Coupling of turbulence on the ignition of multicomponent sprays

Pavan B. Govindaraju a,*, Thomas Jaravel b, Matthias Ihme a

a Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
b Center for Turbulence Research, Stanford, CA 94305, USA

Received 28 November 2017; accepted 28 May 2018
Available online xxx

Abstract

This study examines the effect of turbulence on the ignition of multicomponent surrogate fuels and its role in modifying preferential evaporation in multiphase turbulent spray environments. To this end, two zero-dimensional droplet models are considered that are representative of asymptotic conditions of diffusion limit and the distillation limit are considered. The coupling between diffusion, evaporation and combustion is first identified using a scale analysis of 0D homogeneous batch reactor simulations. Subsequently, direct numerical simulations of homogeneously dispersed multicomponent droplets are performed for both droplet models, in decaying isotropic turbulence and at quiescent conditions to examine competing time scale effects arising from evaporation, ignition and turbulence. Results related to intra-droplet transport and effects of turbulence on autoignition and overall combustion are studied using an aviation fuel surrogate. Depending on the characteristic scale, it is shown that turbulence can couple through modulation of evaporation time or defer the ignition phase as a result of droplet cooling or gas-phase homogenization. Both preferential evaporation and turbulence are found to modify the ignition delay time, up to a factor of two. More importantly, identical droplet ignition behavior in homogeneous gas phase can imply fundamentally different combustion modes in heterogeneous environments.

© 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Keywords: Droplets; Spray combustion; Multicomponent evaporation; Turbulence; Direct numerical simulation

1. Introduction

To enable the representation of transportation fuels containing a large number of compounds, surrogates are an established methodology [1], which involves selecting a set of species constituting the mixture along with finding the composition to closely match the physical and chemical properties of a particular fuel. The main complexity in emulating real-fuel behavior in practical applications arises from the strong interaction between the liquid and the gas phase. However, most studies have focused only on properties of the latter to construct surrogates.

Two-phase ignition behavior of liquid fuels has been studied using idealized systems to isolate chemical processes from other phenomena that affect combustion in real devices, as well as to make the problem computationally tractable using

https://doi.org/10.1016/j.proci.2018.05.166
1540-7489 © 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Please cite this article as: P.B. Govindaraju et al., Coupling of turbulence on the ignition of multicomponent sprays, Proceedings of the Combustion Institute (2018), https://doi.org/10.1016/j.proci.2018.05.166
detailed kinetic mechanisms. While experimental [2] and computational [3–5] studies have focused on the ignition behavior of single-component droplets, less attention has so far been devoted to the investigation of evaporation, ignition and combustion of multicomponent fuels in turbulent environments. In particular, the description of these fuels requires the consideration of liquid-phase diffusion, nonideal phase equilibrium, and extended chemical mechanisms for the description of multicomponent gas-phase chemistry. Recently, the role of preferential evaporation on the ignition of multicomponent fuels in homogeneous spray/air mixtures was demonstrated using an aviation fuel surrogate [6]. The treatment of the heterogeneous gas-phase, however, requires the use of multidimensional simulations and was performed only recently for multicomponent droplets [7]. However, these investigations focused on one-, two- and three-component surrogates in the early ignition stage and under quiescent ambient conditions. In contrast, turbulence effects on the ignition of sprays were so far only performed for single component fuels, with particular focus on the flame structure [8], low-temperature chemistry [9], droplet diameter and turbulent intensity [10] along with demonstrating phenomena, such as segregation and bifurcation [11].

The objective of this study is to investigate the coupling between the liquid and gas-phase in a heterogeneous turbulent environment and the effect of turbulence on the ignition of multicomponent droplets. The role of intra-droplet transport on the ignition of multicomponent fuel mixtures and the modification in their importance due to turbulence are hereby of particular interest. These effects are studied using two limiting conditions of zero-dimensional multicomponent evaporation, namely, the distillation and diffusion limits ([12], Pg. 95). The coupling between liquid phase and heterogeneous gas-phase is taken into account through direct numerical simulations of multicomponent combustion for varying droplet models and turbulent intensities in the gas-phase. The model formulation is presented in Section 2, where the physical and chemical aspects of the model is discussed. In Section 3, the model is applied to the analysis of autoignition of the 2nd-generation surrogate of the POSF 4638 Jet-A fuel [13]. A parametric study of effects of droplet diameter, overall equivalence ratio, evaporation models and the role of turbulence in modifying these effects is performed. The paper finishes by summarizing the main contributions of this work and offering conclusions in Section 4.

2. Model formulation

This section introduces the governing equations with a discussion about additional complexities introduced by multicomponent evaporation as compared to single-component fuels.

2.1. Gas-phase model

The conservation equations for mass, momentum, species and energy can be written in compact form as [12]

\[D_t \rho = \dot{S}_m, \]
\[D_t (\rho u_i) = \dot{S}_u - \partial_i p + \partial_j \sigma_{ij}, \]
\[D_t (\rho Y_k) = \dot{S}_g + \partial_j \omega_{jk} + \dot{S}_m \delta_{k(f)}, \]
\[\tilde{c}_p D_t (\rho T) = \partial_j \left(\lambda \partial_j T \right) + \omega_T + \dot{S}_T, \]

where \(D_t = \partial_t + u_i \partial_i \), \(\partial_j = \partial / \partial x_j \), \(\rho \) is the gas density, \(u_i \) is the gas velocity, \(p \) is the pressure, \(T \) is the gas temperature, \(Y_k \) is the species mass fraction of the \(k \)-th species. \(\dot{S}_m \), \(\dot{S}_u \) and \(\dot{S}_T \) are the source terms due to mass evaporation, drag and heat transfer, respectively; \(\delta_{k(f)} \) is the Kronecker delta function equal to 1 if \(k \) belongs to the liquid species ensemble \{f\} and zero otherwise; \(\sigma_{ij} \) is the viscous stress tensor, \(D_k \) is the mixture-diffusivity of species \(k \), \(\omega_{jk} \) is the production rate of species \(k \), \(\lambda \) is the thermal conductivity, \(c_p \) is the mixture-averaged heat capacity and \(\omega_T = - \sum_{k=1}^{N_s} h_k \dot{\omega}_k \) is the heat release rate.

2.2. Liquid-phase model

The dispersed liquid droplets are described by a Lagrangian point-particle method [14], which is commonly used for turbulent spray combustion simulations [15]. In contrast with the continuous thermodynamic (CT) approach [16], a discrete multicomponent liquid description is used to resolve individual species mass fractions as a function of time. Fickian diffusion is used due to the large number of species along with neglecting the Soret and Dufour effects. The governing equations for each droplet can be written as [14]

\[d_t x_{d,i} = u_{d,i}, \]
\[d_t u_{d,i} = f_1 \tau_d^{-1} (u_{d\parallel d} - u_{d,i}), \]
\[d_t m_{d,k} = \dot{m}_{ev,k}, \]
\[d_t T_d = \frac{Nu_{c_p}}{3Pr \epsilon_L \tau_d} \left(T_{\parallel d} - T_d \right) + \frac{\sum_{k\in\{f\}} \dot{m}_{ev,k} L_{v,k}}{m_d \epsilon_L}, \]

where \(x_{d,i} \) and \(u_{d,i} \) are the droplet position and velocity component, respectively, \(\tau_d \) is the droplet relaxation time given by \(\tau_d = \rho_d d^2 / (18 \mu_d) \), with \(\rho_d \) the liquid density, \(d \) the droplet diameter, and \(\mu_d \) the dynamic viscosity of the gas-phase mixture.

Please cite this article as: P.B. Govindaraju et al., Coupling of turbulence on the ignition of multicomponent sprays, Proceedings of the Combustion Institute (2018), https://doi.org/10.1016/j.proci.2018.05.166
The governing equations are solved using the structured NGA code [27]. A QUICK scheme is used for the discretization of the scalar advection operators, and a second-order central scheme is used for solving the momentum and pressure equations. The chemical source term and analytical Jacobian are efficiently evaluated using pyJac [28], making the problem computationally tractable as it now scales linearly with the number of species, as opposed to having quadratic complexity when a finite-difference approximation for the Jacobian is used. Also, the large and stiff nature of the chemical mechanism necessitates the use of a the specialized nonlinear solver BzzNls [29].

3. Ignition of multicomponent sprays

This section discusses the ignition of multicomponent sprays in quiescent and turbulent flow environments. Effect of droplet diameter, global equivalence ratio and the role of preferential evaporation and turbulence are the particular topics of discussion.

3.1. Scale analysis

Isolated droplet simulations were performed for the 2nd generation POSF surrogate as a function of droplet diameter d_0 and global equivalence ratio.
Please cite this article as: P.B. Govindaraju et al., Coupling of turbulence on the ignition of multicomponent sprays, Proceedings of the Combustion Institute (2018), https://doi.org/10.1016/j.proci.2018.05.166
3.2. Spray autoignition and preferential evaporation

This subsection focuses on the impact of preferential evaporation using the first set of simulations (Cases 1–2) from Table 1. For these cases, significant coupling is expected between preferential evaporation and ignition, because evaporation and ignition time scales are of the same order. To understand the spray ignition process, volume-averaged mean quantities are first extracted and compared in Fig. 3. Instantaneous flow field results at selected time instances (marked in Fig. 3(a)) are shown in Fig. 4. The mean temperature evolution (Fig. 3(a)) shows that the ignition process can be decomposed into different phases. At first, the gas temperature drops because of the energy transfer to the droplets for evaporation and the initial cooling phase is similar for both evaporation models. This is supported by the mass-weighted mean droplet temperature, illustrated in Fig. 3(b), which shows that both models are identical during the droplet heating phase. However, the distillation model reaches a higher final temperature as this model requires the boiling point of each component to be reached for complete evaporation. Figure 4a shows an instantaneous flow field at this early evaporation stage and indicates that significant temperature reduction occurs in the vicinity of the droplets, demonstrating the importance of turbulent motion in enhancing the evaporation. The evaporation leads to transfer of fuel compounds (Fig. 3c and 3f) to the gas phase. The process is strongly heterogeneous, with typical scales on the order of the droplet spacing, as shown by the n-dodecane field in Fig. 4a. Once the evaporation is completed (t ≈ 2.2 ms), the mean temperature plateaus for the turbulent cases. Due to turbulent mixing, heterogeneities in the gas-phase are transformed into larger, coherent pockets, where the high mass fraction of fuel correlates with low temperature levels, as shown in Fig. 4b. This is also evident from the variance of the n-dodecane mass fraction in Fig. 3d), which peaks at the end of the evaporation followed by a decrease under turbulence, whereas it remains high for the non-turbulent cases.

Regarding the fuel compounds, iso-octane preferentially evaporates significantly faster for the distillation-limited model (Fig. 3e)). However, this evaporation model predicts a lower evaporation rate for the most reactive species, namely, n-dodecane. Following the temperature plateau phase, observed for turbulent cases, some isolated pockets start to pre-ignite, as indicated by the localized formation of regions of high CH2O mass fraction in Fig. 4c, with higher temperature and lower fuel concentration. This isolated phenomena then extends to the rest of the domain around t = 3.4 ms for the turbulent cases, with an increase in the mean temperature (Fig. 3a)). For non-turbulent cases, the situation is appreciably different and the pre-ignition stage is triggered before the end of the evaporation phase, leading to a coupled evaporation-ignition regime. The low-temperature preignition is characterized by a drop in the mass

Table 1
Summary of spray and turbulence properties used in the DNS study. T0 = 833 K for all cases.

<table>
<thead>
<tr>
<th>#</th>
<th>d0 (μm)</th>
<th>p0 (bar)</th>
<th>u’ (m/s)</th>
<th>m∞,L (Eq.)</th>
<th>τvap</th>
<th>τp, ign</th>
<th>τu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23</td>
<td>10</td>
<td>1.5</td>
<td>(3a)</td>
<td>2.3</td>
<td>4.3</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>23</td>
<td>10</td>
<td>1.5</td>
<td>(3b)</td>
<td>2.6</td>
<td>4.3</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>10</td>
<td>1.5</td>
<td>(3a)</td>
<td>1.2</td>
<td>4.3</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>10</td>
<td>1.5</td>
<td>(3a)</td>
<td>3.1</td>
<td>4.3</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>23</td>
<td>6.4</td>
<td>2.6</td>
<td>(3a)</td>
<td>2.1</td>
<td>11.2</td>
<td>11.2</td>
</tr>
</tbody>
</table>

Fig. 3. Temporal evolution of volume-averaged quantities. Comparison between DNS data for the diffusion-limit model (Case 1) and distillation-limit (Case 2) at p0 = 10 bar, φ0 = 1.5 and d0 = 23 μm for quiescent and turbulent ambient conditions.
fraction of fuel compounds (Fig. 3(c) and 3(f)) and the formation of CH$_2$O radicals (Fig. 3(e)). Figure 4c shows that the preignition is highly heterogeneous, some pockets igniting much later than others, which results in a second peak of n-dodecane fluctuation (Fig. 3(d)) during the preignition phase for the turbulent cases. After preignition, the mixing continues to homogenize the mixture and complete ignition occurs around $t = 6$ ms. Figure 4d shows that the ignition structure is less dense compared to the pre-ignition kernels, particularly for the non-turbulent simulation, thus highlighting the importance of turbulent mixing in flame propagation. Despite being moderate, preferential evaporation effects observed for the distillation-limit evaporation model are sufficient to delay the preignition by 10% for the turbulent case compared to the diffusion-limit model, which is a consequence of the fact that the evaporation rates of the most reactive fuel compounds are slower in this case. The delay in preignition represents half of the time leading to it after evaporation and primarily contributes to the difference in autoignition delay time.

3.3. Evaporation-turbulence interaction

We proceed by discussing the role of turbulence on the cases with droplet diameter $d_0 = 17$ μm and 30 μm, which have identical 0D autoignition time, as shown in Fig. 2(a). Heterogeneous gas-phase effects along with the role of turbulence are shown to be evident as they lead to dissimilar profiles in several statistical quantities for the cases under consideration.

Relevant results from the second set of cases (Cases 3–4) in Table 1 are shown in Fig. 5. Both droplet diameters share the same 0D autoignition time of 8.88 ms. However, from the instant of reduction in $\langle Y_{\text{CH}_2\text{O}} \rangle$, shown in Fig. 5(a), and the rise in the mean temperature of the gas phase, shown in Fig. 5(b), ignition is observed to occur well in advance compared to the 0D time, emphasizing the importance of heterogeneous gas-phase effects and not just turbulence. The mixture generated from the smaller droplets takes longer to ignite and turbulence only increases the difference in ignition time. Figure 5(c) shows the mass fraction variance of n-dodecane and the mode of combustion is found to be different in both cases, with the smaller droplet showing distinct evaporation and pre-ignition phase, while the droplets having larger diameters demonstrate coupled behavior. Note that the larger diameter does not present a distinct pre-ignition phase for the non-turbulent case, also shown in Fig. 5(b), where the mean temperature continuously increases after the cooling phase. Turbulent gas-phase effects lead to different mass-weighted droplet temperature profiles, shown in Fig. 5(d), with changes in diameter, given that 0D isolated droplets have identical temperature profiles. The higher temperature for the larger droplets is due to the coupling with combustion, leading to higher local ambient temperatures.
Turbulence leads to faster evaporation and creates inhomogeneities in the local temperature fields, thus separating the droplet temperature profiles.

3.4. Autoignition-turbulence interaction

The last case (Case 5) in Table 1 represents the interaction between autoignition and turbulence, given that the eddy-turnover time (τₚ) and autoignition time of the prevaporized fuel (τₚᵢₑₜₚ) are the same, well separated from the evaporation time (τₑᵥₑₚ).

Figure 6 shows a comparison between the turbulent and non-turbulent simulations at p₀ = 6.4 bar, presented in Table 1. The effect of turbulence can be observed in the mean mass fraction plot of n-dodecane, shown in Fig. 6(a). Note that other fuel components follow the same trend, given that the diffusion model is used. The faster evaporation due to advected droplets in the turbulent environment leads to peak mass fractions being reached earlier. However, the onset of low-temperature ignition (second peak in Fig. 6(b)) is quicker in the non-turbulent case due to mixture inhomogeneities leading to certain locations being favorable. This is more evident in Fig. 6(b), where the first peak corresponds to the inhomogeneity arising from evaporation and the second peak is from the onset of low-temperature combustion, as discussed in Section 3.2. Note that the final ignition occurs at nearly homogeneous conditions for both cases. Figure 6(c) and 6(d) illustrate the onset of low-temperature combustion, showing that the homogenizing effect of turbulence delays low-temperature ignition by a factor of two. The low pressure slows down the chemical time scale and thus, the difference in the resulting pre-ignition time is more evident in this case, as opposed to Fig. 5(b), where the smaller droplets showed similar behavior. Trends in second-stage ignition are dictated by a number of competing factors, namely, reactant availability along with formation and propagation of the ignition kernel [9]; turbulence can either attenuate or amplify ignition, as seen in the difference in order of ignition for the two cases in Fig. 5.

4. Conclusions

This work studied the effect of turbulence on the ignition of multicomponent surrogate fuels. To this purpose, two zero-dimensional droplet models that represent limiting conditions of intra-droplet transport are chosen for the 2nd-generation surrogate of a POSF 4658 Jet-A fuel and a validated skeletal mechanism (181 species, 4089 reactions) was used to describe the gas-phase chemistry.

A timescale analysis was performed to identify coupling between diffusion, evaporation, combustion and turbulence. The importance of multicomponent evaporation effects in a heterogeneous environment is shown. This guided direct numerical simulations to identify the role of turbulence on preferential evaporation effects, droplet vaporization and autoignition.

Simulation results show that turbulence significantly enhances fuel vaporization and preferential evaporation effects are evident from the fundamen-
tally different combustion behavior between both evaporation models. DNS analysis highlights the impact of cooling around droplets, homogenizing effects by turbulence and the merging of ignition kernels. The effect of droplet diameter is emphasized by considering two cases which have identical 0D ignition time but show contrasting combustion behavior. The interaction between chemical and turbulent time scales is studied using a lower pressure, which highlights the effect of turbulence on low-temperature ignition.

DNS studies considered in this work are limited by a restricted range of feasible time scales, due to approximations in the treatment of multiphase flows and computational cost to resolve the flame structure. Diffusion models better capture the timescales involved in practical ignition settings even under turbulent settings.

Acknowledgments

The authors gratefully acknowledge financial support through NASA with award NNX15AV04A. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center.

References