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ABSTRACT

Although data-driven methods have shown high accuracy as closure models for simulating turbulent
flames, these models are often criticized for lack of physical interpretability, wherein they provide an-
swers but no insight into their underlying rationale. In this work, we show that two interpretable ma-
chine learning algorithms, namely the random forest regressor and the sparse symbolic regression, can
offer opportunities for discovering analytic expressions for subgrid-scale (SGS) terms of a turbulent tran-
scritical flame. These transcritical conditions are found in various combustion systems that operate under
high pressures that surpass the thermodynamic critical limit of fuel-oxidizer mixtures, and require the
consideration of complex fluid behaviors that can cast doubts on the validity of existing subgrid-scale
(SGS) models in large-eddy simulations. To this end, direct numerical simulations (DNS) of transcriti-
cal liquid-oxygen/gaseous-methane (LOX/GCH4) inert and reacting flows are performed. Using this data,
a priori analysis is performed on the Favre-filtered DNS data to compare the accuracy of random for-
est SGS-models with conventional physics-based SGS-models. SGS stresses calculated with the gradient
model are shown to have good agreement with the exact terms extracted from filtered DNS. Results
demonstrate that random forests can perform as effectively as algebraic models when modeling subgrid
stresses, when trained on a sufficiently representative database and with a suitable choice of the feature
set. The employment of the random forest feature importance score is shown to enable the discovery of a
analytic model for subgrid-scale stresses through sparse symbolic regression. The generalizability of ran-
dom forest and sparse symbolic regression is demonstrated by modeling the subgrid-scale temperature,
a term that arises from filtering the non-linear real-fluid equation-of-state, with good accuracy.

© 2021 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

experimental measurements [2,3]. However, these models often
involve careful selection of the breakup and evaporation models

The development of accurate computational tools is essential
for studying turbulent flames within high pressure combustors.
Large-eddy simulations (LES) provide a feasible computational ap-
proach in capturing the behavior of flows within practical com-
bustors. However, high pressure combustors in rockets and diesel
engines operate under conditions that exceed the thermodynamic
critical limits of both fuel and oxidizer. Consequently, these condi-
tions generate trans- and supercritical flows - with complex be-
haviors that pose challenges for numerical modeling and simu-
lations [1]. In many simulations, Lagrangian droplet methods are
typically employed for simulating, which assumes the presence
of liquid and gas phases. Simulations employing the Lagrangian
droplet method have been shown to have good agreement with
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along with parameter tuning.

Another approach for investigating high-pressure flows involves
the use of the diffuse-interface method. In contrast to sharp inter-
face techniques, where interfaces are explicitly tracked or resolved
in the computational domain, this method artificially diffuses the
interface and treats the entire flow with a single real-fluid state
equation. While LES incorporating real-fluids effects have success-
fully been employed to simulate transcritical combustion [4-6],
many of these simulations employ existing subgrid-scale (SGS)
models that were developed for applications in subcritical pres-
sure conditions [7,8]. As a consequence, the application of these
models to non-ideal flow regimes introduces uncertainties. One
method for evaluating SGS models involves a priori analysis, where
modeled SGS terms are compared with exact unclosed terms ex-
tracted from filtered DNS. Selle et al. [9] performed a priori analysis
on a three-dimensional DNS database of supercritical binary mix-
tures in turbulent mixing layers to demonstrate that the Smagorin-
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sky model [10] performed poorly when predicting SGS stresses,
while the gradient [8] and scale-similar [11] models performed
well. In the same work, the consideration of previously neglected
unclosed terms for pressure and heat flux were shown to be es-
sential under supercritical conditions. Unnikrishnan et al. [12] per-
formed a priori analysis on two-dimensional DNS of a transcrit-
ical reacting liquid-oxygen/gaseous-methane (LOX/GCH4) mixture
to demonstrate that the mixed SGS model incorporating the dy-
namic Smagorinsky [13] was three times more accurate than the
sole use of the dynamic Smagorinsky.

One approach for developing closure models in turbulent re-
acting flows involves the use of data-driven methods [14]. A priori
studies have been performed to demonstrate that neural-networks
can provide accurate closure for turbulent combustion models [15-
17]. Henry de Frahan et al. [18] demonstrated that deep learning
models can generate as accurate results as random forests with 25-
fold improvement in computational costs when predicting the sub-
filter probability density function. Ranade and Echekki [19] con-
ducted an a posteriori study to show that deep learning models
can be trained with experimental data to generate closure mod-
els for chemical scalars in Reynolds-averaged Navier-Stokes (RANS)
simulations of turbulent jet flames. These deep learning models
are highly accurate and flexible approaches to data-driven model-
ing. The employment of convolutional architectures enable an au-
tomatic end-to-end processing of unstructured spatial data, which
is useful when treating simulation data, while the manipulation of
its loss functions and network structure enables the inclusion of
physics-specific information [20,21]. However, these methods tend
to be uninterpretable, thereby offering little insight towards the
discovery of physical properties.

Computational studies of high-pressure non-premixed flames
were pioneered by Bray et. al. [2,3,22]. One work [22] examined
the effect of different Damkdhler numbers (Da) on autoignition in
high-pressure non-premixed flames under decaying homogeneous
isotropic turbulence. In the present work, we perform DNS calcu-
lations of inert and reacting LOX/GCH4 non-premixed mixtures in
the presence of decaying turbulence, under different Da-conditions,
in order to evaluate algebraic and data-driven models for predict-
ing unclosed SGS terms for high pressure applications. Within this
context, the present study has the following objectives:

« To identify and quantify limitations of conventional algebraic
SGS stresses in transcritical flows.

» To utilize interpretable machine learning algorithms, namely
the random forest regressor and the sparse symbolic regression,
in constructing data-informed models for SGS stresses.

» To apply these machine learning methods towards modeling
additional SGS terms that can arise from real-fluid effects.

The mathematical models for simulating the turbulent trans-
critical flows are presented in Section 2. Details regarding the DNS
configuration are discussed in Section 3. Section 4 describes the
SGS models and data-driven methods employed in the present
work. Results from this a priori study are discussed in Section 5,
before offering concluding remarks in Section 6.

2. Mathematical models
The governing equations that are solved in the present study

are the conservation equations for mass, momentum, energy, and
chemical species:

dp+V-(pu)=0 (1a)

or(pu)+V.(puu)=-Vp+V.1 (1b)

0 (pe) + V- [u(per+p)l=-V.-q,+V-[(7)) -u] (1c)
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where k=1,2,...,N;—1

(1d)

with density p, velocity vector u, pressure p, specific total energy
et, stress tensor 7, and heat flux q. Y}, j,, and w, are the mass
fraction, diffusion flux, and source term for the kth species, while
subscript v denotes viscous quantities.

In the a priori analysis carried out in this study, a top-hat filter
H with a desired filter size A is applied on a arbitrary quantity ¢
from the DNS data through a volume integral:

) = /V P@Hx—y. A)dy 2)

with:

at(ka) + V. (pqu) =-V. jv + d)k

+ for |[x—y| < A2,

Hx-y A) = {A (3)

0 otherwise.

and Favre-averaged quantity:

$="2 (4)

where ~ denotes a filtered quantity and ~ is a Favre-filtered quan-
tity. After filtering, the governing equations become:

o+ V- (pt) =0 (5a)

SN

d(pu) + V- (pu) = ~Vp+ V- (Ty + T%) (5b)

o (per)+V-[u(pe+p)l=-V-@,+q¢%)+ V- -[(T,+ %) ﬁ](5 )
C

¥ (DY) + V- (PuYy) = -V - (G, + i) + @ where k=1,2,..., I%H)l
5

with superscript sgs denoting subgrid-scale quantities. For the
flow-conditions considered in this study, a filter width of 16A is
equivalent to the integral lengthscale. Since LES should resolve the
inertial subrange, we employ a maximum filter width of 8A in the
present study. Exact subgrid-scale quantities can then be extracted
directly from the filtered DNS or approximated through the models
described in Section 4.

The Peng-Robinson (PR) cubic equations-of-states [23] (EoS) is
employed to model real-fluid thermodynamics under transcritical
conditions:

_ PRT _ ap 6)
T 1-bp 1+2bp—b2p2

with mixture-specific gas constant R. The coefficients a and b ac-
count for effects of intermolecular forces and volumetric displace-
ment, and are dependent on temperature and composition [24].
Since oxygen and methane mixtures are a miscible system, where
the effects of phase separation are not encountered due to the sim-
ilarity of the critical states and molecular properties, this transcrit-
ical configuration can be represented by a cubic EoS [25]. Details
regarding the evaluation of specific heat capacity, internal energy,
and partial enthalpy from the Peng-Robinson state equation is de-
scribed in Ma et al. [26]. Fig. 1 compares Peng-Robinson and ideal
EoS for methane and oxygen. At the initial conditions of 120 K and
300 K for O, and CHy, specific heat capacity evaluated from the PR
EoS is in excellent agreement with NIST data. However, it can be
seen that the PR EoS overpredicts the oxidizer density but provides
accurate results for the fuel. Since this study is primarily focus-
ing on the development and assessment of a data-driven modeling
framework for the constructing SGS-closures, we believe that this
discrepancy is acceptable for the present study.

2

p
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Fig. 1. Comparison of Peng-Robinson (PR) and ideal equations-of-states (EoS) for (a,b) oxygen and (c,d) methane with NIST [27] data at p = 10 MPa.

In this study, the two-step five-species CH4-BFER mecha-
nism [28] is employed, which was applied to investigate a super-
critical gas-turbine combustor at 20 MPa in another study [29].
In DNS of trans- and supercritical combustion, reduced chemi-
cal mechanisms [30,31] have been employed to circumvent large
computational costs incurred by solving non-ideal state equations.
Takahashi’s high-pressure correction [32] is used to evaluate the
binary diffusion coefficients. Since only two species are used in
the inert simulations, the binary diffusion coefficients are exact.
Thermal conductivity and dynamic viscosity are evaluated using
Chung’s method with high-pressure correction [33]. For multi-
species mixtures in the reacting cases, Chung’s pressure correction
is known to produce oscillations [26,34], especially for dynamic
viscosity. Hence, transport properties of the mixture are evaluated
through mole-fraction-averaging, after employing Chung’s method
on each individual species. A similar approach has been applied in
prior studies [5,12].

Simulations are performed by employing an unstructured com-
pressible finite-volume solver [26,35,36]. A central scheme, which
is 4th-order accurate on uniform meshes, is used along with a 2nd-
order ENO scheme. The ENO scheme is activated only in regions
of high local density variations using a threshold-based sensor to
describe sharp interfaces present in transcritical flows. Due to the
density gradients present at trans- and supercritical conditions, an
entropy-stable flux correction technique [26] is used to dampen
non-linear instabilities in the numerical scheme. The double-flux
method by Ma et al. [26] is used with a dynamic sensor to elim-
inate spurious pressure oscillations. A Strang-splitting scheme is

employed for time-advancement, combining a strong stability pre-
serving 3rd-order Runge-Kutta (SSP-RK3) scheme for integrating
the non-stiff operators with a semi-implicit scheme [37] for ad-
vancing the chemical source terms.

3. DNS configuration

Inert and reacting direct numerical simulations are performed
on a three-dimensional cubic domain, with length L, a mixture of
LOX/GCH4 shown in Fig. 2. In this setup, a spherical liquid oxy-
gen core, with a radius r = 0.25L, is initialized in gaseous methane,
where the radial profile of the initial condition is chosen to match
inert and reacting steady one-dimensional Cantera [38] counter-
flow diffusion flame calculations, solved in mixture-fraction space
and incorporating the Peng-Robinson equation-of-state, under the
same fuel and oxidizer conditions. For the reacting cases, the ini-
tial temperature and composition profile corresponds to maxi-
mum strain rates (from one-dimensional flames) of 2 x 10° s~!
and 2 x 106 s~ for cases Da 780 and Da 10, respectively. Fuel and
oxidizer temperatures are set to Trpyg =300 K and Ty =120 K,
respectively, while the pressure is set at 10 MPa. The laminar flame
speed S; of a stoichiometric premixed flame of S; = 0.306 ms~! is
evaluated through Cantera [38] at a pressure of 10 MPa and ini-
tial temperature of 210 K (the average of fuel and oxidizer tem-
perature). Note that the critical temperature T, and pressure P. for
oxidizer and fuel are T o2 =1546 K and P.pp =5.04 MPa, and
T.cHa = 190.6 K and P_ 4 = 4.60 MPa, respectively.
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Inert: Periodic BC
Reacting: Non-reflecting Pressure Outlet

Periodic BC

Fig. 2. DNS investigated at initial time ¢t = 0 and one eddy turnover time t = t;. Isosurface shows stoichiometric mixture fraction Z = 0.2 for the inert case.

These operating conditions are chosen to match practical
LOX/GCH4 combustors, and were investigated in previous stud-
ies [39,40]. Periodic boundary conditions are used for all bound-
aries for the inert case. For the reacting cases, non-reflecting pres-
sure outlets are used in both boundaries in the x-direction, while
the remaining boundaries are periodic.

The initial velocity profile was generated with a synthetic
isotropic turbulence generator by Saad et al. [41] with zero mean
velocity, based on the von Karman-Pao energy spectrum:

u?  (k/K)? K\’
EOC):QT:W exp 2<Kn> . (7a)
o =1.453, (7b)
Ky = 0.746834/1;, (7¢c)

where v’ is the RMS velocity, « is the wave number, and «;
the Kolmogorov wave number. The chosen scaling constant « and
large-eddy wavenumber k; are typical for isotropic turbulence [42].
In all cases, the integral lengthscale [; and root-mean-squared
(RMS) velocity fluctuation u’ have been chosen to produce a tur-
bulent Reynolds number Re; of 80, which has been computed with
the averaged kinematic viscosity of oxygen and methane at 120 K
and 300 K, respectively.

In the reacting cases, two different Damkdhler numbers, Da, of
780 and 10 are investigated, corresponding to flamelet and un-
steady regimes [43], respectively. The Damkéhler number is given
by the ratio of physical timescale t.ny and chemical timescale

Lehem:*

Da = o (8)
Lehem
where tgem =0.412 ps is approximated from the extinction
strain rate of a one-dimensional counterflow diffusion flame of a
LOX/GCH4 mixture under similar conditions, and physical time is
evaluated from the eddy turnover time tcony =t;. Fig. 3a shows
that the mean temperature (T) is lower when Da = 10 than when
Da = 780, due the presence of local extinction. This is also re-
flected in Fig. 3b where the consumption of CH, is slower in the
case Da = 10 than the case Da = 780. This decrease in temperature
and composition also results in a slower decay of the turbulence,

as shown by the mean turbulent kinetic energy (TKE), normalized
by the initial TKE, shown in Fig. 3c.

An additional inert simulation with ideal gas law is performed
to demonstrate real-fluid effects on subgrid-scale terms that can
arise from the non-linearities of the Peng-Robinson EoS. For this
ideal configuration, atmospheric conditions p = 101.325 kPa at
room temperature are employed, with Trpy4 and T at 300 K.

In this study, analysis is performed on all cases after t=
argmax (ty, tepem), Which is typically done for DNS of combustion
under decaying turbulence in order to ensure the flow fields are
independent of initialization [44]. Instantaneous flow fields for ax-
ial velocity component uq, mixture fraction Z, and mixture-fraction
conditioned temperature T for the reacting cases att =0 and t = t;
are shown in Fig. 4.

Table 1 summarizes the DNS cases examined in this study. The
domain lengths in all direction were chosen to be eight times the
size of the integral lengthscale /; to minimize effects of the bound-
ary conditions. The cell size A is prescribed on the order of the
Kolmogorov lengthscale, ensuring that all lengthscales are resolved.
In addition, a mesh refinement study was performed, where the
energy spectra of velocity was found to converge between 1283
and 2563. Simulations for all three cases are advanced with an
acoustic CFL number of unity, corresponding to timesteps of 2.5
and 0.5 ns for cases Da = 780 and Da = 10, respectively. The simu-
lations were performed using 960 Intel Xeon (E5-2698 v3) proces-
sors, and 2.3 us and 0.6 us of physical time could be completed
in about an hour wall clock time for cases Da = 780 and Da = 10,
respectively.

4. Subgrid-scale models and data-driven methods
4.1. Real-fluid effects

We investigate the effects of additional non-linearities from the
real-fluid equation-of-state, by employing a analysis similar to Huo
and Yang [45] that they applied to model SGS density. Eq. (6) can
be reexpressed with a compressibility factor ¢:
p=pRTE 9)

By rearranging and Favre-filtering, we obtain:

T=p-(oRE) (10)
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Fig. 3. Temporal evolution of global temperature T, mass fraction Y}, and normalized turbulent kinetic energy TKE for two reacting cases.

Table 1

Summary of DNS cases.
Case Nyy.z Lyyz [nm] Re; Iy [m] M [wm] A [pm] tr [us] v [ms™']
Inert 128 500 80 62.5 2.32 3.91 286 0.22
Da = 780 128 500 80 62.5 2.32 3.91 286 0.22
Da =10 128 60 80 7.50 0.278 0.469 4.12 1.80
Ideal EoS 128 500 80 62.5 2.32 3.91 3 20.67

However in the present LES solver, the Favre-filtered tempera-
ture is obtained by inputting filtered quantities into the real-fluid
EoS:

T=p [PREG.D.DI " + [p~ (oRC)-1 — - @E;‘)*] (11a)

T=Tes(@.5.7) + T (11b)
which gives rise to a subgrid-scale temperature Tsg, i.e. the second
term on the right-hand-side.

Tsgs is typically neglected in ideal-gas configurations. This is
often an acceptable assumption as shown by the ideal EoS case
in Fig. 5. In the transcritical inert case, |Tsgs| /T of approximately
0.05 is observed, which is similar with observations from another
study [9]. However, Tsgs becomes non-negligible for the transcritical
reacting cases, where |Ts|/T exceeds values of 0.1 in the reacting
regions, where multi-species compositions are present, and regions
with high density gradient. Non-negligible SGS EoS terms are also
reported by other studies [45,46]. This added significance of Tigs
arises from applying the filtering operation on density and multi-
species mass fractions, and then feeding the filtered quantities into
a highly non-linear equation.

Amplified non-linearities in transcritical reacting flow present
an additional source of uncertainty in all SGS modeling. To investi-
gate this, we employ conventional algebraic and novel data-driven
methods for predicting the subgrid-scale fluxes from the LES mo-
mentum equation (Eq. (5b)):
TF = puil; — i) (12)
Two algebraic SGS models, namely the Vreman and the gradient
model, as well as random forest regressors are evaluated. Addition-
ally, we demonstrate the employment of random forest feature im-
portance scores for assisting the discovery of algebraic SGS stress
models by sparse symbolic regression. Since algebraic models for
SGS temperature (Eq. (11)) have not been developed, we then eval-
uate the ability of an interpretable machine learning algorithm in
modeling Tsgs.

4.2. Algebraic SGS stress models

The Vreman SGS model [7] is derived from the eddy-viscosity
hypothesis:

_ o= 1
70" = —2PVscsSij + §Tkk5ijv
where S;; is the velocity strain tensor, and §;; is the Kronecker

delta. The eddy viscosity vscs is evaluated for a filter width A as
follows:

(13)

B

Vscs = Gy aga;’ (14a)
ou;

a;; = M (14b)
y an

B= 1P - 13122 + Bu B3z — ,3123 + B22B33 — 13223’ (14c)
—2

Bij = A ayay;, (14d)

where a Vreman coefficient C, of 0.07 is typically used in isotropic
turbulence [7].

The gradient model by Clark et al. [8] is extracted from the first
term in the Taylor series expansion of the filtering operation, and
is given by:

58,8 . — -2 817, Bﬂ]
Tij - ngA an 8Xk’

ij
where a coefficient Cg of 1/12 is typically used when a top-hat fil-
ter is employed [8]. In the present study, we will evaluate both

models and compare results against DNS data and a data-driven
approach.

(15)

4.3. Random forest regressor

In this study, we employ the random forest as our regression
algorithm for predicting SGS stresses and SGS temperature. Table 2
summarizes the input/features, outputs, and data for the random
forests employed in this study. All random forests are trained with
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Fig. 4. Axial velocity u;, mixture fraction Z, and conditional temperature T for the reacting cases at transverse location z = 0
Table 2
Random forests employed in this study.
Random forest RF_INFORM RF_BLIND RF_INERT RF_DA780 RF_DA10 RF_TSGS
Training data Inert, Da = 780, Inert, Da = 780, Inert Da =780 Da =10 Da =780, Da =10
(t=t) Da = 10 Da =10
Testing data Inert, Da =780, Da = 10 Da =780, Da =10
(t =1.5t)
¥ ¥ 55 ~ T 24, 2
Features Sij» SiSkj» RicRj. i;, g—)‘j] g’xl’;'k Ties, aa.‘;L(r;S' %le)([:
(Input) SikRyj — RixSk;
Output rij,gs Tigs

snapshots at one eddy turnover time t = t; and tested on the three
cases at t = 1.5t;.

For SGS stresses, two different sets of feature, or inputs, are em-
ployed to train the random forests. One feature set corresponds
to a domain-blind random forest RF_BLIND, consisting only of ve-
locity, and the first and second spatial derivatives of velocity. The
other set considers Galilean invariant basis functions constructed
from strain §ij and rotation ﬁij tensors as features, shown to pre-
dict anisotropy well in a previous study [47]. These Galilean in-
variant features are used to train the random forest RF_INFORM.
In order to investigate the generalizability of random forests in

the absence of a vast representative dataset, we evaluate the pre-
dictive performance of three additional random forests RF_INERT,
RF_DA780, and RF_DA10, which are trained solely from the inert,
Da = 780, and Da = 10 cases, respectively.

In addition, we also examine the performance of random forest
in predicting thermodynamic quantities. Since SGS temperature is
significant for reacting transcritical cases, training and testing data
for RF_TSGS are taken from the two transcritical reacting cases.

Random forests [48] consist of an ensemble of decorrelated
Classification and Regression Trees (CARTs) [49]. CARTs are a ma-
chine learning approach for formulating prediction models from
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data by recursively partitioning the inputted feature space, and fit-
ting a simple prediction within each final partition. The partition-
ing of the feature space can be represented as a decision trees.
Decision trees are supervised graph based model wherein the tree
consists of nodes and edges. The internal (or non-terminal) nodes
of the tree represent splits based on learned partitions of the fea-
ture space. Each leaf (or terminal) node is associated with a nu-
merical value for regression trees (as opposed to categorical targets
for classification trees).

During the training phase, the structure of the decision tree and
the partitions associated with each node are inferred. During each
step of this phase, exhaustive sets of splits over different input fea-
tures are evaluated. The split leading to maximal decrease in pre-
diction variance is selected at the associated node. The procedure
continues to make recursive splits based on dataset until it has re-
duced the overall variance below a given threshold or upon reach-
ing a given stopping parameter (for instance, upon reaching a max-
imum depth of the tree).

During the prediction phase, a new sample is traversed down
the tree from the root node to a leaf node, wherein its path is de-
termined based on the partition at each internal node. Once a leaf
node is reached, the numerical value associated with the specific
leaf node is outputted as the prediction for the sample.

Decision trees are non-parametric and can model arbitrarily
complex relations without any a priori assumptions, but are prone
to overfitting due to the greedy nature of the inference algorithm.
Thus, decision trees have low bias but high variance. This issue can
be addressed by combining the decision trees into an ensemble,
which results in a random forest.

Random Forests are an ensemble learning algorithm, wherein
the predictions of ensembles of decorrelated decision trees are ag-
gregated so as to give a final meta-model with low bias and low
variance. The decorrelation amongst the individual trees in the en-
semble is achieved using bootstrapping [48] in conjunction with
feature bagging [50] during the training of each decision tree. The
final prediction of the resulting ensemble model is by averaging
the predictions of all trained individual trees (or equivalently, via
aggregation).

While accurate predictions are an important goal for machine
learning models, in many fields of application it is just as impor-
tant to derive understanding from the model. At the basic level,
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Fig. 5. Comparisons of filtered mixture fraction 7 and magnitude of normalized subgrid-scale temperature |Tyg| JT between an ideal-gas case and three transcritical cases. A
filter width of A = 8A is employed.

this can be embodied via feature importances, wherein the trained
model also provides information regarding importances of different
input features to the final prediction. Such measures of model in-
terpretability provide insight into the underlying rationale learned
by the model during training and can lead to high confidence in
the model. Similarly, such interpretability measures can lead to
data-driven discovery of new relationships between the input fea-
tures and targets. Random forests provide the Mean Decrease Im-
purity (MDI) importance measure for all the features in the input
set [51]. Here, the importance of a feature is given by aggregat-
ing the weighted decrease in variance for all the nodes where the
specific feature is used as the criterion for partitioning the feature
space.

In the present investigation, the random forest regressor imple-
mentation from the Scikit-learn library [52] is used. Here, a ran-
dom forest consisting of fifty decision trees is employed. The hy-
perparameters of the random forest are determined using a ran-
dom grid search approach with a 3-fold cross-validation set. Train-
ing is performed once a priori, and requires 88s of walltime with
8 CPUs, when trained on data coarsened for three different filter
sizes from a single timestep. Prediction time for a 643 dataset re-
quires 2.4 s on a single CPU.

4.4. Sparse symbolic regression for model discovery

A linear model f, for m number of samples is typically ex-
pressed as the weighted sum of independent quantities X:

n
fl:Z:Binj lsism (]6)
j=1
where n is the number of model coefficients 8 being employed.
When samples of the ground truth f, i.e. the target for predic-
tive modeling, are available, the model coefficients can be found
with the [;-norm regularized least squares or lasso method [53]:

1
int —||f—XB||3+ 2 } 17
min { 11t - XBI3 + 2118I1, }. (17)
where A is a regularization parameter for controlling the tradeoff

between the least squares fit and the [;-norm. Since, the optimiza-
tion scheme in Eq. 17 also minimizes the l;-norm of the model
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Fig. 6. Pearson correlations between exact and algebraically modeled SGS stresses for three different filter widths A.

coefficients ||8]|1, lasso encourages sparsity, i.e. reduces the num-
ber of terms in the linear model, as zero-valued model coefficients
are preferred.

In the context of discovering subgrid-scale models, non-
linearities can be introduced by replacing X with non-linear func-
tions G(X) of the original variables. In this study, we construct a
model with non-linear variables by evaluating d-order polynomial
functions:

fF=c'x8B. (18a)
1 Xu Xe Xin X% XnX o X§
G4(X) = : : : : :
1 Xm] Xrnn an anﬂ Xm1Xm2 X,fm
(18b)
T d
B=[Bo B Bl . k=>_n (18¢c)
i=1

Eq. (18) shows that the dimensionality of this approach scales
to the order of polynomial functions ©®(mn?). Hence, the number
of candidate variables must be reduced for this method to remain
tractable. In this work, we employ the random forest feature im-
portance score to reduce the number of candidate variables.

5. Results
5.1. Algebraic SGS stress models

A priori analysis is performed by comparing SGS stresses rffgs
computed from filtered DNS, with SGS stress modeled by the Vre-
man model (Eq. (13)) and Clark’s gradient model (Eq. (15)). The
performance of these SGS models is evaluated through the Pear-
son correlation coefficient, which measures the linear correlation
between two variables. A Pearson correlation of 1 and —1 corre-
sponds to perfectly positive and negative linear relationships, re-
spectively, whereas a correlation of 0 indicates a negligible linear
relationship.

Figure 6 presents the resulting Pearson correlation between ex-
act and algebraically modeled SGS stresses for three different fil-
ter widths A for all three DNS cases specified in Table 1, at time
t = 1.5¢t;. For all three cases and filter sizes, negative correlations
and weak positive correlations ranging from approximately —0.6 to
0.4 are observed for the Vreman model. Negative correlations sug-
gest deviations from the eddy-viscosity hypothesis, which causes
the Vreman model to be ineffective. In all three cases and three
filter sizes, strong positive correlations, ranging from 0.5 to 0.95,
suggest that the gradient model is highly suitable for modeling SGS
stresses in transcritical inert and reacting flows.

The effectiveness of the Vreman and gradient models are fur-
ther assessed by examining the conditional Pearson correlation for
;¥ with respect to the mixture fraction 7 at filter size A = 2A.
The mixture fraction for the reacting cases have been evaluated
using Bilger’s definition. Figure 7a shows that weak correlations
ranging from —0.4 to 0.5 are observed throughout the inert case.
In both reacting cases in Fig. 7b, the deviations from eddy-viscosity
is much larger than the inert case, as denoted by the presence of
highly negative correlations (—0.8) in the Vreman model. In the
inert case, the gradient model has the highest correlation of ap-
proximately 1.0 in pure methane and pure oxygen, and the lowest
correlation of 0.6 when Z = 0.5. For the case Da = 780, the gradi-
ent model has the lowest correlation (0.7) close to the pure oxygen
stream, with the correlation steadily increasing as the mixture ap-
proaches stoichiometry (Z;; = 0.2), after which the correlations re-
main high (0.85-1.0). For the case Da = 10, the correlations for the
gradient model are high (0.8-1.0) throughout the entire mixture.

The accuracy of the gradient model in predicting the magni-
tude of SGS stresses is evaluated by examining the least squares
fit between the exact and modeled SGS stresses. A slope greater
than unity indicates underprediction of the modeled SGS stresses,
while a slope less than unity indicates overprediction. Figure 8
shows that the slopes from the gradient model range from 1 to
4.5. The average of the slopes is 1.98, which suggests that the gra-
dient model with a constant coefficient should employ C; = 1/6,
instead of the typical Cg = 1/12. However, since a wide range of co-
efficients are observed, a dynamic gradient model scheme is likely
more suited in a posteriori simulations. This is confirmed by results
from a posteriori evaluations of the dynamic gradient model from
transcritical inert DNS [54].

5.2. Random forest SGS stress models

The a priori analysis performed in Section 5.1 is repeated in
this section for the SGS stresses modeled by random forest re-
gressors. Figure 9 presents the Pearson correlation between exact
SGS stresses and the SGS stresses modeled by the random forests
RF_BLIND and RF_INFORM. Details regarding the input, output, and
training of these two random forests are described in Table 2.
Figure 9a shows that strong correlations (0.4-0.95) are observed
when the random forest is trained with an uninformed approach,
which is similar to the gradient model and higher than the Vre-
man model in Fig. 6. Figure 9b demonstrates that the employment
of invariant basis functions as features decreases the range of cor-
relations (0.35-0.9) by 0.05. This small decrease is likely caused by
the additional constraints placed on the random forest when form-
ing a hypothesis space.

Figure 10 presents the Pearson correlations between exact and
random forest SGS stresses r]s%s conditioned to mixture fraction Z
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at A =2A. In the inert case, shown in Fig. 10a, highest corre-
lation from RF_BLIND of approximately 0.95 is observed in pure
methane and pure oxygen, and lowest correlation of 0.5 when
Z = 0.5. For the case Da = 780 in Fig. 10b, RF_BLIND possesses the
lowest correlation (0.7) close to the oxygen stream, with the cor-
relation steadily increasing as the mixture approaches stoichiomet-
ric conditions (Zt = 0.2), after which the correlations remain high
(0.85 to 1.0). For the case Da = 10, shown in Fig. 10c, the corre-
lations for the gradient model are high (0.8-1.0) throughout the
entire mixture. The conditional Pearson correlation produced from
RF_BLIND in all three cases are similar qualitatively and quantita-
tively to correlations from the gradient model in Fig. 7. This sug-
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gests that RF_BLIND has approximated a function similar to the
gradient model, even when trained solely on exact SGS stresses
and without any prior knowledge of the gradient Model. The corre-
lations from RF_INFORM share similar qualitative behaviors as the
correlations from RF_BLIND, but with up to a 0.2 lower values.

Figure 11 presents slopes from a least squares fit between the
exact and the random forest SGS stresses. Figure 11a shows that
the slopes from RF_BLIND range from 0.25 to 1.6, with an average
slope of 0.96, which demonstrates excellent agreement between
modeled and exact magnitudes of SGS stresses. The employment
of invariant features leads to lower slopes (0.25 to 1.35), with an
average slope of 0.867, as presented in Fig. 11b. The use of the in-
variant feature set not only leads to lower correlations but also to
an overprediction in magnitudes of SGS stresses.

Figure 12 compares instantaneous fields for the exact and mod-
eled SGS stress 7,5 /p at filter width A =4A. In the inert case,
both SGS stresses from the gradient model and RF_BLIND are in
good agreement with the exact term. For Da = 780, the gradient
model is in better agreement with the exact term than RF_BLIND.
This is further supported by the difference in Pearson correlation
for this particular case shown by the gradient model (0.9) and
RF_BLIND (0.6) in Fig., respectively. For Da = 10, RF_BLIND predicts
the magnitude of the SGS stress better than the gradient model,
which is also observed in the slopes shown by RF_BLIND (0.9) and
the gradient model (1.5) shown in Fig..

Figure 13 presents Pearson correlations from examining the
generalizability of random forests in the presence of limited data.
As presented in Table 2, we employ three different random for-
est regressors, each trained on only one DNS case, and examine
their performance when tested on the two remaining cases. Ran-

nert

I

l m g B - E A=2A
1l . M ol A=4a
N A=8A

i M Da = 780
i I A=2A
M [ A=4A
I A=8A

Da =10
[ A=2A
0 A=4A
I A-8A

588 5g8 5gSs 588 588 sgs
Ty T2 T3 T2 T3 T33

(b) RF_INFORM.

Fig. 9. Pearson correlation between exact and random forest modeled SGS stresses for three different filter widths A.
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dom forest RF_INERT demonstrates a similar range of correlations
(0.5-0.85) to RF_ALL when tested on the inert case with a filter
size A =2A. However, lower ranges are observed for RF_INERT
when tested on the cases Da = 780 (0.4-0.75) and Da = 10 (0.5-
0.9). RF_DA780 also possesses a similar correlation as RF_BLIND
when tested on case Da = 780 (0.5-0.9), but worse correlations
when tested on the inert case (0.4-0.8) and case Da =10 (0.8-
0.9). Lastly, RF_DA10 performs similarly to RF_BLIND when tested
on Da =10 (0.85-0.95) but performs worse when tested on the
inert (0.5-0.8) and Da = 780 (0.55-0.8) cases. These three random
forests perform as well as RF_BLIND on a test set that is repre-
sented well by the training set. However, the effectiveness of ran-
dom forests decreases when modeling on out-of-sample distribu-
tions. Nevertheless, these out-of-sample predictions are more ac-
curate than the Vreman model, thus demonstrating a appreciable
degree of generalizability.

5.3. Data-driven discovery of SGS stress model

In this section, we examine how the interpretability of random
forests can be employed as a tool for model discovery.

Figure 14 presents feature importance scores extracted from
RF_BLIND for 7;¥. For all three SGS stresses 7,7 shown, the high-
est scores are from 9u;/9x;, and di;/dx, for three spatial dimen-
sions. We employ this observation to formulate a sparse symbolic
regression problem (see Eq. ):

I _p | (A 0 A3
Y u ox, u 0x

‘L'

pu’2 (19)

10

where the independent variables consist of 2nd-order polynomial
functions of the non-dimensionalized selected features. Eq. (19) is
non-dimensionalized by density, filter width and initial root-mean-
squared velocity to ensure dimensional consistency in the fi-
nal model. This is essential for improving the dimensionality of
this sparse symbolic regression problem. Since the dimensionality
scales with nd for n number of candidate variables, as discussed
in Section 4.4, the employment of the feature importance score for
reducing 30 candidate variables to six candidate variables results
in a 25-fold reduction in dimensionality.

The following equations present the SGS model that resulted
from applying sparse symbolic regression:

&5 =2 otlq 0l o, 0l o, 0y
T~ pA (0 Mg Lot +0191 g Lol 40207 L o0
(20a)
_ 31.[1 8~ 31[1 3l12 8u1 8u2
S8S - = _
T~ (0 M35t o2 +0102° 1 52 40,134 8x3)
(20b)
— 8Ll1 BN 8u1 BU3 8u1 8u3
S&S A~ - _—
T8~ (0 N9 e+ 017 o2 40109 ! 8x3)
(20c¢)
8112 8u2 8112 allz Buz 8112
sgs
B ~ (0 25 2 s +0135 2T 01642 8x3>
(20d)
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The resulting model can be rewritten as:
o (0000 00, 0 0y

tij - IOA (Cl 8X1 8X1 2 sz 8)(2 8X3 3X3 (21)

where the resulting model coefficients C(; , 33 range from 0.102 to
0.251. Eq. (21) is similar in form to the gradient model (Eq. (15)),
but possesses three model coefficients instead of one. By observing
that Cy ;3 are of the same order of magnitudes, and collapsing
the three coefficients by evaluating the average model coefficients,
we recover the gradient model:

zau, 9,

= PGA X, 0%y,

(22)

where the model coefficient C; = 0.147 is similar in value to the
suggested model coefficient of 0.167 from Section 5.1. This result

12

demonstrates that the employment of sparse symbolic regression,
in conjunction with random forest feature importance can be em-
ployed to discover an algebraic expression, similar to the effective
gradient model, for modeling subgrid-scale stresses in transcritical
flows.

Since the present method relies on the random forest feature
importance score, a statistical test must be employed to test for the
effects of significant correlation amongst the features. If multiple
features in the modeling basis are significantly correlated, they act
as exchangeable surrogates for each other during the calculation of
feature importance scores. This is similar to the phenomenon of
multicollinearity in classical statistics [55]. Under such conditions,
metrics such as the MDI are susceptible to correlation bias, and can
generate erroneous importance scores [56,57]. As a note, almost
all algorithms for estimating feature importance, including SHAP
(Shapley additive explanations) [58] exhibit such correlation bias.
As an alternative, Principal Component Analysis may be utilized to
engender orthogonal bases for new features that are independent.
However, these derived features are often difficult to ascribe phys-
ical meanings to, obfuscating their utility toward interpretability.

We utilize the Spearman correlation as a statistical test for eval-
uating the correlation amongst the features in the modeling basis.
While the Pearson correlation is a statistical tool used for evalu-
ating linear relationships, the Spearman correlation evaluates the
monotonicity of variables in both linear and non-linear functions,
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Fig. 16. Pearson correlation and slope from least squares fit between exact and ran-
dom forest-modeled SGS temperature, for three different filter widths A.

i.e., whether the increasing or decreasing trend is being preserved.
Spearman correlations of 1 and —1 correspond to a perfect mono-
tonic relationship, while 0 corresponds to a negligible monotonic
relationship. Figure 15 shows that Spearman correlations between
different features from RF_BLIND are weak (between —0.4 and 0.4),
which indicates that the feature importance score are not spurious.

5.4. SGS temperature models

In this section we extend the application of data-driven meth-
ods towards modeling SGS temperature. Figure 16 presents the
Pearson correlation and slope from least squares fit between ex-
act and random forest-modeled SGS temperature. High correlations
(0.7-0.9) and slopes ranging from 0.7 to 1.5 are observed for all
three filter widths, indicating good performance from the random
forest SGS temperature model.

Unlike the random forests for modeling SGS stresses in
Section 5.2, the feature importance scores from RF_TSGS do not
provide physical insight due to the issue of multicollinearity, as
Ties and its gradients are used as features. In a reacting configura-
tion, large temperature gradients are usually observed in a certain
temperature range, and thus both these quantities can be signifi-
cantly correlated. Nevertheless, a sparse symbolic regression prob-
lem can still be formulated without reducing the number of inde-
pendent variables as the feature set for T is three times smaller
than the feature set for 1:55‘. We repeat the sparse symbolic regres-
sion procedure from Section 5.3:

~ aT; 92T,
T8 — d=2 T LES 12 LES
f|:G ( LES> lchar axk ) lchar 8xkaxk

where the independent variables consist of 2nd-order polynomial
functions of the features from RF_TSGS. Note that the indepen-
dent variables are ensured to be dimensionally consistent with Tgs
by multiplying the gradients with a characteristic lengthscale [,
This characteristic lengthscale can be chosen either as the filter
width A or a flame thickness 5. In the present study, 87 can be
extracted from the DNS by dividing the difference between flame
and inert temperature by the maximum temperature gradient.

The following equations present the SGS temperature model
that resulted from applying sparse symbolic regression:

2 ~ 2 ~ 2 ~ 2
T = 2| 0.00082( 215 )4 0.00100( 2TiEs ) 4 000100 ( lies
Tiks 0X1 0x; 0X3
(24)

where g =87 has been chosen since a better fit is obtained
when performing a least squares fit between the exact and mod-

(23)
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Fig. 17. Pearson correlation and slope from least squares fit between exact and
algebraic-modeled SGS temperature.

eled SGS temperature. By taking the average of the model coeffi-
cients, we obtain the algebraic expression:

Cré? <8TLES)2
Ties \ O
where Cr = 0.001.

Figure 17 presents the Pearson correlation and slope from least
squares fit between exact and SGS temperature from the discov-
ered algebraic Tss model. High correlations of approximately 0.9
are observed for A =2 and A = 4, while a reasonable correlation
of approximately 0.5 is seen for A = 8. The lower correlation com-
pared to RF_TSGS is likely caused by the presence of the [;-norm
in Eq. (17), which encourages less significant terms to vanish from
discovered model. Least squares fit slopes ranging from 0.8 to 1.3
are observed for all three filter widths.

Tygs = (25)

6. Conclusions

DNS of inert and reacting transcritical LOX/GCH4 non-premixed
mixtures under decaying turbulence were performed. Pressure and
temperature were chosen to correspond to conditions in rocket
combustors to examine conditions for which commonly-employed
SGS are less matured. A priori analysis was conducted by compar-
ing exact subgrid-scale stresses from Favre-filtered DNS data with
algebraic and data-driven SGS models.

A priori analysis showed that the SGS stresses evaluated by Vre-
man SGS model correlated poorly with the corresponding exact
terms. In contrast, good correlations are seen from the gradient
SGS model. Results demonstrated a wide range of magnitude er-
rors in the gradient model, which suggests that a dynamic gradi-
ent model approach is suited in a posteriori simulations. Random
forests demonstrated high correlations when trained on datasets
which are representative of the test sets, with reasonable predic-
tions for the magnitude of subgrid-scale stresses. However, corre-
lations were shown to decrease significantly when tested out-of-
sample.

Sparse symbolic regression was performed to discover an al-
gebraic expression for SGS stresses from non-linear transforma-
tions of velocity and its derivatives. The interpretability of ran-
dom forests was demonstrated to reduce the dimensionality of the
sparse symbolic regression problem by 25 times, by employing the
feature importance score for variable selection. The derived alge-
braic expression was shown to be similar to the gradient model.

Sparse symbolic regression was also performed to evaluate
subgrid-scale temperature, a term which emerges from filtering
the non-linear real-fluids equation-of-state. The discovered alge-
braic expression demonstrated reasonable correlations and magni-
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tudes when predicting subgrid-scale temperature. A random forest
SGS temperature model was shown to perform better than the al-
gebraic model.

Results demonstrate that random forests can perform as effec-
tively or better as suitable algebraic models when modeling sub-
grid stresses, if trained on a sufficiently representative database.
However, in the absence of such a database, this good performance
is not replicated. Nevertheless, while the employment of random
forests can provide insight into the discovery of subgrid-scale mod-
els through the feature importance score, as long as features are
not significantly correlated. The present study should be comple-
mented with an a posteriori study, and extended to other SGS clo-
sure terms that form chemical source terms and SGS scalar fluxes,
to generate further insight.
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