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Destabilization of binary mixing layer in
supercritical conditions
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Compressible mixing layer instabilities are of importance to a wide range of environmental
and industrial applications. Past studies have focused on either ideal-gas or real-fluid
thermodynamic regimes of single-species mixing layers. However, mixing layers of binary
mixtures at supercritical conditions, commonly encountered in fuel injection systems,
introduce additional complexities due to the added compositional degree-of-freedom.
Moreover, the effect of strong variations in thermodynamic response functions across the
Widom line on the binary mixing layer stability remains poorly understood. Thus, the
objective of this study is to examine the coupling between the hydrodynamic instability
and the real-fluid thermodynamics across the Widom line and its effects on the overall
binary mixing layer dynamics. To this end, we develop a linear stability analysis of the
full binary-species compressible transport equations coupled with the PC-SAFT equation
of state. Analysis shows the existence of a novel instability mechanism that arises from
juxtapositioning of the Widom-line transition and the hydrodynamic inflection point. This
novel thermodynamically induced instability mechanism has the net effect of destabilizing
the binary mixing layer at lowering supercritical conditions towards the critical pressure
point. This is in contrast to previous stability analyses of supercritical single-species
mixing layers, where increasing pressure destabilizes the flow due to its effect on
reducing the density stratification. The discovered thermodynamically induced instability
mechanism of binary mixing flows highlights the need for an extension of classical
instability criteria to incorporate the effect of strong variations in the thermodynamic
response functions across the Widom line on mixing layer instability.

Key words: shear-flow instability

1. Introduction

The stability of parallel shear flows is well established in the fluid-mechanics community.
The problem manifests both in the theoretical study of Kelvin–Helmholtz instabilities
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Figure 1. (a) Thermodynamic regime diagram of CH4/O2 mixture at subcritical and supercritical conditions.
Also plotted is the locus of thermodynamic conditions found in a representative isobaric baseflow. (b) Isobaric
state space: isobaric projection of the supercritical thermodynamic regime diagram of CH4/O2 at P = 60 bar,
showing contour of isobaric heat capacity (cp). Also shown is the Widom-line transition temperature as a
function of composition TWL(YCH4 ) and example isobaric thermodynamic trajectories of the baseflow.

and in environmental and engineering flows. Blumen (1970) studied the stability
dynamics of a compressible shear flow with constant thermodynamic properties. In this
regime, he showed that Fjørtoft’s extension of Rayleigh’s criterion, originally developed
for incompressible shear layers, extends to the compressible flow regime. However,
many engineering mixing flows involve binary and multispecies mixtures at trans- and
supercritical conditions and thus feature complex thermodynamic response functions. The
consideration of these effects is not covered by classical stability theory.

With increasing interest in high-pressure flow systems, much effort has been expended
towards studying mixing flows at supercritical thermodynamic conditions. At these
conditions, the fluids exhibit behaviours not found in subcritical conditions such as a
sharp decrease in surface tension, resulting in diffused phase transition (Oschwald et al.
2006). At the thermodynamic critical point, the saturation line, which delineates liquid
and vapour regions at subcritical conditions, extends to the Widom line in the supercritical
regime. It represents a degenerate form of phase transition between supercritical gas-like
and supercritical liquid-like phases (Simeoni et al. 2010), see figure 1(a). Therefore, across
the Widom line, transition from a liquid-like to a gas-like regime occurs, giving rise to
large gradients in thermodynamic and transport properties. These enhanced variations
in the thermodynamic response functions have been found to promote instabilities in
Rayleigh–Bénard convection, swirling jet flows, channel flows and boundary layers
(Accary et al. 2005; Ly, Rusak & Wang 2018; Ren, Fu & Pecnik 2019a; Ren, Marxen
& Pecnik 2019b). At increasing pressures, the distinction between supercritical gas-like
and liquid-like phases diminishes, thus reducing the density variation across and
lowering peak heat capacity at the Widom-line transition. In this regime, Zong et al.
(2004) performed experimental investigations and conducted linear stability analysis
(LSA) of supercritical single-species mixing flows of N2. They concluded that at
supercritical pressures, the dampening effect of the liquid–vapour interface is reduced
and thus the single-species mixing layer becomes more unstable. Similarly, Roy & Segal
(2010) performed experiments of N2 injection at various sub/supercritical conditions and
concluded that at supercritical conditions, the flow’s density gradient reduced and that this
behaviour strongly affects the length of the potential core.
945 R2-2
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Destabilization of binary mixing layer in supercritical conditions

Overall, in single-species mixing flow conditions, the destabilizing effect of increasing
supercritical pressure has been attributed to its influence on the single-species mixing
flow’s hydrodynamics via the reduction in density stratification across the inflection point.
However, the impact of the thermodynamic response functions, which are strong functions
of pressure supercritical conditions, on binary and multispecies mixing flows has not
been investigated in isolation. Considerations of strong variations in the thermodynamic
response functions are of direct importance in binary mixing flows, where the density
stratification is largely a function of the compositional difference across the inflection
point and thus becomes more insensitive to increases in pressure. Furthermore, binary
mixing layers introduce additional parametric complexities arising from the alignment of
temperature and composition profiles across the binary mixing layer. These conditions
determine the location of the Widom-line transition in the baseflow, see figure 1(b).

In this paper, we investigate the effect of the thermodynamic response functions on the
stability of binary mixing layers at supercritical thermodynamic conditions. Specifically,
we develop a LSA of the full multispecies compressible transport equations coupled
with the PC-SAFT equation of state (EOS) (Gross & Sadowski 2001) to examine the
interference of the strong variations in the thermodynamic response functions across the
Widom line with the underlying binary mixing layer dynamics. To this end, baseflow
conditions are selected to traverse the Widom line within the binary mixing layer,
thus featuring degenerate phase transition and non-ideal thermodynamic and transport
properties at the transition condition. Furthermore, by considering a binary mixing flow
configuration of CH4 and O2, we maintain a similar level of momentum and density
stratification across the binary mixing layer even at high supercritical pressures, where
the differences between liquid-like densities and gas-like densities of each species are
diminished. This allows us to isolate and to examine the effects of supercritical real-fluid
thermodynamics across the Widom line on classical mixing layer instability, which are
not investigated by past studies. Through this analysis, the enhanced sensitivity of the
thermodynamic response functions across the Widom line is shown to stimulate secondary
instability mechanisms that couple with the underlying hydrodynamic Kelvin–Helmholtz
instability.

2. Mathematical formulation

2.1. Governing equations
To describe the supercritical binary mixing flow, we consider the non-dimensional form of
the multispecies conservation equations for mass, species, momentum and energy in two
dimensions for a binary mixture:

Dtρ = −ρ∇ · u, (2.1a)

ρDtYF = 1
Pe

∇ · (ραm∇YF) , YO = 1 − YF, (2.1b)

ρDtu = − 1
Ma2 ∇P + 1

Re
∇ · τ , τ = 2μ

(
S − 1

3
(∇ · u)I

)
, (2.1c)

ρDtht = γ − 1
γ

∂tP + Ec
Re

∇ · (u · τ ) + ∇ ·
⎛
⎝ λ

PrRe
∇T + 1

Pe

∑
k={F,O}

(ραm∇Ykhk)

⎞
⎠ ,

(2.1d)

where Dt ≡ ∂t + u · ∇ denotes the substantial derivative; k = {F, O} is the species
index of methane and oxygen, respectively; ρ is the density; T is the temperature; and
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P is the pressure of the mixture. Here ht = h + Ec‖u‖2/2 is the total specific enthalpy,
where h is the mixture thermodynamic enthalpy; hk is the partial enthalpy; u = (u, v)T

is the velocity vector; Yk is the mass fraction of species k; μ is the dynamic viscosity;
λ is thermal conductivity; and αm is the mixture-averaged diffusion coefficient. Here
S = (∇u + (∇u)T)/2 is the strain rate tensor.

Reference values for non-dimensionalization are selected as follows: spatial dimensions
are scaled by the binary mixing layer’s thickness δ̃; ũref is the fluid velocity at the
centreline of the baseflow, ρ̃ref , μ̃ref , λ̃ref , α̃ref are the flow density, viscosity, conductivity,
and mixture-averaged diffusion coefficient at the centreline of the baseflow, respectively;
P̃ref is the pressure condition of the isobaric binary mixing flow; T̃ref is calculated
as P̃ref /(R̃ref ρ̃ref ), where R̃ref is the gas constant computed from the composition
at the centreline of the baseflow; h̃ref is calculated as c̃p,ref T̃ref , where c̃p,ref is the
isobaric specific heat capacity calculated from centreline conditions of the baseflow.
The reference isentropic expansion factor is γ = c̃p,ref /(c̃p,ref − R̃ref ). The Mach number
(Ma), Reynolds number (Re), Prandtl number (Pr), Eckert number (Ec), Péclet number
(Pe) are defined as

Ma = ũref√
P̃ref /ρ̃ref

, Re = ρ̃ref ũref δ̃

μ̃ref
, Pr = μ̃ref c̃p,ref

λ̃ref
, Ec =

ũ2
ref

c̃p,ref T̃ref
, Pe = ũref δ̃

D̃ref
.

(2.2a–e)

The method of Chung, Lee & Starling (1984) is used to calculated mixture viscosity
and conductivity at elevated pressures, and the Chapman–Enskog theory (Kee, Coltrin
& Glarborg 2005), along with the high-pressure correction of Takahashi (1975) is used
to calculate the binary diffusivity. The thermodynamic variables ρ, T, P, h, hk, along
with species composition YF, are closed using the PC-SAFT EOS (Gross & Sadowski
2001). This state equation has been selected for its enhanced accuracy in predicting
thermodynamic properties of dense fluids, such as the high-pressure supercritical
conditions considered in the present work.

2.2. Linear stability analysis
Linear stability analysis of the full set of multispecies, compressible governing
equations (2.1) is performed. For this, we use Q = [u, v, ρ, T, YF]T as the fundamental
variables. All other secondary variables in the set of governing equations (Ψ (Q) =
[P, h, hk, μ, λ, αm]T) are evaluated by either the PC-SAFT EOS or the kinetic models for
transport properties.

Analysis of a constant-property binary mixing layer yields the scaling of the
non-dimensional vertical growth rate v = (xRe)−1/2/2, where x is the axial distance from
the end of the splitter plate. Thus, at high Reynolds number, the vertical growth rate of the
binary mixing layer is negligible compared with the axial velocity and the quasi-parallel
assumption can be invoked (Michalke 1972).

We first linearize the governing equations by using a first-order expansion around a
baseflow that is steady and fully developed in the streamwise direction, Q(x, t) = Q0( y) +
εQ1(x, t), where x ≡ [x, y]T. The derived thermodynamic and transport properties are
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expanded as Taylor series truncated to first order, e.g.

Ψ (Q) ≈ Ψ (Q0) + ε
∂Ψ

∂Q

∣∣∣∣
0

Q1. (2.3)

When the divergence of the diffusive fluxes in the governing equations are considered,
higher-order derivatives of the secondary properties are also needed. These derivatives
are computed analytically from the PC-SAFT EOS and kinetic models using automatic
differentiation (Maclaurin, Duvenaud & Adams 2015).

From the linearized equations, we introduce the normal mode assumption for
perturbation waves with profiles in the y-direction, travelling and growing in x and t,
respectively, Q1(x, t) = Q̂( y) exp{i(αx − ωt)}, where Q̂ is the vector of the perturbation
wave profiles, and α and ω are the complex wavenumber and frequency, respectively.
At this point, the linearized governing equations along with the boundary conditions,
Q1(x, y → ±∞, t) = 0, constitute an eigenvalue problem where the frequencies ω can
be solved for each value of wavenumber α and vice versa. The eigenvalue problem is
discretized using Chebyshev expansion (Schmid & Henningson 2001):

Q̂( y) =
N∑

n=1

Q̂n cos(n cos−1(ξ)), y = ξ√
1 − ξ2

, (2.4a,b)

where the coordinate transformation y → ξ is performed to map the infinite domain in
y ∈ (−∞, ∞) to a finite domain in ξ ∈ (−1, 1). Here Q̂n is the vector of the coefficients
of the nth Chebyshev mode of the fundamental variables. With this, the problem is recast
into a generalized linear eigenvalue problem, A(α)Q̂ = ωB(α)Q̂, which is solved using a
LAPACK routine.

3. Results

3.1. Baseflow construction
In this study, binary mixing layers of O2 and CH4 are considered. The baseflow is
constructed for different isobaric conditions by assuming hyperbolic tangent profiles for
velocity, temperature and fuel mass fraction across the binary mixing layer:

u0( y) = 1 + Δu tanh( y), T0( y) = Tctr + ΔT tanh( y), YF,0( y) = 0.5(1 + tanh( y)).
(3.1a–c)

Here, T̃ctr is the non-dimensional centreline temperature, which differs from unity due
to real-fluid thermodynamics; ΔT and Δu are the non-dimensional temperature and
velocity difference across the binary mixing layer, respectively. The binary mixing layer
thickness and differences in velocity and temperature are chosen to be representative
of LOX/GCH4 rocket injection conditions (Lux & Haidn 2009): δ̃ = 1 mm, ũref =
50 m s−1, Δu = 1.5 and Δ̃TT̃ref = 0.8T̃c,CH4 = 152 K, where T̃c,CH4 = 190 K is the
critical temperature of CH4. To control the location of the Widom-line transition within
the binary mixing layer, we modulate the centreline temperature Tctr, in effect shifting the
isobaric thermodynamic trajectory of the baseflow, whose intersection with the surface of
the Widom lines is the degenerate phase transition condition that manifests in the baseflow
(see figure 1). For the configurations studied in this paper, the typical Reynolds number is
Re ≈ 6 × 105, which validates the use of the quasi-parallel assumption for x ∼ O(1).
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Figure 2. Baseflow profiles of (a) isobaric heat capacity and (b) isothermal compressibility as a function of
pressure.

3.2. Stability of real-fluid binary mixing flow
To investigate the effects of supercritical real-fluid thermodynamics on the stability of
the binary mixing layer, we perform LSA on isobaric baseflows with increasing pressure
conditions from near the critical point, where effects of transitioning across the Widom
line is strongest, to higher pressure levels, where these real-fluid effects are diminished.
The pressure conditions studied are Pr ≡ P̃ref /P̃c,O2 = {1.18, 1.3, 1.5, 1.7, 2.0}. Here, the
temperature profiles of the individual baseflows are designed such that transition across
the Widom line occurs at the hydrodynamic inflection point (the centreline). Figure 2
plots the non-dimensional isobaric heat capacity, cp, and isothermal compressibility,
βP ≡ (∂ρ/∂P)T/ρ, at these supercritical pressure conditions. The strong variations in
thermodynamic response functions across the degenerate phase transition condition at the
centreline is signified by the peaks in heat capacity and compressibility. With increasing
pressure, the distinction between supercritical liquid-like and gas-like states diminishes
and these peaks become less pronounced.

With increasing pressure, we found a competition between a backward- and a
forward-travelling eigenmode, whose profiles are plotted in figure 3(a). In both
eigenmodes, the structure of the Kelvin–Helmholtz instability is present as a smooth peak
in perturbation magnitude. However, the backward-travelling eigenmodes (characterized
by below-unity phase speed) also feature a sharp peak of perturbation magnitude
localized at the centreline, where the transition across the Widom line occurs and
thus the sensitivities of the thermodynamic response functions are greatly enhanced
(as highlighted in figure 2). In contrast, this thermodynamically induced instability is
not present in the forward-travelling eigenmodes (characterized by above-unity phase
speed). Instead, the effects of thermodynamics across the Widom line manifest as an
attenuation of the perturbation magnitude at the centreline (the location of Widom-line
crossing) due to the damping effect of the increased heat capacity. Thus, we hypothesize
that these two competing eigenmodes represent two different arrangements between the
near-critical real-fluid state and the classical binary mixing layer instability: the former
is dominant for the backward-travelling eigenmode, while the latter is dominant for
the forward-travelling eigenmode. Note that within each of the eigenmodes, the relative
dominance of thermodynamically induced instability and hydrodynamically induced
instability is also a function of wavenumber α, where the former is more significant at high
wavenumbers and the latter at low wavenumbers. To evaluate the interaction between the
thermodynamically induced and the hydrodynamically induced instability mechanisms,
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Figure 3. (a) Profiles of axial velocity perturbation mode for the two dominant eigenmodes for Pr = 1.18 −
1.70, α = 0.5. Insets show the phase speed cr ≡ ωr/α as a function of wavenumber for these two eigenmodes.
(b) Temporal growth rate: competition between growth rates of the two dominant eigenmodes as a function of
pressure and wavenumber.

in figure 3(a), the choice of α = 0.5 is made so that both instability mechanisms have
comparable influence on the eigenmodes.

As the pressure increases beyond the critical value and the enhanced sensitivities
of the thermodynamic response functions across the Widom line are suppressed, the
temporal growth rate at α = 0.5 of the backward-travelling, thermodynamic-dominant
eigenmode is reduced and eventually, at Pr ≈ 1.37, is overtaken by the forward-travelling,
hydrodynamic-dominant eigenmode, see the left panel of figure 3(b). At sufficiently
high supercritical condition, Pr ≈ 2.00, the effect of enhanced thermodynamic sensitivity
across the Widom line is diminished, resulting in the vanishing of the backward-travelling
eigenmode, which is dominated by the thermodynamically induced instability mechanism.
Furthermore, this competition between the backward-travelling and forward-travelling
eigenmodes is also influenced by the wavenumber, as evident by the distinction between
their dispersion relations shown in the right panel of figure 3(b). Specifically, the
growth rate of the forward-travelling eigenmode decays faster compared with that of the
backward-travelling eigenmode at high wavenumbers, resulting in a wider band of unstable
wavenumbers for the backward-travelling eigenmode.

We found that the net effect of increasing pressure beyond the critical point is to stabilize
the binary mixing layer, as presented by the uniform reduction of the maximum temporal
growth rate at all wavenumbers at high pressure in figure 3(b). This behaviour is uncovered
thanks to the focus on binary mixing layers and is in contrast with past stability analyses
of supercritical single-species mixing layer, where at increasing pressure conditions, the
flow was found to destabilize due to a reduction in the density stratification across the
single-species mixing layer (Zong et al. 2004). Furthermore, we note that the emergence
of a dual-mode instability has also been observed by Ren et al. (2019b) in supercritical
compressible single-species boundary-layer flows. Specifically, they discovered that in
addition to the Tollmien–Schlichting instability mode (Mode I), an inviscid mode (Mode
II) emerges for the baseflows that cross the Widom line. Similar to the thermodynamically
dominated backward-travelling eigenmode in the present analysis, Mode II features much
higher growth rates and a wider band of unstable frequencies. Thus, they showed that
the introduction of dual-mode instability by Widom-line dynamics has a net effect of
destabilizing the boundary-layer flow. This is in agreement with the present results of
mixing layer instability.
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Figure 4. (a) For a given pressure condition (Pr = 1.18), alignment between baseflow’s temperature profile
(T̃0( y), coloured lines) and the profile of local Widom-line transition temperatures (T̃WL(YF,0( y)), black line)
gives rise to local manifestation of degenerate phase transition conditions at various prescribed locations
yWL (black markers). Three examples of baseflows are given for yWL = {−1, 0, 1}. Inset shows the relative
attunement of the centreline temperature with the Widom-line transition temperature, �TWL,ctr ≡ (T̃0(0) −
T̃WL(0))/T̃WL(0), for baseflows with different prescribed yWL. (b) Profiles of isothermal compressibility
for three example baseflows with various prescribed locations of Widom-line transition, demonstrating the
enhanced sensitivity of the thermodynamic response.

3.3. Attunement of Widom-line transition with binary mixing layer instability
To investigate the role of Widom-line dynamics on destabilizing the flow through the
thermodynamically induced instability mechanism, we perform LSA for near-critical
(Pr = 1.18) baseflow that exhibits a degenerate phase transition at various prescribed
locations yWL, such that T̃0( yWL) = T̃WL(YF,0( yWL)). Specifically, figure 4(a) illustrates
how the alignment between the location of Widom-line transition temperature, which
is a function of local composition T̃WL(YF,0( y)), with the temperature profile of the
baseflow determines the location where degenerate phase transition occurs. Thus, through
a shift in the baseflow’s temperature profile by varying T̃ctr and keeping Δ̃T constant,
the location of degenerate phase transition yWL is controlled. The relationship between
T̃ctr and yWL is shown in the inset of figure 4(a). Here, we note that shifting yWL away
from zero results in a detuning of the local thermodynamic condition at the inflection
point of the baseflow away from the Widom-line transition condition. This allows us
to evaluate the coupling between thermodynamic response (shown in figure 4b) with
the underlying binary mixing layer instability, which manifests around the baseflow’s
inflection point at the centreline. Furthermore, note that due to the tanh-profiles of the
baseflow’s temperature and CH4 mass fraction, as yWL shifts deep into one of the two
streams, the entirety of either stream will be at the Widom-line transition condition.
Therefore, increasing or decreasing yWL past ±3 has negligible effect on the baseflow
and thus on its stability characteristics.

Figure 5 plots the most unstable eigenmode for the axial velocity perturbation |û| and the
reconstructed perturbation field at α = 0.5 and Pr = 1.18, for yWL = 0, −0.5, −1.0, −3.0.
Here, the eigenmodes are normalized by their maximum amplitude and the eigenmode
for the ideal-gas configuration is also plotted for reference. Note that comparisons
between the magnitudes of the eigenmodes in figure 5 should not be performed
because eigenmodes have no absolute scale in the LSA framework. Through these
visualizations, we note the superposition of two different instability mechanisms near
the centreline. One is the classical binary mixing layer instability that arises from the
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Figure 5. Reconstructed axial velocity perturbation u1 (left side of graphs) and corresponding profiles of
axial velocity perturbation mode | û | (right side of graphs) at α = 0.5 for cases with Pr = 1.18 and yWL =
{0, −0.5, −1.0, −3.0}. (a) yWL = 0. (b) yWL = −0.5. (c) yWL = −1.0. (d) yWL = −3.0.

baseflow’s inflection point, corresponding to the upper and smoother structure. The other
is the thermodynamically induced instability that arises from the sharp variations in
thermodynamic response functions, corresponding to the lower and sharper structure.
As the Widom-line transition location yWL shifts away from the centreline, the classical
binary mixing layer instability remains at the inflection point at y = 0. In contrast, the
location of the thermodynamically induced instability shifts in accordance with yWL,
see the evolution of the reconstructed axial velocity perturbation as yWL is varied in
the four panels of figure 5. Concurrently, with detuning of the Widom-line transition
location yWL away from the centreline, the classical binary mixing layer instability is
amplified compared with the thermodynamically induced instability. This is caused by
the thermal shielding effect of enhanced heat capacity across the Widom-line transition
being lessened at the centreline. In contrast, as yWL shifts away from the centreline, the
thermodynamically induced instability is attenuated compared with the hydrodynamically
induced instability, as there is a reduction in thermodynamic-property gradient required
to activate the regions of high sensitivity in the thermodynamic response functions.
Eventually, when yWL = −3, the thermodynamically induced instability vanishes and
the perturbation mode recovers towards that of the ideal-gas Kelvin–Helmholtz
instability.

Overall, the net effect of aligning the Widom-line transition condition with the binary
mixing layer’s hydrodynamic inflection point is to destabilize the flow by introduction
of the thermodynamically induced instability mechanism, see figure 6. Specifically,
as yWL shifts away from zero, variations in the thermodynamic response functions
become less prominent at the hydrodynamic inflection point at the centreline. This
effect leads to the reduction and eventual vanishing of the thermodynamic-dominant
backward-travelling eigenmode as well as the tightening of the instability envelope
of the hydrodynamic-dominant forward-travelling eigenmode. Eventually, when yWL is
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Figure 6. (a) Destabilizing influence of the alignment between thermodynamic Widom-line transition
point and the binary mixing layer hydrodynamics on the temporal growth rate. Solid lines indicate
backward-travelling eigenmode and dashedlines forward-travelling eigenmode. (b) Maximum temporal growth
rate as a function of wavenumber α and location of Widom-line transition yWL. Results are shown for Pr = 1.18.

sufficiently far away from the inflection point, the effects of the thermodynamic response
functions on the binary mixing layer hydrodynamics vanishes and the instability envelope
recovers towards that of the ideal-gas binary mixing layer instability.

4. Conclusions

The stability dynamics of binary mixing layers at supercritical pressure conditions was
studied using LSA, in which real-fluid effects were considered using the PC-SAFT EOS.
Specific focus was placed on examining the effects of strong variations in thermodynamic
response functions across the Widom-line transition on the underlying binary mixing flow
instability.

Results from the stability analysis show behaviours substantially different from previous
studies of single-species mixing flows at supercritical conditions and of classical
compressible mixing flows in ideal-gas conditions. Specifically, when the Widom-line
transition location is colocated with the binary mixing layer’s inflection point, we showed
that the binary mixing layer is destabilized by the effects of supercritical real-fluid
thermodynamics at the degenerate phase transition condition. Furthermore, it is shown that
the destabilizing effect of supercritical real-fluid thermodynamics on binary mixing flows
is brought about as a result of strong variations in the thermodynamic response functions at
the Widom-line transition, which, when in close proximity with the binary mixing layer’s
inflection point, can take advantage of the existing flow perturbations to develop into a
new instability mechanism that interacts with the existing Kelvin–Helmholtz instability.
Thus, the strength of this thermodynamically induced instability is directly correlated
to (a) the strength of real-fluid thermodynamic effects across the Widom-line transition,
which diminishes with increasing pressure past the critical point and (b) the attunement
between the location of Widom-line transition with the inflection point of the underlying
binary mixing layer.

The coexistence of the thermodynamically induced and the hydrodynamically induced
instability mechanisms uncovered in the present paper for supercritical mixing flows bears
striking analogies with the dual-mode instability behaviour of supercritical boundary
layers observed by Ren et al. (2019b). Thus, the results of the present study highlight the
need for fundamental research into the universal coupling between Widom-line dynamics
and hydrodynamic instabilities, as well as for an extension of classical instability criteria
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(e.g. Rayleigh criterion and Fjørtoft’s extension) to incorporate the effect of real-fluid
thermodynamic response functions.

Finally, the exploitation of this instability mechanism offers opportunities for improving
fuel injection systems operating at high pressures, such as diesel and rocket engines
(Mayer et al. 2003; Koukouvinis et al. 2020). Specifically, while Banuti & Hannemann
(2016) demonstrated that the mixing performance in single-fluids injectors can be
improved by the potential core crossing the Widom line axially, we show in this paper
that binary mixing flows feature another mechanism for enhanced mixing by crossing the
Widom line vertically across the splitter plate.
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