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Wall-bounded turbulence at high-pressure transcritical conditions with intense density
fluctuations are encountered in many technical applications. In this study, we analyze the
turbulent energy transport in transcritical channel flows specifically focusing on dissipation
rate, turbulent kinetic energy budgets, heat fluxes, and momentum-fluctuation statistics;
results from this analysis are used to guide the development of turbulent scaling laws. We
find that the dissipation rate of turbulent kinetic energy is dominated by the enstrophy in the
logarithmic layer, and the fluctuating viscosity results in the reduced tilting of the vortical
structures and the attenuation of streamwise vorticity in the near-wall layer; the fluctuating
viscosity attenuates the dissipation rate by reducing the shear strain and the enstrophy
production. Local equilibrium of the turbulent kinetic energy exists in the logarithmic
layer. We show that the real-fluid thermodynamic effects significantly change the turbulent
heat flux correlated with the sweep and the ejection events; the density changes alter
the turbulent transport and result in noticeable magnitudes of density-fluctuation-related
momentum-fluctuation statistics. From these results, scaling laws for the turbulent length
scales and turbulent kinetic energy budgets are proposed, thereby contributing to improve-
ment of the wall models in large-eddy simulations and Reynolds-averaged Navier-Stokes
(RANS) simulations.

DOI: 10.1103/PhysRevFluids.8.024605

I. INTRODUCTION

The thermodynamic properties of fluids at supercritical pressures differ from those at subcritical
conditions. At these conditions, the interface between the liquidlike and vaporlike phases disappears
into a continuous transition [1,2]. Due to real-fluid effects, thermophysical properties, including
density, specific heat capacity, viscosity, and thermal conductivity, vary significantly across the
Widom line, which demarcates the state of maximum constant-pressure specific heat at a given
pressure [1,3]. Variations in density and viscous-diffusive properties result in substantially modified
turbulence statistics and structural behavior when compared to wall-bounded flows at atmospheric
pressures. The physical understanding of turbulence and heat transfer of wall-bounded flows at these
conditions is crucial for developing reliable computational models.

The existing knowledge of turbulent heat transfer at transcritical conditions mainly comes from
direct numerical simulations (DNSs) [4–7]. Bae et al. [8] conducted DNSs of pipe flows with
uniform wall heat flux to examine the turbulent kinetic energy and its production. The study found
that the Morkovin’s hypothesis [9] is invalid. Past studies have also found that the heat transfer
at supercritical pressures depends on both the ejection as well the sweep motions [10]; the large
variations in thermal properties at supercritical pressure were found to have a pronounced effect
on these coherent motions. Peeters et al. [5] found that the thermal expansion tends to decrease
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the coherence of the streaks. DNSs of transcritical channel flows by Kim et al. [6] showed that
the probability density functions (PDFs) of density and temperature fluctuations at transcritical
conditions exhibit a substantially narrower distribution and pronounced kurtosis compared with
statistics at subcritical conditions. Significant skewness of density fluctuations was observed in the
buffer layer, which is explained by intermittent events resulting from the energy transfer between
the liquidlike layer and the vaporlike layer [6]. Li et al. [11] uncovered the mechanism of the
failure of semilocal scaling from the viewpoint of near-wall structures, and provided a theoretical
basis for the scaling law of velocity fluctuations by characterizing the attached eddies. Despite the
differences from subcritical pressure flows, a quadrant analysis [4] confirmed that the near-wall
density fluctuations have an insignificant effect on turbulent heat fluxes and their transport.

Commonly, studies of transcritical flows and variable-property flows have been limited to a
relatively small and moderate density ratio �, of O(1). Here, we define the density ratio � in channel
flows as � = ρc/ρh, with ρc being the cold wall density and ρh being the hot wall density. There
have been limited efforts made to understand the conditions in realistic applications that involve
� of O(10–100). Ma et al. [12] reported turbulent structures in channel flow DNSs with � = 18,
showing that the velocity structure function follows a logarithmic scaling and the streamwise energy
spectrum exhibits an inverse wave-number scaling, providing support to the attached-eddy model at
transcritical conditions. Kawai [13] conducted DNSs on a transcritical flat-plate turbulent boundary
layer in which the mean density varies by a factor of 20 from the wall to the free stream. It was
found that the abrupt density fluctuations induce a turbulent mass flux which not only increases
the Favre-averaged velocity fluctuations in the low-speed streaks related to ejection but also reduces
velocity fluctuations in the high-speed streaks related to sweep. High density ratios result in different
statistical behaviors compared to cases with a smaller density difference. Although many efforts
have been conducted to characterize turbulent boundary layers in transcritical wall-bounded flows,
several questions remain. Towards improving our understanding of transcritical flows, the following
issues need be identified:

(i) Examining effects of the real-fluid thermodynamic properties on turbulent energy transport,
including turbulent kinetic energy, dissipation rate, heat fluxes, and momentum-fluctuation moments
in transcritical wall-bounded flows: the evolution of these quantities should be addressed for
improving the scalings of velocity and thermal statistics [14–17].

(ii) Developing scaling laws for transcritical wall-bounded flows: given the strong fluctuating
density, previous scaling laws that attempt to predict the near-wall profiles [12,18–22] should
be examined to guide the development of improved wall models in Wall-Modeled Large Eddy
Simulation (WMLES) and RANS.

To address these two issues, we analyze DNS data of transcritical channel flows of nitrogen with
� up to 18 and examine the budgets of dissipation rate, turbulent kinetic energy, and momentum-
fluctuation statistics. We also examine the transport of turbulent heat flux in relevance towards
predicting heat transfer in transcritical flows. Using these results, scaling laws of turbulent length
scales and TKE budget terms are proposed. Our goal is to extend these findings to develop physical
models that more closely simulate realistic conditions in modern engineering systems of transcritical
turbulent flows.

The remainder of this paper is organized as follows. Section II introduces our DNS methodology
for transcritical flows. Section III presents the results and discussions, and concluding remarks are
given in Sec. IV.

II. COMPUTATIONAL SETUP

In this study, DNS data of a channel flow are analyzed. The working fluid is nitrogen, which has a
critical pressure of pc = 3.3958 MPa and a critical temperature of Tc = 126.19 K. The temperatures
for the hot wall and the cold wall are kept spatially and temporally constant. The flow domain is of
size Lx (streamwise) × 2Ly (wall normal) × Lz (spanwise), with Lx/Ly = 2π , Lz/Ly = 4π/3, and
with channel half-height being Ly = 0.045 mm. The flow has a bulk pressure of pb = 3.87 MPa
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TABLE I. Summary of cases and conditions, with the subscripts hot and cold indicating the values at the
hot wall and the cold wall.

Cases Tr, hot Tr,cold ρr, hot ρr, cold Reτ, hot Reτ, cold �

TR1 0.79 0.79 2.17 2.17 300 300 1
TR1.4 1.11 0.79 0.42 2.17 1370 500 5.2
TR1.9 1.51 0.79 0.22 2.17 610 440 10
TR3 2.38 0.79 0.12 2.17 300 430 18

(corresponding to a reduced pressure of pr = 1.14) and is driven by a streamwise body force so
that the mass flow rate is kept constant. The streamwise, wall-normal, and spanwise coordinates are
defined over the ranges 0 � x � Lx, −Ly � y � Ly, and 0 � z � Lz, respectively.

We use the Peng-Robinson (PR) equation [12,22] as the equation of state (EoS):

p = ρRT

1 − bρ
− ρ2a

1 + 2bρ − b2ρ2
, (1)

where R is the gas constant and the parameters a and b accounting for real-fluid effects are given as

a = 0.457 236
R2T 2

c

pc

⎡⎣1 + c

⎛⎝1 −
√

T

Tc

⎞⎠⎤⎦2

, (2)

b = 0.077 796
R2Tc

pc
, (3)

with

c = 0.374 64 + 1.542 26ω − 0.269 92ω2, (4)

and with ω being the acentric factor. For N2, b = 8.58 × 10−4 and c = 0.432. The transport proper-
ties (viscosity μ and thermal conductivity λ) are evaluated by Chung’s model for high-pressure
fluids [23–25]. These models for thermal properties have been employed and examined in our
previous works [12,22].

We present results for four cases, TR3, TR1.9, TR1.4, and TR1, as summarized in Table I.
Cases TR3, TR1.9, and TR1.4 are transcritical with a reduced temperature of Tr, cold = 0.79 at
the cold wall. In case TR1, the two reduced wall temperatures are the same at 0.79, resulting in
a constant-property flow with negligible conductive wall heat transfer. For all cases, the domain
is discretized using a structured grid with mesh size Nx × Ny × Nz = 384 × 256 × 384, with the
spatial resolutions shown in Table II in Appendix B. After the flow reaches a statistically steady
state, we average over homogeneous directions and time using more than ten flow-through times
to obtain statistically converged results; one flow-through time is defined as Lx/ub with ub being
the bulk velocity. Further details on the DNS configurations, methodology, validations, and mesh
convergence analysis can be found in Ma et al. [12] and Guo et al. [22].

III. RESULTS AND DISCUSSION

In this section, DNS results of turbulent energy transport are presented. We denote the Reynolds
average of a variable φ as φ̄, and the Favre average quantity is defined as φ̃ = ρφ/ρ̄. + and *
indicate normalization by wall units and semilocal wall units, respectively. Fluctuations from the
Reynolds- and Favre-averaged quantities are defined as φ′ and φ′′, respectively. According to our
results, the compressibility factor in our cases significantly departs from 1, suggesting that strong
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FIG. 1. (a) The van Driest transformed mean velocity profiles of all cases and the law of the wall, with the
log law u+

VD = log(ζ+)/κ + B. κ = 0.41 and B = 5 for the black straight line and κ = 0.38, B = 5.2 for the
gray straight line; (b) mean velocity ū/ub as a function of y/Ly.

real-fluid effects exist in our simulation cases. We note that for all cases, the Mach number is less
than 0.16, indicating that the configurations in all cases correspond to the low-speed flow regime.
Moreover, the pressure change in the channels is very small (the instantaneous p/pc changes by
less than 0.5% within the whole channel). Hence the dominant effects are the variable properties
present at low Mach numbers. Due to the more drastic density changes in the gaslike fluid, the
density fluctuation and real-fluid effects near the hot wall are more pronounced than those near the
cold wall.

In Fig. 1, we show the van Driest transformed and untransformed mean velocity profiles for all
cases along with the law of the wall, which corresponds to the established logarithmic scaling. The
comparison with the law of the wall suggests that the log law works reasonably well. According
to Guo et al. [22], the lower and upper bounds of the log layer in transcritical flows are ζ ∗ > 30
and ζ/Ly,max(ū) = 0.3, respectively, with Ly,max(ū) being the distance from the wall to the location of
maximum ū. We give the upper bounds of the log layer (i.e., ζ+

max and ζ ∗
max) for all cases in Table III

in Appendix C. Hereafter, the range of ζ ∗ is ζ ∗ ∈ (30,ζ ∗
max) when we mention “the log layer.”

A. Turbulent dissipation rate

This section focuses on investigating the real-fluid effects on turbulent dissipation in transcritical
flows. The dissipation rate is defined as [26]

ε = τ ′
i j

∂u′
i

∂x j
with τi j = μ

(
∂ui

∂x j
+ ∂u j

∂xi

)
− 2

3
μ

∂uk

∂xk
δi j . (5)

To investigate the dominant factor of the dissipation rate, we decompose the dissipation rate (see
Appendix A for the derivation) as

ε = εI + εII + εIII + εIV + εV, (6)

where

εI = 1

2
μω′

i j ω
′
i j ,

εII = −2

3
μd ′2,
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FIG. 2. Decomposition of dissipation rate of turbulent kinetic energy for case TR3. (a) Budget terms near
the cold wall; (b) budget terms near the hot wall.

εIII = 2μ
∂u′

i

∂x j

∂u′
j

∂xi
,

εIV = μ′ ∂u′
i

∂x j

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3

∂uk

∂xk
δi j

)
,

εV = μ′ ∂u′
i

∂x j

[(
∂u′

i

∂x j
+ ∂u′

j

∂xi
− 2

3

∂u′
k

∂xk
δi j

)]
,

and

ω′
i j = ∂u′

i

∂x j
− ∂u′

j

∂xi
, d ′ = ∂u′

k

∂xk
, (7)

where εI is the solenoidal term composed of the mean viscosity and the enstrophy, εII is the
dilatational term related to the velocity divergence, εIII captures the interactions between the mean
viscosity and the derivative of velocity fluctuations, εIV and εV are terms related to the fluctuations
in viscosity, and ωi j is the vorticity. Fig. 2 presents the budget terms of Eq. (6). These results show
that the dissipation rate is dominated by the solenoidal term εI in the log layer, which means that the
dissipation is mostly generated by vortex stretching while the dilatational effect (εII) is negligible. As
reported by Huang et al. [26], the dilatational term is quite small in high-Mach-number compressible
wall-bounded flow, and we thus conclude that the behavior of the dissipation at transcritical
conditions is similar to that of compressible, high-speed wall-bounded flows at subcritical pressures.
Interestingly, we find that the temperature-dependent variation in viscosity plays an important role
on the dissipation in the viscous sublayer and the buffer layer. The mean viscosity tends to intensify
the turbulent dissipation while the fluctuating viscosity attenuates the dissipation. A maximum
magnitude of εIV and εV is observed at ζ ∗ ≈ 5.

1. Effect of variable density (dilatation)

We first examine the mean dilatation as well as its fluctuation [defined in Eq. (8)] in Fig. 3. In
the log layer, the results in Fig. 3 show that the dilatation is negligible. As a result of this, εII is
negligibly small in the log layer (see Fig. 2). In the near-wall layers, εII is far weaker than εI, as
shown in Fig. 2. This indicates that dilatation is negligible compared with vorticity. Thus, although
dilatation is more pronounced in the near wall layers, εII/ε is still negligible (|εII/ε| < 1.5%, as
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FIG. 3. Plots of mean dilatation d̄ and root-mean-square values (rms) of fluctuating dilatation d ′
rms in

(a) TR3, (b) TR1.9.

shown in the inset graph in Fig. 2). The dilatation near the hot wall is larger in magnitude than
that near the cold wall, implying more significant variable-density effects as fluctuating density
increases,

d̄ = ∂ui

∂xi
, d ′ = ∂u′

i

∂xi
. (8)

2. Effect of variable viscosity

We proceed to examine the effects of the viscosity fluctuations on the dissipation rate in the
near-wall layer. Fig. 4 shows the instantaneous structures of fluctuating vorticity and viscosity at
ζ ∗ = 5 (the wall-normal position where εIV and εV reach their peak values) and at ζ ∗ = 50 (in
the log layer with negligible εIV and εV) near the cold wall. It can be seen that the low-vorticity
streaks correlate well with the streaks of high viscosity fluctuation, as shown by the red boxes inset
in Figs. 4(a) and 4(c). In contrast, this behavior is not observed at ζ ∗ = 50 [see Figs. 4(b) and
4(d)]. Since the dissipation rate is mainly generated by the vorticity, the strong correlation between
the low-vorticity streaks and high-viscosity-fluctuation streaks implies that μ′ attenuates ε. These
structural observations are consistent with the above conclusions reached in the analysis of Eq. (6).

We will now examine the mechanism of the interactions between μ′ and ε by analyzing the
modulations on the transcritical turbulent structures via εIV and εV. Intensified unsteadiness of near-
wall streaks along with stronger streamwise vortical structures were observed when the turbulent
structures tilt with respect to the streamwise direction [27,28]. Thus, the influences of viscosity
variations on vorticity and dissipation rate can be interpreted by the streamwise vortical structures.
The orientation of the vortical structures is characterized by the real eigenvector of the fluctuating
velocity gradient tensor [29]. Following the procedures given by Patel et al. [29], we investigate the
inclination and tilting angles of the vortical structures. In Fig. 5, we show the PDFs of projection
angle of vortical structures for case TR3, including the inclination angle with respect to the x-y
plane [Fig. 5(a)] and the tilting angle with respect to the x-z plane [Fig. 5(b)]. It can be seen that
the turbulent structures at ζ ∗ = 5 have much lower PDFs of inclination angle higher than 10°. This
means that turbulent structures at ζ ∗ = 5 are characterized by a lower inclination angle compared
to ζ ∗ = 10 and 50. Similarly, for the tilting angle shown in Fig. 5(b), we find that when θxz < −10◦
and θxz > 15◦, the vortical structures at ζ ∗ = 5 have lower PDFs of tilting angle, suggesting that
the tilting of the vortical structures is reduced. According to Johansson et al. [27], the tilting of
turbulent structures is induced by the near-wall cycles of streamwise vortices accompanied by strong
near-wall turbulent shear. This is evidenced by the plots of fluctuating streamwise vorticity for
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FIG. 4. Instantaneous contours of fluctuating vorticity and viscosity near the cold wall in TR3. The left
panel and the right panel show the contours at ζ ∗ = 5 and ζ ∗ = 50, respectively. The red boxes indicate the
low-vorticity streaks and the corresponding fluctuating viscosity streaks. The contours show the entire x-z
extent of the computational domain.

different cases shown in Fig. 5(c); a local minimum of the streamwise vorticity can be observed at
about ζ ∗ = 4. Our investigation clarifies the mechanism of the influences of fluctuating viscosity on
the generation of streamwise vorticity and dissipation rate, thus providing support for the real-fluid
thermodynamic effects on dissipation rate in the near-wall layer.

According to our above analysis, the dissipation rate is dominated by the solenoidal term εI.
Thus we extend our analysis by examining the enstrophy generation. For this, we decompose the
production term of enstrophy, i.e., ω′

iω
′
j s

′
i j , into six terms,

G = ω′
iω

′
j s

′
i j = ω′

xω
′
x s′

xx︸ ︷︷ ︸
I

+ω′
yω

′
y s′

yy︸ ︷︷ ︸
II

+ω′
zω

′
z s′

zz︸ ︷︷ ︸
III

+2 ω′
xω

′
y s′

xy︸ ︷︷ ︸
IV

+2 ω′
xω

′
z s′

xz︸ ︷︷ ︸
V

+2 ω′
yω

′
z s′

yz︸ ︷︷ ︸
VI

, (9)

where s′
i j = (∂u′

i/∂x j + ∂u′
j/∂xi )/2 is the strain rate tensor. In Eq. (9), the terms I–III expressed by

the interactions between the vorticity and the strain rates sxx, syy, and szz represent the enstrophy
produced by the linear strain, while the terms IV–VI related to sxy, syz, and sxz indicate the enstrophy
generated by the shear strain.

Figure 6 displays the budget terms of the production of enstrophy in TR3 as a function of ζ ∗.
Since the budget term related to the enstrophy in the dissipation budget equation incorporates the
local viscosity, we present the results of the enstrophy production weighted by local viscosity herein.
The total production, μ̄ω′

iω
′
j s

′
i j , has a minimum value at ζ ∗ ≈ 5, at the edge of the viscous sublayer.

We find that μ̄ω′
iω

′
j s

′
i j abruptly decreases at the wall-normal position where εIV and εV reach their

peak values, implying that the fluctuating viscosity attenuates the enstrophy production as well
as the turbulent dissipation [see Fig. 6(a)]. Moreover, it can be seen in Fig. 6(b) that the budget
terms related to the shear strain (i.e., terms IV–VI) also decrease at ζ ∗ ≈ 4. Unlike the behaviors
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FIG. 5. (a) PDFs of inclination angle of vortical structures near both walls for case TR3, with solid lines
and dashed lines indicating the profiles near the hot wall and the cold wall, respectively; (b) PDFs of tilting
angle of vortical structures near both walls for case TR3; (c) rms of wall-scaled fluctuating streamwise vorticity
for different cases.

FIG. 6. Budget terms of viscosity weighted enstrophy production in TR3 as a function of ζ ∗. (a) Production
terms μ̄ω′

xω
′
xs′

xx , μ̄ω′
yω

′
ys′

yy, μ̄ω′
zω

′
zs

′
zz; (b) production terms μ̄ω′

xω′
ys′

xy, μ̄ω′
xω

′
zs

′
xz, μ̄ω′

yω
′
zs

′
yz. Solid lines indicate

the hot wall profiles and dashed lines indicate the cold wall profiles.
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FIG. 7. Instantaneous wall-parallel snapshots of fluctuating shear strain and viscosity at ζ ∗ = 5 near the
hot wall in TR3. (a) Rescaled strain rate s′

xy; (b) rescaled fluctuating viscosity; (c) zoomed regions indicated by
the superimposed red solid lines [left panel in (c)] and dashed lines [right panel in (c)].

of terms IV–VI, terms I–III are not affected by the increasing εIV and εV in the viscous sublayer
[see Fig. 6(a)]. These observations suggest that in the viscous sublayer, the viscosity fluctuation
reduces the enstrophy production by means of reducing the shear strain. As a result, the vorticity
is weakened, which leads to the attenuated dissipation rate. Such a conclusion is further confirmed
by the instantaneous contours of fluctuating viscosity and shear strain presented in Fig. 7. High
|μ′| (or low |μ′|) streaks correlate well with low |s′

xy| (or high |s′
xy|) streaks, indicating the role of

fluctuating viscosity on modulating the shear strain and the enstrophy production. According to the
studies on the compressible or the variable-density mixing layer [30,31], the viscosity variation as
well as its fluctuations are also negatively correlated with the enstrophy and dissipation rate. For the
turbulent boundary layers with temperature-dependent viscosity, Lee et al. [32] and Zonta et al. [33]
found that near the hot wall, the dissipation rate is increased as the decreasing viscosity or negative
viscosity fluctuations. This is consistent with the present observations, i.e., the fluctuating viscosity
tends to attenuate the dissipation rate in the viscous sublayer near the hot wall. Notably, we also find
that fluctuating viscosity plays the same role near the cold wall.

B. Turbulent kinetic energy

Next, we examine the transport of TKE and the mixing length. The budget equation for TKE in
compressible flow is given as [13]

∂ (ρk̃)

∂t
+ C = P + Td + Tp + Dv − ε + M + �d , (10)

where C, P, Td , Tp, Dv , ε, M, and �d are the contributions from convection, production, turbulent
diffusion, velocity-pressure interaction, viscous diffusion, energy dissipation, mass flux contribution
associated with density fluctuations, and pressure dilatation, with the following mathematical
expressions:

C = ∂

∂x j
(ρ̄ũ j k̃), P = −ρu′′

i u′′
j

∂ ũi

∂x j
,

Td = − ∂

∂x j

(
1

2
ρu′′

i u′′
i u′′

j

)
, Tp = − ∂

∂x j
(p′u′

j ),
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FIG. 8. Budget terms of the equation of turbulent kinetic energy normalized by τ 2
w/μw (wall scaling).

(a) TR3 hot wall; (b) TR3 cold wall; (c) TR1.

Dv = ∂

∂x j
(τ ′

i ju
′
i ), ε = τ ′

i j

∂u′
i

∂x j
,

M = u′′
i

(
∂τi j

∂x j
− ∂ p

∂xi

)
, �d = p′ ∂u′

i

∂xi
.

Figure 8 shows the budget terms of TKE normalized by τ 2
w/μw (wall units) for different cases.

In the log layer, the wall-scaled P+ and ε+ are approximately equal in magnitude, indicating the
existence of a local equilibrium of TKE. We thus have

P = −ρu′′
i u′′

j

∂ ũi

∂x j
= ε. (11)

In Sec. III E, we will use the local equilibrium property to establish the scaling law of the mixing
length and the production term of TKE.

C. Turbulent heat fluxes

To gain further insight into the physical underpinning of heat transport, we calculate turbulent
heat fluxes in transcritical flows using quadrant analysis. The four quadrants Q1, Q2, Q3, and Q4 are
referred to as outward, ejection, inward, and sweep events, respectively [13]. Fig. 9 displays results
from this quadrant analysis for wall-normal turbulent heat flux. As shown in Fig. 9(a), the turbulent
wall-normal heat fluxes for the ejection events (|ρv′′H ′′

Q1 + ρv′′H ′′
Q2|TR3

) are noticeably lower than
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FIG. 9. Quadrant analysis on wall-normal Reynolds heat flux. (a) Hot wall profiles; the solid lines and
dashed lines indicate ρv′′H ′′ and ρ̄v′′H ′′ for TR3, respectively; (b) cold wall profiles; solid lines, ρv′′H ′′ for
TR3; dashed lines, ρv′′H ′′ for TR1.

those for the sweep events (|ρv′′H ′′
Q3 + ρv′′H ′′

Q4|TR3
). Since the ejection events transfer near-wall

gaslike hot fluids while the sweep events transfer liquidlike cold fluids to ζ ∗ = 50, the thermal
energy transported to ζ ∗ = 50 by ejected gaslike fluids cannot completely compensate the thermal
energy loss caused by the swept liquidlike fluids. This explains the formation of the highly skewed
density probability density functions near the hot wall observed by Ma et al. [12]. In contrast, from
Fig. 9(b) it can be seen that at ζ ∗ = 50 near the cold wall in TR3, the turbulent wall-normal heat
flux correlated with the ejection (|ρv′′H ′′

Q1 + ρv′′H ′′
Q2|TR3

) is merely slightly higher than that related

to sweep (|ρv′′H ′′
Q3 + ρv′′H ′′

Q4|TR3
). Additionally, from Fig. 9(a) we also find that compared to the

mean-density-related heat flux, the total heat flux ρv′′H ′′ increases for Q1 and Q4 events while
it decreases for Q2 and Q3 events, implying that density fluctuations are enhancing the turbulent
heat flux contributed from the high-speed streaks, while reducing the turbulent heat flux from the
low-speed streaks.

D. Momentum fluctuation statistics

In this section we proceed to discuss the behaviors of momentum-fluctuation-related statistics
under transcritical conditions, which is helpful for the development of the closure modeling of Favre
equations. Following Patel et al. [18], the semilocally scaled second, third, and fourth order moments
of momentum fluctuations are expressed as ρu′′

αu′′
α/τw, ρ1.5u′′

αu′′
αu′′

α/τ 1.5
w and ρ2u′′

αu′′
αu′′

αu′′
α/τ 2

w (where
the subscript α = 1, 2, 3 indicates the velocity component, Greek subscripts indicate any of the
components without summation). These statistics can be decomposed into mean-density-related
terms and density-fluctuation-related terms [18],

ρu′′
αu′′

α = ρ̄u′′
αu′′

α + ρ ′u′′
αu′′

α, (12)

ρ1.5u′′
αu′′

αu′′
α ≈ ρ̄1.5u′′

αu′′
αu′′

α + 1.5ρ ′u′′
αu′′

αu′′
α, (13)

ρ2u′′
αu′′

αu′′
αu′′

α = ρ̄2u′′
αu′′

αu′′
αu′′

α + 2ρ̄ρ ′u′′
αu′′

αu′′
αu′′

α + ρ ′2u′′
αu′′

αu′′
αu′′

α. (14)

In Fig. 10, we plot these terms for case TR3. Near the cold wall, the profiles of ρu′′
αu′′

α ,
ρ1.5u′′

αu′′
αu′′

α , and ρ2u′′
αu′′

αu′′
αu′′

α deviate slightly from the profiles of ρ̄u′′
αu′′

α , ρ̄1.5u′′
αu′′

αu′′
α , and
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FIG. 10. Semilocally scaled (a) second-order statistics, (b) third-order statistics, and (c) fourth-order
statistics of momentum-fluctuation as functions of ζ ∗ for case TR3. Solid lines: hot wall profiles; dashed lines:
cold wall profiles. For clarity, the wall-normal and spanwise fourth order moments in (c) are multiplied by 10
and 5, respectively.

ρ̄2u′′
αu′′

αu′′
αu′′

α , implying that the influence of the density fluctuations on momentum statistics is small.
Interestingly, it can be seen that near the hot wall, the mean-density-related statistics deviate signifi-
cantly from instantaneous-density-related statistics, implying the importance of density fluctuations
on the balance of momentum-fluctuation statistics. This is distinctly different from the observations
by Patel et al. [18].

E. Scaling laws based on the turbulent energy transport

1. Kolmogorov length scale

In Sec. III A, we find that the fluctuating vorticity dominates the generation of dissipation rate.
Based on this physical underpinning of the dissipation rate at transcritical conditions, the expression
for ε reduces to

ε ≈ 1
2μω′

i j ω
′
i j . (15)

Hence, real-fluid effects owing to dilatation and fluctuation of thermodynamic quantities on
turbulent dissipation are small, suggesting that Morkovin’s hypothesis, which indicates that any
difference between compressible turbulent boundary layer and incompressible turbulent boundary
layer can be removed by incorporating the wall-normal variations of ρ̄ and μ̄, applies to small-scale
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FIG. 11. Scaling laws of Kolmogorov length scale: (a) wall-scaled Kolmogorov length scale [Eq. (16a)]
versus ζ ∗; (b) semilocally scaled Kolmogorov length scale [Eq. (16b)] versus ζ ∗.

structures in transcritical flows. This provides the possibility of extending the scaling laws of the
Kolmogorov length scale from compressible high-Mach flows at subcritical pressures to transcritical
flows. Assuming that Morkovin’s hypothesis is valid on small scales, Zhang et al. [34] proposed the
following scaling law for the rescaled Kolmogorov length scales in high-Mach flows at subcritical
pressures,

η+
re = η+(ρ̄+/μ̄+)1/2 = (ε+/μ̄+)−1/4

, (16a)

η∗
re = η∗(ρ̄+/μ̄+)1/2 = (ε∗/μ̄+)−1/4

, (16b)

where μ̄+ = μ̄/μw,ρ̄+ = ρ̄/ρw. Note that ε∗ = εu−2
τ (ν̄2/u∗2

τ )μ−1
w denotes normalization using the

semilocal viscous length scale δ∗
v . According to Zhang et al. [34], η+

re, which is the transformation
based on the wall scaling, is found to be effective in collapsing the profiles of the Kolmogorov length
scale in high-Mach turbulence at subcritical pressures. Fig. 11 shows the normalized Kolmogorov
length scale as a function of ζ ∗. We observe that while η+

re does not do well in collapsing the profiles,
η∗

re, which is based on the semilocal transformation, performs better in collapsing the profiles in the
log layer and the viscous sublayer.

2. Mixing length

Note that in turbulent boundary layers without curvature effects, the production of TKE mainly
comes from the term −ρu′′v′′ ∂ ũ

∂ζ
. Thus Eq. (11) reduces to

−ρu′′v′′ ∂ ũ

∂ζ
= ρl2

m

(
∂ ũ

∂ζ

)3

= ε. (17)

Solving Eq. (17) yields

lm = ρ̄S̃3/2/ε. (18)

with S = −u′′v′′. This equation shows that a quantitative relation exists between mixing length
and Kolmogorov length scale. According to Eq. (16b), ε∗ = μ̄+(η∗

re)−4/ρ̄+, the scaling law of the
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normalized mixing length can then be written as

l+
m = (S̃+)

2 μ̄+

ρ̄+ (η∗
re)4

, (19)

where l+
m = lmρwS̃1/2/μw, S̃+ = ρ̄S̃/τw and τw is the wall shear stress. In the log layer, S̃+ is derived

from a stress balance analysis in the channel. Similar to the heat flux balance derivation in Guo et al.
[22], by integrating the streamwise momentum equation in the wall-normal direction and averaging
over time and homogeneous directions, we have (note that the present DNS shows a negligible
contribution from ρ̄ũṽ compared with other terms in the channel flows)

−
∫ ζ

0

∂ p

∂x
dϕ +

∫ ζ

0

∂τ1i

∂xi
dϕ − ρu′′v′′ = 0, (20)

where τ1i = μ(∂u/∂xi + ∂ui/∂x−2δ1i∂uk/3∂xk ) and ϕ is the wall-normal integral variable. With
this, Eq. (20) can be rewritten as

−
∫ ζ

0

∂ p̄

∂x
dϕ +

∫ ζ

0

∂

∂xi

[
μ

(
∂u

∂xi
+ ∂ui

∂x

)]
dϕ − 2

3

∫ ζ

0

∂

∂xi

(
μ

∂uk

∂xk
δ1i

)
dϕ − ρu′′v′′ = 0. (21)

Note that in this equation, the turbulent shear stress −ρu′′v′′, the pressure gradient

term − ∫ ζ

0 ∂ p̄/∂xdϕ, the viscous stress term
∫ ζ

0
∂

∂xi
[μ( ∂u

∂xi
+ ∂ui

∂x )]dϕ, and the divergence term

− 2
3

∫ ζ

0
∂

∂xi
(μ∂uk

∂xk
δ1i )dϕ are present. In order to simply this equation, we calculate each budget term

in Eq. (21), as shown in Fig. 12. Results from Fig. 12(a) show that the mean pressure remains nearly
constant along the wall-normal directions. Thus the pressure gradient term can be written as

−
∫ ζ

0

∂ p

∂x
dϕ = −

∫ ζ

0

d p̄

dx
dϕ. (22)

In the streamwise direction, the wall shear stress balances the pressure gradient, yielding

τw,cold + τw,hot

2Ly
= −d p̄

dx
. (23)

Figures 12(b) and 12(c) show the viscous stress term and the divergence term, respectively. When
assessing the absolute value of the magnitude across both cases, it can be seen that the divergence
term is two orders of magnitude smaller than the viscous stress term in the log layer, and thus does
not provide a significant contribution. With this simplification and neglecting the viscous stress term
μ(∂u/∂y) in the log layer, the streamwise momentum equation can be rewritten as

τw,hot + τw,cold

2Ly
ζ − τw − ρu′′v′′ = 0. (24)

Using the wall shear stress to rescale Eq. (24) and transforming it into a semilocally scaled form,
we obtain the final expression for S̃+:(

1 − ζ

2Ly

)
− τw,hot

τw,cold

ζ

2Ly
=

(
1 − ζ ∗

2Re∗
τ

)
− τw,hot

τw,cold

ζ ∗

2Re∗
τ

= S̃+ (near the cold wall), (25a)(
1 − ζ

2Ly

)
− τw,cold

τw,hot

ζ

2Ly
=

(
1 − ζ ∗

2Re∗
τ

)
− τw,cold

τw,hot

ζ ∗

2Re∗
τ

= S̃+(near the hot wall) (25b)

with Re∗
τ = ρ̄u∗

τ Ly/μ̄ the semilocal friction Reynolds number.
Figure 13 shows the semilocal mixing lengths profiles, as well as the mixing lengths predicted by

our Eq. (19). Compared to the semilocal scaling, which has difficulty in consistently characterizing
the mixing length profiles in conditions with large density ratios [see Fig. 13(a)], our scaling law
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FIG. 12. Budget term analysis in Eq. (21). (a) Mean pressure p̄/pc; (b) viscous stress term; (c) divergence
term.

collapses the data near the hot wall of TR3 into the single line in the log layer [see Fig. 13(b)]. We
note that the discrepancy of the data for ζ ∗ < 20 is related to the significant viscous dissipation in
the near-wall layers.

3. TKE budget terms

We finally discuss the scaling laws of TKE budget terms. As in Eq. (16b), the scaling law of the
dissipation rate is given by

(ε∗/μ̄+)−1/4= f (ζ ∗),ε∗ = μ̄+(η∗
re)−4 = μ̄+[ f (ζ ∗)]−4

, (26)

with f (ζ ∗) (i.e., the η∗
re with generalizability) a universal function of ζ ∗ plotted in Fig. 11(b).

To examine other TKE budget terms related to the variations of the thermodynamic properties,
we decompose them (including production term P, turbulent diffusion term Td , viscous diffusion
Dv , and mass flux contribution term M) into the mean thermodynamic-properties (ρ̄ and μ̄) and
fluctuating thermodynamic property (ρ ′ and μ′) related terms, as shown in Eqs. (27)–(30):

P = −ρu′′
i u′′

j

∂ ũi

∂x j
=

(
−ρ̄u′′

i u′′
j

∂ ũi

∂x j

)
︸ ︷︷ ︸

Pk1

+
(

−ρ ′u′′
i u′′

j

∂ ũi

∂x j

)
︸ ︷︷ ︸

Pk2

, (27)
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FIG. 13. (a) Semilocally scaled mixing lengths lm/δ∗
v as a function of ζ ∗; (b) normalized mixing length

profiles predicted by our scaling law [Eq. (19)].

Td = − ∂

∂x j

(
1

2
ρu′′

i u′′
i u′′

j

)
=

[
− ∂

∂x j

(
1

2
ρ̄u′′

i u′′
i u′′

j

)]
︸ ︷︷ ︸

Td1

+
[
− ∂

∂x j

(
1

2
ρ ′u′′

i u′′
i u′′

j

)]
︸ ︷︷ ︸

Td2

, (28)

Dv = ∂

∂x j
(τ ′

i ju
′
i )=

∂

∂x j

[
μu′

i

(
∂u′

i

∂x j
+ ∂u′

j

∂xi
− 2

3

∂u′
k

∂xk
δi j

)]
︸ ︷︷ ︸

Dv1

+ ∂

∂x j

[
μ′u′

i

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3

∂uk

∂xk
δi j

)]
︸ ︷︷ ︸

Dv2

+ ∂

∂x j

[
μ′u′

i

(
∂u′

i

∂x j
+ ∂u′

j

∂xi
− 2

3

∂u′
k

∂xk
δi j

)]
︸ ︷︷ ︸

Dv3

, (29)

M = u′′
i

(
∂τi j

∂x j
− ∂ p

∂xi

)
= −ρ ′u′

i

ρ̄

(
∂τi j

∂x j
− ∂ p

∂xi

)

= − ρ ′u′
i

ρ̄

∂

∂x j

[
μ

(
∂ui

∂x j
+ ∂u j

∂xi

)]
︸ ︷︷ ︸

M1

− ρ ′u′
i

ρ̄

∂

∂x j

⎡⎣μ′
(

∂u′
i

∂x j
+ ∂u′

j

∂xi

)⎤⎦
︸ ︷︷ ︸

M2

+ ρ ′u′
i

ρ̄

∂

∂x j

[
2

3
δi jμ

∂uk

∂xk

]
︸ ︷︷ ︸

M3

+ ρ ′u′
i

ρ̄

∂

∂x j

[
2

3
δi jμ′ ∂u′

k

∂xk

]
︸ ︷︷ ︸

M4

+ · · · . (30)

We note that Pk2, Td2, and M1–M4 are associated with ρ ′, Dv2 and Dv3 are induced by μ′, while
other terms only depend on mean thermodynamic properties. Taking TR3 for instance, we show
the decomposition terms of the TKE budgets in Fig. 14. Overall, the fluctuating thermodynamic
property related term (Pk2) have an insignificant contribution (less than 10% across the majority of
the channel) to the total production term Pk [see Fig. 14(a)]. This provides support that the scaling
laws of P and ε can be established properly by solely accounting for the mean thermodynamic
property changes, indicating that the Morkovin’s hypothesis applies to the TKE production as well
as its dissipation.
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FIG. 14. Decomposition of the TKE budget terms in Eqs. (27)–(30) for TR3. (a) Production term Pk ;
(b) turbulent diffusion term Td ; (c) viscous diffusion Dv; (d) mass flux contribution term M. Red lines: near the
hot wall; blue lines: near the cold wall. Results in (c) are rescaled by Dv at the wall, while results in (a), (b),
and (d) are rescaled by the maximum of Pk , Td , and M, respectively.

In the previous discussions, we justify that the dissipation rate induced by fluctuating thermo-
dynamic properties is approximately zero in the log layer. As in Eq. (11), TKE production and
dissipation are also in balance. The scaling law of TKE production in the log layer can be obtained
based on the local equilibrium of P and ε:

P∗ = (ρ̄+)1/2(η∗
re)−4 = (ρ̄+)1/2[ f (ζ ∗)]−4

, (31)

where P∗ = Pρ−1
w u−3

τ [μ̄/(ρ̄u∗
τ )]. Equation (31) only contains the variations of mean thermodynamic

properties, thus supporting that Pk is a solenoidal quantity. Differently, the fluctuating-
thermodynamic-property related terms of Td , Dv , and M are now noticeable as the main contribution
terms [see Figs. 14(b)–14(d)]. This suggests that the scaling law, which ignores the fluctuating
thermodynamic properties, is physically invalid when predicting these budget terms.

The results from this study show that thermodynamic fluctuations do not affect the TKE produc-
tion and dissipation in the log layer. This in turn implies that real-fluid effects do not affect the local
equilibrium of TKE which was originally shown for wall-bounded flows at subcritical pressures.
However, real-fluid thermodynamic effects may result in the failure of some critical assumptions,
such as the invariance of dissipation rate and Reynolds shear stress [22,35]. This indicates that
real-fluid thermodynamic effects are dominant over the equilibrium assumption in the context of
mean velocity transformations so that the former effects are first order. This provides insight to
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explain the failure of mean velocity scaling at transcritical conditions [35], in which a transformation
is developed that incorporates local equilibrium in the log layer.

IV. CONCLUSIONS

In this study, we analyze the turbulent energy transport and scaling laws for transcritical flows to
shed light on developing effective turbulence models for transcritical flows in realistic engineering
applications. To this end, direct numerical simulation data for transcritical channel flows with
density ratio values of up to O(20) are analyzed. Specifically, we examine the turbulent dissipation,
turbulent kinetic energy budgets, turbulent heat flux, and momentum-fluctuation statistics.

The budget analysis shows that the dissipation rate of turbulent kinetic energy is dominated by the
solenoidal term associated with enstrophy in the log layer, while the contributions from dilatation
are insignificant. The variable viscosity plays an important role on the dissipation in the viscous
sublayer; the mean viscosity tends to increase turbulent dissipation while the viscosity fluctuations
weaken the dissipation. The viscosity fluctuations in the near-wall layer modulate the generation of
streamwise vorticity by weakening the tilting of the turbulent structures. It is found that fluctuations
in viscosity attenuate the dissipation rate by reducing the shear strain and the enstrophy production
in the viscous sublayer. Although real-fluid effects have significant influence on the TKE budgets,
local equilibrium of TKE transport in transcritical flows is verified in the log layer.

Near the hot wall, the wall-normal turbulent heat flux correlated with the sweep events that
carries cold fluids is higher than that related to ejection events that entrains hot fluid, resulting in the
highly skewed PDFs of temperature. The density-fluctuation-related terms momentum-fluctuation
statistics are significant, implying the non-negligible role of density fluctuations on the balance of
momentum-fluctuation statistics.

Considering that the dominant mechanism for dissipation rate in high-Mach turbulence and
transcritical flows is similar in the log layer, we extend the scaling law of Kolmogorov length scale
from high-Mach flows to transcritical flows. For the TKE budget terms, the scaling laws for P
and ε are proposed based on their solenoidal behavior; the fluctuating-thermodynamic properties
contribute noticeably to Td , Dv , and M, revealing that the scaling law which merely considers
variations of mean thermodynamic properties under the premise of Mokovin’s hypothesis is invalid.
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APPENDIX A: DERIVATION OF THE DECOMPOSITION OF DISSIPATION RATE

Here we show the derivation of the decomposition of dissipation rate at transcritical conditions.
From Eq. (5), the mean and fluctuating values of τi j are written as

τi j = μ

(
∂ui

∂x j
+ ∂u j

∂xi

)
+ μ′

(
∂u′

i

∂x j
+ ∂u′

j

∂xi

)
− 2

3
μ

∂uk

∂xk
δi j − 2

3
μ′ ∂u′

k

∂xk
δi j, (A1)

τ ′
i j = μ

(
∂u′

i

∂x j
+ ∂u′

j

∂xi
− 2

3

∂u′
k

∂xk
δi j

)
+ μ′

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3

∂uk

∂xk
δi j

)

+
[
μ′

(
∂u′

i

∂x j
+ ∂u′

j

∂xi
− 2

3

∂u′
k

∂xk
δi j

)]
. (A2)
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Therefore, the expression for dissipation rate can be written as

ε =
(

μ
∂u′

i

∂x j

∂u′
i

∂x j
+ μ

∂u′
i

∂x j

∂u′
j

∂xi

)
− 2

3
μ

∂u′
i

∂xi

∂u′
k

∂xk

+ μ′ ∂u′
i

∂x j

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3

∂uk

∂xk
δi j

)
+ μ′ ∂u′

i

∂x j

(
∂u′

i

∂x j
+ ∂u′

j

∂xi
− 2

3

∂u′
k

∂xk
δi j

)
. (A3)

Using the modulus of the vorticity fluctuation

|ω′| =
⎡⎣(

∂u′

∂y
− ∂v′

∂x

)2

+
(

∂u′

∂z
− ∂w′

∂x

)2

+
(

∂v′

∂z
− ∂w′

∂y

)2
⎤⎦1/2

and the relation

∂u′
i

∂x j

∂u′
i

∂x j
+ ∂u′

i

∂x j

∂u′
j

∂xi
= |ω′|2 + 2

∂u′
i

∂x j

∂u′
j

∂xi
,

we have

ε = μ|ω′|2 + 2μ
∂u′

i

∂x j

∂u′
j

∂xi
− 2

3
μ(∇ · u′)2

+ μ′ ∂u′
i

∂x j

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3

∂uk

∂xk
δi j

)
+ μ′ ∂u′

i

∂x j

(
∂u′

i

∂x j
+ ∂u′

j

∂xi
− 2

3

∂u′
k

∂xk
δi j

)
, (A4)

which is Eq. (6).
Based on the Helmholtz decomposition [36], Sarkar et al. [37] proposed a way to decompose ε

into a solenoidal part εs and a dilatational part εd ; the expressions of εs and εd in inhomogeneous
flow are given as

εs = 1
2μω′

i j ω
′
i j , εc = − 2

3μd ′2. (A5)

A comparison with Eq. (6) shows that the solenoidal and dilatational budget terms in Eq. (6) are
the same as those derived by the Helmholtz decomposition. To further confirm this, we can rearrange
Eq. (6) using the Helmholtz decomposition. Since the solenoidal and the dilatational fluctuating
velocities satisfy ∇ · u′

s = 0 and ∇ × u′
c = 0, we have

εI = 1

2
μ̄

[∇ × (u′
s + u′

c )
]2=1

2
μ̄(∇ × u′

s)2,

εII = −2

3
μ

(
∂u′

c,i

∂xi

)(
∂u′

c,k

∂xk

)
. (A6)

It can be seen that εI and εII in Eq. (6) are only associated with us and uc respectively, which
means that εI and εII are actually the solenoidal part and the dilatational part of dissipation rate
within the framework of the Helmholtz decomposition. Thus, our method in Sec. III A is equivalent
to the Helmholtz decomposition.

APPENDIX B: GRID RESOLUTIONS OF ALL CASES

In Table II, we show the grid resolutions in wall units at both walls and at the center of the
channel for cases TR3, TR1.9, TR1.4, and TR1.
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TABLE III. The upper bound of the ζ+ and ζ ∗ for the log layer, with the lower bound of the log layer being
ζ ∗ = 30.

Cases ζ+
max (upper bound of ζ+) ζ ∗

max (upper bound of ζ ∗)

hot wall 41.04 105.87
TR3

cold wall 206.91 551.63
hot wall 86.79 104.87

TR1.9
cold wall 207.73 454.31
hot wall 348.19 205.79

TR1.4
cold wall 181.35 308.78

TR1 211.20 252.64

APPENDIX C: RANGE OF ζ FOR THE LOG LAYER

In Table III, we show the range of ζ for the log layer in cases TR3, TR1.9, TR1.4, and TR1.
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