are employed, with T CH4 and T O2 at 300 K. 

In this study, analysis is performed on all cases after t = 

rgmax (t I , t chem 

) , which is typically done for DNS of combustion 

nder decaying turbulence in order to ensure the flow fields are 

ndependent of initialization [44] . Instantaneous flow fields for ax- 

al velocity component u 1 , mixture fraction Z, and mixture-fraction 

onditioned temperature T for the reacting cases at t = 0 and t = t I 
re shown in Fig. 4 . 

Table 1 summarizes the DNS cases examined in this study. The 

omain lengths in all direction were chosen to be eight times the 

ize of the integral lengthscale l I to minimize effects of the bound- 

ry conditions. The cell size � is prescribed on the order of the 

olmogorov lengthscale, ensuring that all lengthscales are resolved. 

n addition, a mesh refinement study was performed, where the 

nergy spectra of velocity was found to converge between 128 3 

nd 256 3 . Simulations for all three cases are advanced with an 

coustic CFL number of unity, corresponding to timesteps of 2.5 

nd 0.5 ns for cases Da = 780 and Da = 10, respectively. The simu-

ations were performed using 960 Intel Xeon (E5-2698 v3) proces- 

ors, and 2.3 μs and 0.6 μs of physical time could be completed 

n about an hour wall clock time for cases Da = 780 and Da = 10,

espectively. 

. Subgrid-scale models and data-driven methods 

.1. Real-fluid effects 

We investigate the effects of additional non-linearities from the 

eal-fluid equation-of-state, by employing a analysis similar to Huo 

nd Yang [45] that they applied to model SGS density. Eq. (6) can 

e reexpressed with a compressibility factor ζ : 

p = ρRT ζ (9) 

y rearranging and Favre-filtering, we obtain: 

 

 = 

˜ p · (ρRζ ) −1 (10) 
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Fig. 3. Temporal evolution of global temperature T , mass fraction Y k , and normalized turbulent kinetic energy TKE for two reacting cases. 

Table 1 

Summary of DNS cases. 

Case N x,y,z L x,y,z [ μm] Re t l I [ μm] ηk [ μm] � [ μm] t I [ μs] u ′ [ms −1 ] 

Inert 128 500 80 62.5 2.32 3.91 286 0.22 

Da = 780 128 500 80 62.5 2.32 3.91 286 0.22 

Da = 10 128 60 80 7.50 0.278 0.469 4.12 1.80 

Ideal EoS 128 500 80 62.5 2.32 3.91 3 20.67 
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owever in the present LES solver, the Favre-filtered tempera- 

ure is obtained by inputting filtered quantities into the real-fluid 

oS: 

 

 = p · [ ρR ̄ζ ( ρ, p , ̃  Y ) ] −1 + 

[ 
˜ p · (ρRζ ) −1 − p · ( ρR ̄ζ ) −1 

] 
(11a) 

 

 = ̃

 T LES ( ρ, p , ̃  Y ) + T sgs (11b) 

hich gives rise to a subgrid-scale temperature T sgs , i.e. the second 

erm on the right-hand-side. 

T sgs is typically neglected in ideal-gas configurations. This is 

ften an acceptable assumption as shown by the ideal EoS case 

n Fig. 5 . In the transcritical inert case, | T sgs | / ̃  T of approximately

.05 is observed, which is similar with observations from another 

tudy [9] . However, T sgs becomes non-negligible for the transcritical 

eacting cases, where | T sgs | / ̃  T exceeds values of 0.1 in the reacting

egions, where multi-species compositions are present, and regions 

ith high density gradient. Non-negligible SGS EoS terms are also 

eported by other studies [45,46] . This added significance of T sgs 

rises from applying the filtering operation on density and multi- 

pecies mass fractions, and then feeding the filtered quantities into 

 highly non-linear equation. 

Amplified non-linearities in transcritical reacting flow present 

n additional source of uncertainty in all SGS modeling. To investi- 

ate this, we employ conventional algebraic and novel data-driven 

ethods for predicting the subgrid-scale fluxes from the LES mo- 

entum equation ( Eq. (5b) ): 

sgs 
i j 

= ρ( ̃  u i u j − ˜ u i ̃  u j ) (12) 

wo algebraic SGS models, namely the Vreman and the gradient 

odel, as well as random forest regressors are evaluated. Addition- 

lly, we demonstrate the employment of random forest feature im- 

ortance scores for assisting the discovery of algebraic SGS stress 

odels by sparse symbolic regression. Since algebraic models for 

GS temperature ( Eq. (11) ) have not been developed, we then eval- 

ate the ability of an interpretable machine learning algorithm in 

odeling T sgs . 
5 
.2. Algebraic SGS stress models 

The Vreman SGS model [7] is derived from the eddy-viscosity 

ypothesis: 

sgs, v 
i j 

� −2 ρνSGS ̃
 S i j + 

1 

3 

τkk δi j , (13) 

here S i j is the velocity strain tensor, and δi j is the Kronecker 

elta. The eddy viscosity νSGS is evaluated for a filter width � as 

ollows: 

SGS = C v 

√ 

B 

a i j a i j 

, (14a) 

 i j = 

∂ ̃  u i 

∂x j 
, (14b) 

 = β11 β22 − β2 
12 + β11 β33 − β2 

13 + β22 β33 − β2 
23 , (14c) 

i j = �
2 
a ki a k j , (14d) 

here a Vreman coefficient C v of 0.07 is typically used in isotropic 

urbulence [7] . 

The gradient model by Clark et al. [8] is extracted from the first 

erm in the Taylor series expansion of the filtering operation, and 

s given by: 

sgs,g 
i j 

≈ ρC g �
2 ∂ ̃  u i 

∂x k 

∂ ̃  u j 

∂x k 
, (15) 

here a coefficient C g of 1/12 is typically used when a top-hat fil- 

er is employed [8] . In the present study, we will evaluate both 

odels and compare results against DNS data and a data-driven 

pproach. 

.3. Random forest regressor 

In this study, we employ the random forest as our regression 

lgorithm for predicting SGS stresses and SGS temperature. Table 2 

ummarizes the input/features, outputs, and data for the random 

orests employed in this study. All random forests are trained with 
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Fig. 4. Axial velocity u 1 , mixture fraction Z, and conditional temperature T for the reacting cases at transverse location z = 0 . 

Table 2 

Random forests employed in this study. 

Random forest RF_INFORM RF_BLIND RF_INERT RF_DA780 RF_DA10 RF_TSGS 

Training data Inert, Da = 780 , Inert, Da = 780 , Inert Da = 780 Da = 10 Da = 780 , Da = 10 

( t = t I ) Da = 10 Da = 10 

Testing data Inert, Da = 780 , Da = 10 Da = 780 , Da = 10 

( t = 1 . 5 t I ) 

Features ˜ S i j , ̃  S ik ̃
 S k j , ̃

 R ik ̃
 R k j , ˜ u i , 

∂ ̃ u i 
∂x j 

, ∂ 2 ˜ u i 
∂x j x k 

T LES , 
∂T LES 

∂x j 
, ∂ 2 T LES 

∂x j x k 

(Input) ˜ S ik ̃
 R k j − ˜ R ik ̃

 S k j 

Output τ sgs 
i j 

T sgs 

s  

c

p

t

l

o

f

d

v

I

t

d

R

D

i

s

f

C

c

napshots at one eddy turnover time t = t I and tested on the three

ases at t = 1 . 5 t I . 

For SGS stresses, two different sets of feature, or inputs, are em- 

loyed to train the random forests. One feature set corresponds 

o a domain-blind random forest RF_BLIND, consisting only of ve- 

ocity, and the first and second spatial derivatives of velocity. The 

ther set considers Galilean invariant basis functions constructed 

rom strain 

˜ S i j and rotation 

˜ R i j tensors as features, shown to pre- 

ict anisotropy well in a previous study [47] . These Galilean in- 

ariant features are used to train the random forest RF_INFORM. 

n order to investigate the generalizability of random forests in 
6 
he absence of a vast representative dataset, we evaluate the pre- 

ictive performance of three additional random forests RF_INERT, 

F_DA780, and RF_DA10, which are trained solely from the inert, 

a = 780 , and Da = 10 cases, respectively. 

In addition, we also examine the performance of random forest 

n predicting thermodynamic quantities. Since SGS temperature is 

ignificant for reacting transcritical cases, training and testing data 

or RF_TSGS are taken from the two transcritical reacting cases. 

Random forests [48] consist of an ensemble of decorrelated 

lassification and Regression Trees (CARTs) [49] . CARTs are a ma- 

hine learning approach for formulating prediction models from 
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Fig. 5. Comparisons of filtered mixture fraction ̃  Z and magnitude of normalized subgrid-scale temperature | T sgs | / ̃  T between an ideal-gas case and three transcritical cases. A 

filter width of � = 8� is employed. 
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ata by recursively partitioning the inputted feature space, and fit- 

ing a simple prediction within each final partition. The partition- 

ng of the feature space can be represented as a decision trees. 

ecision trees are supervised graph based model wherein the tree 

onsists of nodes and edges. The internal (or non-terminal) nodes 

f the tree represent splits based on learned partitions of the fea- 

ure space. Each leaf (or terminal) node is associated with a nu- 

erical value for regression trees (as opposed to categorical targets 

or classification trees). 

During the training phase, the structure of the decision tree and 

he partitions associated with each node are inferred. During each 

tep of this phase, exhaustive sets of splits over different input fea- 

ures are evaluated. The split leading to maximal decrease in pre- 

iction variance is selected at the associated node. The procedure 

ontinues to make recursive splits based on dataset until it has re- 

uced the overall variance below a given threshold or upon reach- 

ng a given stopping parameter (for instance, upon reaching a max- 

mum depth of the tree). 

During the prediction phase, a new sample is traversed down 

he tree from the root node to a leaf node, wherein its path is de-

ermined based on the partition at each internal node. Once a leaf 

ode is reached, the numerical value associated with the specific 

eaf node is outputted as the prediction for the sample. 

Decision trees are non-parametric and can model arbitrarily 

omplex relations without any a priori assumptions, but are prone 

o overfitting due to the greedy nature of the inference algorithm. 

hus, decision trees have low bias but high variance. This issue can 

e addressed by combining the decision trees into an ensemble, 

hich results in a random forest. 

Random Forests are an ensemble learning algorithm, wherein 

he predictions of ensembles of decorrelated decision trees are ag- 

regated so as to give a final meta-model with low bias and low 

ariance. The decorrelation amongst the individual trees in the en- 

emble is achieved using bootstrapping [48] in conjunction with 

eature bagging [50] during the training of each decision tree. The 

nal prediction of the resulting ensemble model is by averaging 

he predictions of all trained individual trees (or equivalently, via 

ggregation). 

While accurate predictions are an important goal for machine 

earning models, in many fields of application it is just as impor- 

ant to derive understanding from the model. At the basic level, 
7 
his can be embodied via feature importances, wherein the trained 

odel also provides information regarding importances of different 

nput features to the final prediction. Such measures of model in- 

erpretability provide insight into the underlying rationale learned 

y the model during training and can lead to high confidence in 

he model. Similarly, such interpretability measures can lead to 

ata-driven discovery of new relationships between the input fea- 

ures and targets. Random forests provide the Mean Decrease Im- 

urity (MDI) importance measure for all the features in the input 

et [51] . Here, the importance of a feature is given by aggregat- 

ng the weighted decrease in variance for all the nodes where the 

pecific feature is used as the criterion for partitioning the feature 

pace. 

In the present investigation, the random forest regressor imple- 

entation from the Scikit-learn library [52] is used. Here, a ran- 

om forest consisting of fifty decision trees is employed. The hy- 

erparameters of the random forest are determined using a ran- 

om grid search approach with a 3-fold cross-validation set. Train- 

ng is performed once a priori , and requires 88s of walltime with 

 CPUs, when trained on data coarsened for three different filter 

izes from a single timestep. Prediction time for a 64 3 dataset re- 

uires 2.4 s on a single CPU. 

.4. Sparse symbolic regression for model discovery 

A linear model ˆ f i for m number of samples is typically ex- 

ressed as the weighted sum of independent quantities X: 

ˆ f i = 

n ∑ 

j=1 

β j X i j 1 ≤ i ≤ m (16) 

here n is the number of model coefficients β being employed. 

When samples of the ground truth f , i.e. the target for predic- 

ive modeling, are available, the model coefficients can be found 

ith the l 1 -norm regularized least squares or lasso method [53] : 

in 

β

{ 

1 

m 

|| f − X β|| 2 2 + λ|| β|| 1 
} 

, (17) 

here λ is a regularization parameter for controlling the tradeoff

etween the least squares fit and the l 1 -norm. Since, the optimiza- 

ion scheme in Eq. 17 also minimizes the l -norm of the model 
1 
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Fig. 6. Pearson correlations between exact and algebraically modeled SGS stresses for three different filter widths �. 
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oefficients || β|| 1 , lasso encourages sparsity, i.e. reduces the num- 

er of terms in the linear model, as zero-valued model coefficients 

re preferred. 

In the context of discovering subgrid-scale models, non- 

inearities can be introduced by replacing X with non-linear func- 

ions G (X ) of the original variables. In this study, we construct a 

odel with non-linear variables by evaluating d-order polynomial 

unctions: 

ˆ f = G 

d (X ) β, (18a) 

 

d (X ) = 

⎡ ⎢ ⎣ 

1 X 11 X 12 · · · X 1 n X 2 11 X 11 X 12 · · · X d 1 n 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

. 

. 

. 

1 X m 1 X mn · · · X mn X 2 m 1 X m 1 X m 2 · · · X d mn 

⎤ ⎥ ⎦ 

, 

(18b) 

= 

[
β0 β1 · · · βk 

]T 
, k = 

d ∑ 

i =1 

n 

i . (18c) 

Eq. (18) shows that the dimensionality of this approach scales 

o the order of polynomial functions O(mn d ) . Hence, the number 

f candidate variables must be reduced for this method to remain 

ractable. In this work, we employ the random forest feature im- 

ortance score to reduce the number of candidate variables. 

. Results 

.1. Algebraic SGS stress models 

A priori analysis is performed by comparing SGS stresses τ sgs 
i j 

omputed from filtered DNS, with SGS stress modeled by the Vre- 

an model ( Eq. (13) ) and Clark’s gradient model ( Eq. (15) ). The

erformance of these SGS models is evaluated through the Pear- 

on correlation coefficient, which measures the linear correlation 

etween two variables. A Pearson correlation of 1 and −1 corre- 

ponds to perfectly positive and negative linear relationships, re- 

pectively, whereas a correlation of 0 indicates a negligible linear 

elationship. 

Figure 6 presents the resulting Pearson correlation between ex- 

ct and algebraically modeled SGS stresses for three different fil- 

er widths � for all three DNS cases specified in Table 1 , at time

 = 1 . 5 t I . For all three cases and filter sizes, negative correlations

nd weak positive correlations ranging from approximately −0 . 6 to 

.4 are observed for the Vreman model. Negative correlations sug- 

est deviations from the eddy-viscosity hypothesis, which causes 

he Vreman model to be ineffective. In all three cases and three 

lter sizes, strong positive correlations, ranging from 0.5 to 0.95, 

uggest that the gradient model is highly suitable for modeling SGS 

tresses in transcritical inert and reacting flows. 
8 
The effectiveness of the Vreman and gradient models are fur- 

her assessed by examining the conditional Pearson correlation for 
sgs 
1 i 

with respect to the mixture fraction 

˜ Z at filter size � = 2�. 

he mixture fraction for the reacting cases have been evaluated 

sing Bilger’s definition. Figure 7 a shows that weak correlations 

anging from −0 . 4 to 0.5 are observed throughout the inert case. 

n both reacting cases in Fig. 7 b, the deviations from eddy-viscosity 

s much larger than the inert case, as denoted by the presence of 

ighly negative correlations (−0 . 8) in the Vreman model. In the 

nert case, the gradient model has the highest correlation of ap- 

roximately 1.0 in pure methane and pure oxygen, and the lowest 

orrelation of 0.6 when 

˜ Z = 0 . 5 . For the case Da = 780 , the gradi-

nt model has the lowest correlation (0.7) close to the pure oxygen 

tream, with the correlation steadily increasing as the mixture ap- 

roaches stoichiometry ( Z st = 0 . 2 ), after which the correlations re- 

ain high (0.85–1.0). For the case Da = 10 , the correlations for the 

radient model are high (0.8–1.0) throughout the entire mixture. 

The accuracy of the gradient model in predicting the magni- 

ude of SGS stresses is evaluated by examining the least squares 

t between the exact and modeled SGS stresses. A slope greater 

han unity indicates underprediction of the modeled SGS stresses, 

hile a slope less than unity indicates overprediction. Figure 8 

hows that the slopes from the gradient model range from 1 to 

.5. The average of the slopes is 1.98, which suggests that the gra- 

ient model with a constant coefficient should employ C g = 1 / 6 ,

nstead of the typical C g = 1 / 12 . However, since a wide range of co-

fficients are observed, a dynamic gradient model scheme is likely 

ore suited in a posteriori simulations. This is confirmed by results 

rom a posteriori evaluations of the dynamic gradient model from 

ranscritical inert DNS [54] . 

.2. Random forest SGS stress models 

The a priori analysis performed in Section 5.1 is repeated in 

his section for the SGS stresses modeled by random forest re- 

ressors. Figure 9 presents the Pearson correlation between exact 

GS stresses and the SGS stresses modeled by the random forests 

F_BLIND and RF_INFORM. Details regarding the input, output, and 

raining of these two random forests are described in Table 2 . 

igure 9 a shows that strong correlations (0.4–0.95) are observed 

hen the random forest is trained with an uninformed approach, 

hich is similar to the gradient model and higher than the Vre- 

an model in Fig. 6 . Figure 9 b demonstrates that the employment 

f invariant basis functions as features decreases the range of cor- 

elations (0.35–0.9) by 0.05. This small decrease is likely caused by 

he additional constraints placed on the random forest when form- 

ng a hypothesis space. 

Figure 10 presents the Pearson correlations between exact and 

andom forest SGS stresses τ sgs 
1 i 

conditioned to mixture fraction Z̃ 
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Fig. 7. Conditional Pearson correlations with respect to mixture fraction ̃  Z between exact and algebraically modeled SGS stresses τ sgs 
1 i 

for a single filter width � = 2�. 

Fig. 8. Slopes from a least squares fit of exact and gradient modeled SGS stress for 

three different filter widths �. 
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t � = 2�. In the inert case, shown in Fig. 10 a, highest corre-

ation from RF_BLIND of approximately 0.95 is observed in pure 

ethane and pure oxygen, and lowest correlation of 0.5 when 

 = 0 . 5 . For the case Da = 780 in Fig. 10 b, RF_BLIND possesses the

owest correlation (0.7) close to the oxygen stream, with the cor- 

elation steadily increasing as the mixture approaches stoichiomet- 

ic conditions ( ̃  Z st = 0 . 2 ), after which the correlations remain high

0.85 to 1.0). For the case Da = 10 , shown in Fig. 10 c, the corre-

ations for the gradient model are high (0.8–1.0) throughout the 

ntire mixture. The conditional Pearson correlation produced from 

F_BLIND in all three cases are similar qualitatively and quantita- 

ively to correlations from the gradient model in Fig. 7 . This sug- 
Fig. 9. Pearson correlation between exact and random forest m

9 
ests that RF_BLIND has approximated a function similar to the 

radient model, even when trained solely on exact SGS stresses 

nd without any prior knowledge of the gradient Model. The corre- 

ations from RF_INFORM share similar qualitative behaviors as the 

orrelations from RF_BLIND, but with up to a 0.2 lower values. 

Figure 11 presents slopes from a least squares fit between the 

xact and the random forest SGS stresses. Figure 11 a shows that 

he slopes from RF_BLIND range from 0.25 to 1.6, with an average 

lope of 0.96, which demonstrates excellent agreement between 

odeled and exact magnitudes of SGS stresses. The employment 

f invariant features leads to lower slopes (0.25 to 1.35), with an 

verage slope of 0.867, as presented in Fig. 11 b. The use of the in-

ariant feature set not only leads to lower correlations but also to 

n overprediction in magnitudes of SGS stresses. 

Figure 12 compares instantaneous fields for the exact and mod- 

led SGS stress τ sgs 
12 

/ ρ at filter width � = 4�. In the inert case, 

oth SGS stresses from the gradient model and RF_BLIND are in 

ood agreement with the exact term. For Da = 780, the gradient 

odel is in better agreement with the exact term than RF_BLIND. 

his is further supported by the difference in Pearson correlation 

or this particular case shown by the gradient model (0.9) and 

F_BLIND (0.6) in Fig., respectively. For Da = 10, RF_BLIND predicts 

he magnitude of the SGS stress better than the gradient model, 

hich is also observed in the slopes shown by RF_BLIND (0.9) and 

he gradient model (1.5) shown in Fig.. 

Figure 13 presents Pearson correlations from examining the 

eneralizability of random forests in the presence of limited data. 

s presented in Table 2 , we employ three different random for- 

st regressors, each trained on only one DNS case, and examine 

heir performance when tested on the two remaining cases. Ran- 
odeled SGS stresses for three different filter widths �. 
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Fig. 10. Conditional Pearson correlations as a function of mixture fraction ̃  Z between exact and random forest modeled SGS stresses τ sgs 
1 i 

for a single filter width � = 2�. 

Fig. 11. Slopes from a least squares fit of exact and random forest modeled SGS stress for three different filter widths �. 
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om forest RF_INERT demonstrates a similar range of correlations 

0.5–0.85) to RF_ALL when tested on the inert case with a filter 

ize � = 2�. However, lower ranges are observed for RF_INERT 

hen tested on the cases Da = 780 (0.4–0.75) and Da = 10 (0.5–

.9). RF_DA780 also possesses a similar correlation as RF_BLIND 

hen tested on case Da = 780 (0.5–0.9), but worse correlations 

hen tested on the inert case (0.4–0.8) and case Da = 10 (0.8–

.9). Lastly, RF_DA10 performs similarly to RF_BLIND when tested 

n Da = 10 (0.85–0.95) but performs worse when tested on the 

nert (0.5–0.8) and Da = 780 (0.55–0.8) cases. These three random 

orests perform as well as RF_BLIND on a test set that is repre- 

ented well by the training set. However, the effectiveness of ran- 

om forests decreases when modeling on out-of-sample distribu- 

ions. Nevertheless, these out-of-sample predictions are more ac- 

urate than the Vreman model, thus demonstrating a appreciable 

egree of generalizability. 

.3. Data-driven discovery of SGS stress model 

In this section, we examine how the interpretability of random 

orests can be employed as a tool for model discovery. 

Figure 14 presents feature importance scores extracted from 

F_BLIND for τ sgs 
1 i 

. For all three SGS stresses τ sgs 
1 i 

shown, the high- 

st scores are from ∂ ̃  u 1 / ∂x k and ∂ ̃  u i / ∂x k for three spatial dimen- 

ions. We employ this observation to formulate a sparse symbolic 

egression problem (see Eq. ): 

τ sgs 
i j 

ρu 

′ 2 = f i j 

[
G 

d=2 

(
�

u 

′ 
∂ ̃  u i 

∂x k 
, 
�

u 

′ 
∂ ̃  u j 

∂x k 

)]
(19) 
10 
here the independent variables consist of 2nd-order polynomial 

unctions of the non-dimensionalized selected features. Eq. (19) is 

on-dimensionalized by density, filter width and initial root-mean- 

quared velocity to ensure dimensional consistency in the fi- 

al model. This is essential for improving the dimensionality of 

his sparse symbolic regression problem. Since the dimensionality 

cales with n d for n number of candidate variables, as discussed 

n Section 4.4 , the employment of the feature importance score for 

educing 30 candidate variables to six candidate variables results 

n a 25-fold reduction in dimensionality. 

The following equations present the SGS model that resulted 

rom applying sparse symbolic regression: 

sgs 
11 

� ρ�
2 

(
0 . 116 

∂ ̃  u 1 

∂x 1 

∂ ̃  u 1 

∂x 1 
+ 0 . 191 

∂ ̃  u 1 

∂x 2 

∂ ̃  u 1 

∂x 2 
+ 0 . 207 

∂ ̃  u 1 

∂x 3 

∂ ̃  u 1 

∂x 3 

)
(20a) 

sgs 
12 

� ρ�
2 

(
0 . 113 

∂ ̃  u 1 

∂x 1 

∂ ̃  u 2 

∂x 1 
+ 0 . 102 

∂ ̃  u 1 

∂x 2 

∂ ̃  u 2 

∂x 2 
+ 0 . 134 

∂ ̃  u 1 

∂x 3 

∂ ̃  u 2 

∂x 3 

)
(20b) 

sgs 
13 

� ρ�
2 

(
0 . 119 

∂ ̃  u 1 

∂x 1 

∂ ̃  u 3 

∂x 1 
+ 0 . 117 

∂ ̃  u 1 

∂x 2 

∂ ̃  u 3 

∂x 2 
+ 0 . 109 

∂ ̃  u 1 

∂x 3 

∂ ̃  u 3 

∂x 3 

)
(20c) 

sgs 
22 

� ρ�
2 

(
0 . 215 

∂ ̃  u 2 

∂x 1 

∂ ̃  u 2 

∂x 1 
+ 0 . 135 

∂ ̃  u 2 

∂x 2 

∂ ̃  u 2 

∂x 2 
+ 0 . 164 

∂ ̃  u 2 

∂x 3 

∂ ̃  u 2 

∂x 3 

)
(20d) 
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Fig. 12. Comparison of exact and modeled SGS stress τ sgs 
12 

/ ρ [m 

2 s −2 ] at filter width � = 4� at axial location x = 0 . 

Fig. 13. Pearson correlations between exact and random forest modeled SGS stresses, from three different random forest regressors, for a single filter width � = 2�. 

Fig. 14. Fifteen feature importance scores from RF_BLIND. The other fifteen features, with importance scores less than 0.02, are not shown for brevity. 

11 
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Fig. 15. Spearman correlation matrix for selected features from RF_BLIND. Features with correlations less than 0.2 are not shown for brevity. 
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sgs 
23 

� ρ�
2 

(
0 . 123 

∂ ̃  u 2 

∂x 1 

∂ ̃  u 3 

∂x 1 
+ 0 . 116 

∂ ̃  u 2 

∂x 2 

∂ ̃  u 3 

∂x 2 
+ 0 . 134 

∂ ̃  u 2 

∂x 3 

∂ ̃  u 3 

∂x 3 

)
(20e) 

sgs 
33 

� ρ�
2 

(
0 . 251 

∂ ̃  u 3 

∂x 1 

∂ ̃  u 3 

∂x 1 
+ 0 . 177 

∂ ̃  u 3 

∂x 2 

∂ ̃  u 3 

∂x 2 
+ 0 . 124 

∂ ̃  u 3 

∂x 3 

∂ ̃  u 3 

∂x 3 

)
(20f) 

The resulting model can be rewritten as: 

sgs 
i j 

� ρ�
2 

(
C 1 

∂ ̃  u i 

∂x 1 

∂ ̃  u j 

∂x 1 
+ C 2 

∂ ̃  u i 

∂x 2 

∂ ̃  u j 

∂x 2 
+ C 3 

∂ ̃  u i 

∂x 3 

∂ ̃  u j 

∂x 3 

)
(21) 

here the resulting model coefficients C { 1 , 2 , 3 } range from 0.102 to 

.251. Eq. (21) is similar in form to the gradient model ( Eq. (15) ),

ut possesses three model coefficients instead of one. By observing 

hat C { 1 , 2 , 3 } are of the same order of magnitudes, and collapsing 

he three coefficients by evaluating the average model coefficients, 

e recover the gradient model: 

sgs 
i j 

� ρC x �
2 ∂ ̃  u i 

∂x k 

∂ ̃  u j 

∂x k 
(22) 

here the model coefficient C x = 0 . 147 is similar in value to the

uggested model coefficient of 0.167 from Section 5.1 . This result 
12 
emonstrates that the employment of sparse symbolic regression, 

n conjunction with random forest feature importance can be em- 

loyed to discover an algebraic expression, similar to the effective 

radient model, for modeling subgrid-scale stresses in transcritical 

ows. 

Since the present method relies on the random forest feature 

mportance score, a statistical test must be employed to test for the 

ffects of significant correlation amongst the features. If multiple 

eatures in the modeling basis are significantly correlated, they act 

s exchangeable surrogates for each other during the calculation of 

eature importance scores. This is similar to the phenomenon of 

ulticollinearity in classical statistics [55] . Under such conditions, 

etrics such as the MDI are susceptible to correlation bias, and can 

enerate erroneous importance scores [56,57] . As a note, almost 

ll algorithms for estimating feature importance, including SHAP 

Shapley additive explanations) [58] exhibit such correlation bias. 

s an alternative, Principal Component Analysis may be utilized to 

ngender orthogonal bases for new features that are independent. 

owever, these derived features are often difficult to ascribe phys- 

cal meanings to, obfuscating their utility toward interpretability. 

We utilize the Spearman correlation as a statistical test for eval- 

ating the correlation amongst the features in the modeling basis. 

hile the Pearson correlation is a statistical tool used for evalu- 

ting linear relationships, the Spearman correlation evaluates the 

onotonicity of variables in both linear and non-linear functions, 
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Fig. 16. Pearson correlation and slope from least squares fit between exact and ran- 

dom forest-modeled SGS temperature, for three different filter widths �. 
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Fig. 17. Pearson correlation and slope from least squares fit between exact and 

algebraic-modeled SGS temperature. 
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.e. , whether the increasing or decreasing trend is being preserved. 

pearman correlations of 1 and −1 correspond to a perfect mono- 

onic relationship, while 0 corresponds to a negligible monotonic 

elationship. Figure 15 shows that Spearman correlations between 

ifferent f eatures from RF_BLIND are weak (between −0 . 4 and 0.4), 

hich indicates that the feature importance score are not spurious. 

.4. SGS temperature models 

In this section we extend the application of data-driven meth- 

ds towards modeling SGS temperature. Figure 16 presents the 

earson correlation and slope from least squares fit between ex- 

ct and random forest-modeled SGS temperature. High correlations 

0.7–0.9) and slopes ranging from 0.7 to 1.5 are observed for all 

hree filter widths, indicating good performance from the random 

orest SGS temperature model. 

Unlike the random forests for modeling SGS stresses in 

ection 5.2 , the feature importance scores from RF_TSGS do not 

rovide physical insight due to the issue of multicollinearity, as 

 LES and its gradients are used as features. In a reacting configura- 

ion, large temperature gradients are usually observed in a certain 

emperature range, and thus both these quantities can be signifi- 

antly correlated. Nevertheless, a sparse symbolic regression prob- 

em can still be formulated without reducing the number of inde- 

endent variables as the feature set for T sgs is three times smaller 

han the feature set for τ sgs 
i j 

. We repeat the sparse symbolic regres- 

ion procedure from Section 5.3 : 

 

sgs = f 

[
G 

d=2 

(˜ T LES , l char 

∂ ̃  T LES 

∂x k 
, l 2 char 

∂ 2 ˜ T LES 

∂ x k ∂ x k 

)]
(23) 

here the independent variables consist of 2nd-order polynomial 

unctions of the features from RF_TSGS. Note that the indepen- 

ent variables are ensured to be dimensionally consistent with T sgs 

y multiplying the gradients with a characteristic lengthscale l char . 

his characteristic lengthscale can be chosen either as the filter 

idth � or a flame thickness δ f . In the present study, δ f can be 

xtracted from the DNS by dividing the difference between flame 

nd inert temperature by the maximum temperature gradient. 

The following equations present the SGS temperature model 

hat resulted from applying sparse symbolic regression: 

 sgs = 

δ2 
F ˜ T LES 

[ 

0 . 0 0 082 

(
∂ ̃  T LES 

∂x 1 

)2 

+ 0 . 0 0109 

(
∂ ̃  T LES 

∂x 2 

)2 

+ 0 . 0 0109 

(
∂ ̃  T LES 

∂x 3 

)2 
] 

(24) 

here l char = δ f has been chosen since a better fit is obtained 

hen performing a least squares fit between the exact and mod- 
13 
led SGS temperature. By taking the average of the model coeffi- 

ients, we obtain the algebraic expression: 

 sgs = 

C T δ
2 
F ˜ T LES 

(
∂ ̃  T LES 

∂x k 

)2 

(25) 

here C T = 0.001. 

Figure 17 presents the Pearson correlation and slope from least 

quares fit between exact and SGS temperature from the discov- 

red algebraic T sgs model. High correlations of approximately 0.9 

re observed for � = 2 and � = 4 , while a reasonable correlation 

f approximately 0.5 is seen for � = 8 . The lower correlation com- 

ared to RF_TSGS is likely caused by the presence of the l 1 -norm 

n Eq. (17) , which encourages less significant terms to vanish from 

iscovered model. Least squares fit slopes ranging from 0.8 to 1.3 

re observed for all three filter widths. 

. Conclusions 

DNS of inert and reacting transcritical LOX/GCH4 non-premixed 

ixtures under decaying turbulence were performed. Pressure and 

emperature were chosen to correspond to conditions in rocket 

ombustors to examine conditions for which commonly-employed 

GS are less matured. A priori analysis was conducted by compar- 

ng exact subgrid-scale stresses from Favre-filtered DNS data with 

lgebraic and data-driven SGS models. 

A priori analysis showed that the SGS stresses evaluated by Vre- 

an SGS model correlated poorly with the corresponding exact 

erms. In contrast, good correlations are seen from the gradient 

GS model. Results demonstrated a wide range of magnitude er- 

ors in the gradient model, which suggests that a dynamic gradi- 

nt model approach is suited in a posteriori simulations. Random 

orests demonstrated high correlations when trained on datasets 

hich are representative of the test sets, with reasonable predic- 

ions for the magnitude of subgrid-scale stresses. However, corre- 

ations were shown to decrease significantly when tested out-of- 

ample. 

Sparse symbolic regression was performed to discover an al- 

ebraic expression for SGS stresses from non-linear transforma- 

ions of velocity and its derivatives. The interpretability of ran- 

om forests was demonstrated to reduce the dimensionality of the 

parse symbolic regression problem by 25 times, by employing the 

eature importance score for variable selection. The derived alge- 

raic expression was shown to be similar to the gradient model. 

Sparse symbolic regression was also performed to evaluate 

ubgrid-scale temperature, a term which emerges from filtering 

he non-linear real-fluids equation-of-state. The discovered alge- 

raic expression demonstrated reasonable correlations and magni- 
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udes when predicting subgrid-scale temperature. A random forest 

GS temperature model was shown to perform better than the al- 

ebraic model. 

Results demonstrate that random forests can perform as effec- 

ively or better as suitable algebraic models when modeling sub- 

rid stresses, if trained on a sufficiently representative database. 

owever, in the absence of such a database, this good performance 

s not replicated. Nevertheless, while the employment of random 

orests can provide insight into the discovery of subgrid-scale mod- 

ls through the feature importance score, as long as features are 

ot significantly correlated. The present study should be comple- 

ented with an a posteriori study, and extended to other SGS clo- 

ure terms that form chemical source terms and SGS scalar fluxes, 

o generate further insight. 
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