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Supercritical fluids behave as complex
networks

Filip Simeski 1 & Matthias Ihme 1,2

Supercritical fluids play a key role in environmental, geological, and celestial
processes, and are of great importance to many scientific and engineering
applications. They exhibit strong variations in thermodynamic response
functions, which has been hypothesized to stem from the microstructural
behavior. However, a direct connection between thermodynamic conditions
and the microstructural behavior, as described by molecular clusters, remains
an outstanding issue. By utilizing a first-principles-based criterion and self-
similarity analysis, we identify energetically localizedmolecular clusterswhose
size distribution and connectivity exhibit self-similarity in the extended
supercritical phase space. We show that the structural response of these
clusters follows a complex network behavior whose dynamics arises from the
energetics of isotropic molecular interactions. Furthermore, we demonstrate
that a hidden variable network model can accurately describe the structural
and dynamical response of supercritical fluids. These results highlight the
need for constitutive models and provide a basis to relate the fluid micro-
structure to thermodynamic response functions.

Supercritical fluids occur in a wide range of environmental and
technological processes, including atmospheric separation on pla-
nets in our solar system1, biochemical habitats in submarine
hydrothermal vents2, fluid-phase transfer in subduction zones3, and
long-term carbon storage in deep sedimentary formations4. In
addition, chemical processing5, energy conversion6, and hydro-
carbon production7 utilize supercritical fluids in daily operations by
taking advantage of the strong variations in thermodiffusive prop-
erties, such as heat capacity, surface tension, diffusivity, and
solubility8. Moreover, the microscopic structure of supercritical
fluids exhibits local density inhomogeneities9, which characterize a
transition between two structurally different states: a high-density
liquid-like state and a low-density gas-like state10–12. These local
density inhomogeneities arise from molecular clusters that are
embedded among unboundmolecules; each cluster is a grouping of
fluid molecules that increases the local density of the fluid. To
compartmentalize the supercritical state space, different transition
boundaries have been proposed, including Nishikawa’s ‘ridge’13,14,
the Frenkel line15,16, the Widom line11,17, and the percolation line18.

Nishikawa’s ‘ridge’ identifies the region of maximum correlation
lengths and density fluctuations along the extension of the coex-
istence curve13,14. The Frenkel line relates to the dynamic crossover
between a rigid liquid and a non-rigid liquid, associated with the
vibrational motion and the ballistic-collisional motion15. Recent
studies have examined the structural, thermodynamic, and dynamic
properties in relation to this crossover condition and confirmed its
presence in supercritical water19,20. The Widom line separates liquid-
like and gas-like states and indicates the condition where the cor-
relation length attains its maximum. It is often associated with the
locus of maxima in thermodynamic response functions21. Simeoni
et al.11 measured sound dispersion in high-pressure argon to show
changes in structural behavior as one crosses from the liquid-like to
the gas-like state. For supercritical water, Sun et al.22 investigated the
longitudinal current correlation spectra and found that crossing the
Widom line leads to a shift from high to low frequencies, indicating a
change from liquid-like to gas-like behavior. Neutron-imaging mea-
surements of density fluctuations in supercritical water confirmed
the transition from liquid-like and gas-like conditions across the
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Widom line23,24. In the current work, the Widom line is modeled as
the line of maxima in the isobaric heat capacity.

In contrast to the Widom line, the percolation line is directly
based on the microscopic structure and marks the critical density at
which molecular clusters coalesce and transform from micro- to
macroscopic dimensions18. Percolation theory was applied to iden-
tify supercritical liquid-gas transitions in argon25, carbon dioxide26,
and water27. For supercritical water specifically, the percolation
crossover was verified by neutron diffraction measurements10. In
one of the earliest applications of percolation theory to analyze the
microscopic structure of water, Stanley28 put forward a correlated-
site percolation model to describe ambient and supercooled water
as a percolating network of hydrogen bonds (H-bonds). Subse-
quently, Campi et al.18 applied percolation theory to supercritical
Lennard-Jones fluids and identified a percolation line starting at the
critical point. Similarly, through network analysis of Monte Carlo
simulation data, dos Santos et al.29 observed highly clustered
H-bond network in supercritical water and, at ambient conditions, a
single giant cluster that percolates the system. More recently,
lattice-type models have been proposed to explain the relation
between the microscopic structure and thermodynamic response
functions of supercritical water30 and along the critical isotherm of
argon31. The lattice structure and constant spacing in these models,
however, limit their applicability in high-density states.

In this study, we examine the static and dynamic cluster behavior
of water across the structural transition line in the supercritical phase.
Different definitions of a cluster have been proposed32. Perhaps the
simplest definition of a cluster is that of a Stillinger cluster33, which
assigns all molecules within a prescribed radius to the same cluster.
This purely geometric definition has gained traction due to its sim-
plicity, but it has also attracted criticism because of its dependence on
tunable parameters34. Clusters in supercritical water have also been
defined based on the properties of H-bonds35,36. More rigorously, Hill
proposed a cluster definition based on the atomic energy balance
between potential and kinetic energy37. By extending Hill’s energetic
criterion, we seek to define local clusters based on interactions
between molecules. The evolving structure of these clusters controls
the fraction of fluid in the liquid-like state. By characterizing cluster
agglomeration and fragmentation at the crossover, we discover that
the microscopic topology and dynamics can be described by a com-
plex network model. The utility of this model is evaluated by com-
paring predictions of structural properties from molecular dynamics

(MD) simulations and experiments, including the cluster size dis-
tribution and the connectivity. Finally, we employ this complex net-
work model to analyze the crossover dynamics.

Results
The properties of supercritical fluids change substantially when
crossing theWidom line. This change is illustrated in Fig. 1, showing the
reduced density of water, ρr = ρ/ρc, as a function of reduced pressure,
Pr = P/Pc, and reduced temperature, Tr = T/Tc. The critical point is
located at Tc = 647 K, Pc = 220.7 bar, and ρc = 322.5 kg/m3. In super-
critical water at temperatures below Tc (Fig. 1, Tr =0.88), most mole-
cules in the fluid belong to a single cluster, which due to its high
density conforms to a liquid-like state. As the temperature is increased,
this single cluster fragments into many clusters of all sizes along the
Widom line (Fig. 1, Tr = 1.06). Finally, at temperatures exceeding Tc
(Fig. 1,Tr = 1.26), only few clusters exist andmostmolecules belong to a
gas-like state that is characterized by disconnected molecules with
high kinetic energy. In this phase diagram, the Widom line is deter-
mined as the locus of the peaks in isobaric heat capacity from NIST
data38.

To investigate changes in the microscopic structure of the fluid
during the Widom line crossover, we perform MD simulations using
the ReaxFF potential39. The ability of this force field to predict the
structure of supercritical water has been assessed in previous
studies40,41, and further validation against experimental data is pro-
vided in Supplementary Figures 1–4. MD simulations with 8544 mole-
cules were performed in the isothermal-isobaric ensemble (NPT) to
study state points spanning reduced pressures from Pr = 1.1–2.8 and
reduced temperatures from Tr = 0.46–1.9. A Nosé-Hoover chain
thermostat42 was used to control the temperature. The chain com-
prised three thermostats with a damping constant of 10 fs. Similarly,
the pressure was controlled by a Nosé-Hoover chain of three
barostats42 with a pressure damping parameter of 100 fs.

Cluster identification
The MD trajectories are analyzed to investigate the microscopic clus-
ter structure, which is described via the cluster size distribution, nc(s),
representing the number of clusters of a given size, s, in the system43.
To avoid ambiguity in the cluster definition, we use Hill’s energy
criterion37 because it is purely physics-based, numerically robust (see
Supplementary Note 1 and Supplementary Figs. 5 and 6), and applic-
able to general and non-polar fluids. Previously, this criterion was
employed to study clustering in supercritical Lennard-Jones fluids18.
The molecules that belong to a cluster are interconnected with bound
pairs. Two molecules, i and j, form a bound pair if the interaction
potential energy exceeds their relative kinetic energy37:

Epot,ij + Ekin,ij
<0: ð1Þ

In this work, Hill’s criterion is applied to pair-wise molecular
interactions. The interaction potential energy, Epot,ij, between mole-
cular pairs consists of two components: a van-der-Waals interaction
and a Coulombic interaction. The ReaxFF force field treatment of
interatomic bonds accounts for all vibrational and rotational modes
that may affect the structural and dynamical response at supercritical
conditions. Moreover, because the van der Waals and Coulombic
energetic contributions depend only on the intermolecular distance
and not on the molecular orientation, the interactions that lead to
bound pairs are isotropic in nature. It is important to note that the
current application of Hill’s energy criterion does not include the
hydrogen-bonding interaction energy. This assumption is valid
because the cluster lifetime is longer than that of individual H-bonds,
which was found to be less than 100 fs in the supercritical water
phase44. Finally, the relative kinetic energy, Ekin,ij, is defined based on
the velocities of the molecular centers of mass. Based on these

Fig. 1 | Phase regime diagram for water. TheWidom line is shown as a red dashed
curve and the critical point is labeled with a black star. Insets show that clusters
fragment as temperature is increased: from a liquid-like state (Tr =0.88), via the
Widom line (Tr = 1.06) to a gas-like state (Tr = 1.26). These snapshots show the
microscopic structure and clustering in MD simulations of supercritical water at
Pr = 1.6; O atoms are represented in red and H atoms are represented in gray. The
clusters, defined using Hill’s criterion, are shaded in pale blue.
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energetic interactions, a molecule is assigned to cluster Cm:

Cm : = i ∣ ð9 j 2 CmÞ Epot,ij + Ekin,ij
<0

h in o
, ð2Þ

where the clusters are denoted asm = 1, 2,…,Nc, withNcbeing the total
number of clusters. A detailed description of this algorithm is pre-
sented in Supplementary Note 1. When Hill’s criterion is applied to
each pair of molecules in the MD data, the clusters define the micro-
scopic structure of supercritical water (see insets in Fig. 1).

Self-similar representation of thermodynamic state space
To collapse the fluid properties andmicroscopic structure for isobaric
conditions, we seek a self-similar variable. To achieve this collapse, the
data is analyzed in terms of the scaled reduced pressure45:

P*
r =P

A0=As
r , ð3Þ

where As is the species-specific nondimensional slope of the Widom
line at the critical point (As = 6.479 for water) and A0 = 5.51934 is a
reference value that is based on the slope of a fluid with zero acentric
factor45. Further, we introduce a reduced temperature increment with
respect to the Widom line, ΔTr =Tr � T *

r , where T *
r = ln P*

r
1=A0

� �
+ 1 is

the reduced temperature at the Widom line45. Combining the scaled
reduced pressure and the reduced temperature increment, we
introduce the Widom self-similarity:

W =
ΔTr

P*
r

=
1

P*
r

Tr � ln P*
r
1=A0

� �
� 1

h i
, ð4Þ

which allows us to collapse fluid properties in the supercritical phase.
Specifically, the scaled reduced pressure removes the widening in the
peak of thermodynamic response functions with increasing pressure
and the reduced temperature increment shifts these functions to
collapse. The use of the Widom line for this collapse instead of the
percolation line, which would be more appropriate in normalizing of
cluster-based properties18, is motivated by ease of direct experimental
verification of the Widom line and its relation to thermodynamic
quantities.

Complex network model
To connect the cluster distribution to the macroscopic behavior, we
hypothesize that the microscopic structure of supercritical fluids can
be described as a complex network. While the connection of networks
to the molecular organization of fluids has been recognized for a long
time28–31, previous comparisons have mainly employed lattice-based
models, which limited the number of thermodynamic states that could
be analyzed in such endeavors. Networks are structures consisting of
nodes that are connected through links46. In this description, each
molecule represents a node, andmolecules are connectedwith a link if
they form a bound pair based on Hill’s energy criterion (Equation (1)).
Molecules with high kinetic energy are less likely to be bound to other
molecules in the system due to their short residence time in each
other’s vicinity. The role ofmolecular energies in the cluster formation
implies that links depend on nodal properties. Moreover, mass con-
servation requires that the total number of nodes remains constant.

To represent the cluster distribution, we consider a complex
network model that is based on an exponential random graph46,47.
Exponential random graphs have been employed to describe a variety
of real-world applications, including trade and economic
relationships47,48, social networks49, and conformations of dynamic
systems46. By considering a complex network model, we represent the
probability for the supercritical fluid system to obtain a certain

topology, G, by46:

pðGÞ= 1
Z
expf�HðGÞg, ð5Þ

where H(G) is the Hamiltonian of the given topology and
Z =

P
G expf�HðGÞg is the partition function for the system. Starting

from Equation (5), and based on the maximum likelihood principle,
Garlaschelli and Loffredo47 derived a hidden-variable network model
where the probability that two nodes are linked is given by:

f ðxi,xjÞ=
zxixj

1 + zxixj
, ð6Þ

where xi is the fitness of node i and z is a variable that controls the
network density. The fitness represents the suitability of a molecule to
formmore links. This networkmodel fulfills the physical requirements:
(i) it redraws links in a network at each iteration based on molecular
properties and (ii) the total number of molecules in the network is
constant.

In this network model, the link density z introduces the thermo-
dynamic dependency that is defined via the temperature and pressure
conditions of a supercriticalfluid state. Becausewe aim to describe the
molecular topologyof the supercriticalfluid via thenetworkmodel,we
need to express the values of z in terms of the thermodynamic con-
ditions of themolecular system. To this end, we first present a relation
between the link density z and network-topological quantities that can
be calculated from the MD data, such as the total number of bound
pairs (i.e., links) in the supercritical fluid system. The total number of
links,M, for the network model is expressed as50:

M =
N
2

X1
k =0

kndðkÞ=
1
2
N�k, ð7Þ

where k is the degree of a node, nd(k) represents the distribution of
nodeswith degree k, andN is the total number of nodes in the network
(i.e., total number of molecules). Finally, �k represents the average
degree of a node51:

�k = kmax

Z 1

0

Z 1

0
gðxiÞgðxjÞf ðxi,xjÞdxidxj , ð8Þ

where kmax is the maximum degree of a node in the system. In the
thermodynamic limit, kmax ! N. The integral represents the average
probability for a link between any two nodes. Because this integral
typically obtains a small value, �k is always finite. Here, we sample the
fitness from a probability density function, g(x), that is given by a beta
distribution:

gðx;α,βÞ= xα�1ð1� xÞβ�1 Γðα +βÞ
ΓðαÞΓðβÞ , ð9Þ

with α = �xð1� �xÞ � x02
� �

�x=x02 and β= �xð1� �xÞ � x02
� �

1� �xð Þ=x02:Here,
�x =0:6 and x02 =0:0686 are the mean and the variance of the fitness
distribution, respectively. These quantities were chosen based on a
regression of MD data and were kept constant for all thermodynamic
conditions. The relation of the distribution parameters to physical
properties requires further investigations.

With equations (7) and (8) yielding a closed analytical solution for
the total number of links in the networkmodel, we proceed to connect
this model to the MD system. The total number of links,M, is assumed
as a known quantity and we numerically solve for the corresponding
link density z that serves as input in generating an appropriate com-
plex network. For the network to converge to a statistically steady
state, we adopt the approach of Lin et al.52: the presented data is
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averaged over 15N iterations with the self-consistent histogram
method53. The steps for generating the network are summarized as
follows.
1. Assign a fitness value, xi, to each node i using Equation (9):

xi ~ g(x; α, β).
2. Calculate the probability, f(xi, xj), for a link between nodes i and j

using Equation (6).
3. Create a symmetric adjacency matrix by comparing the prob-

ability, f(xi, xj), against a random number selected from a uniform
distribution between (0, 1). No self-links are allowed.

4. From the adjacencymatrix, calculate topological properties of the
network model.

5. Repeat steps 1-4 for 15N times.

Because we aim for the network model to depend only on
experimentally measurable quantities, we seek to relate the link den-
sity, z, to theWidomself-similarity,W. Because it has been shown that,
in the thermodynamic limit, the hidden-variable model maintains an
invariant cluster size distribution in terms of zN54, we propose the
following expression:

z =
1
2N

3
20

+ exp W2 � 13
2
W +

3
2

� �� �
, ð10Þ

which is a regression (see Supplementary Fig. 7) of the calculated z
values from the total number of links,M, in the MD data via Equations
(7) and (8). Because the link density z in Equation (10) is directly cal-
culated from experimentally measurable thermodynamic quantities
through Equation (4), this relation allows for a self-contained network
model to predict the microscopic structure of supercritical water. We
note that the generalization of this representation to other fluids
requires further investigation.

Clusters in the networkmodel represent groups of nodes that are
connected through links. As shown in Fig. 2, the topology of this net-
work model reproduces the three types of structural behavior
observed in the three regimes of supercritical fluids: liquid-like state,
percolation, and gas-like state. In what follows, we quantify this
structural response. Moreover, we show the capability of this hidden-
variable network model to describe the complex physical structure of
molecular interactions in the supercritical phase by demonstrating
agreement in terms of cluster size distributions, connectivity, and
network dynamics.

Structural properties and topology
To statistically discuss the microscopic structure of supercritical
water,wedefine twoquantities of interest: cluster fraction andnumber
of clusters. The cluster fraction, ϕ, represents the fraction of fluid that

is contained in all molecular clusters (s > 1):

ϕ=
Na

N
= 1� ncðs = 1ÞP1

s = 1 sncðsÞ
, ð11Þ

where Na is the number of molecules that belong to any cluster. Four
representative examples of how the cluster fraction evolves as a
function of W are shown in Fig. 3a. The collapse of these curves as a
function of W implies that a general model may describe the under-
lying intermolecular interactions across the supercritical region.

The total number of clusters relates how the cluster fraction is
distributed in the system by showing whether the liquid-like state is
concentrated in a few large clusters or whether there is an abundance
of small liquid-like assemblies interspersed with unbounded mole-
cules. The maximum number of clusters occurs when all molecules
belong to a different bound pair, i.e., all clusters are the size of two
molecules. Therefore, in this work, the normalized number of clusters,
χ, is defined as:

χ =
2Nc

N
=
2
P1

s = 2 ncðsÞP1
s = 1 sncðsÞ

: ð12Þ

Physical insight is obtained from the normalized number of
clusters as a function ofW (Fig. 3b), whichpeaks along theWidom line.
This finding is consistent with previous observations of how the
number density for clusters in supercritical fluids varies with
pressure55. At temperatures below the Widom line, there is one large
cluster that contains the majority of the molecules in the system,
therefore limiting the total number of clusters that can be formed.
Once we cross the Widom line, the majority of molecules are
unbounded, i.e., they do not belong to a cluster. Because molecules
with high kinetic energy are less likely to stay together and form a
cluster, there are fewer clusters at temperatures higher than those
along the Widom line. This behavior is consistent across the super-
critical state space studied here.

We proceed by comparing predictions of the networkmodel with
MDdata for supercritical water. The cluster fraction (Fig. 3a) predicted
from the network model shows good agreement with the cluster
fraction variation fromMDsimulations. As a result, the networkmodel
describes the fraction of molecules in the supercritical phase that
belongs to a cluster. In a similar manner, the number of clusters
observed in the physical system is also reproducedwell by the network
model. As shown in Fig. 3b, the normalized number of clusters in the
network model peaks at W =0 and decreases with a similar slope as
the MD results for supercritical water. This agreement confirms that

Fig. 2 | Topology of network model. Snapshots of the hidden-variable model
topology at aW = � 0:13, b 0, and c 0.13 in a network of N = 200. As the value ofW
increases, the network exhibits the system-spanning cluster of the liquid-like state,
the scale-free cluster size distribution along the Widom line, and the low-density
mode of the vapor-like state, respectively. The conditions visualized here corre-
spond (through Equation (10)) to the thermodynamic state points shown in Fig. 1.
For visualization purposes, each node is represented with an image of a water
molecule. Clusters are depicted by pale blue shading.

Fig. 3 | Comparison of structural properties. a Cluster fraction and b normalized
number of clusters in the MD simulations and in the complex network model. The
quantities are plotted as a function of the Widom self-similarity W (and corre-
sponding link density, computed from Equation (10)), which collapses these
quantities onto a master curve. The similarity in both quantities indicates that the
network model predicts the behavior of the real system. Source data are provided
as a Source Data file.
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the complex network model predicts the structural properties of
supercritical fluids at the system level.

While the cluster fraction and the number of clusters provide
statistical information about the microstructure of supercritical fluids,
to understand the underlying physics of how these fluids are orga-
nized, we study the local density inhomogeneities. Figure 4 shows two
descriptors of this density variation: the cluster size distribution, nc(s),

and the degree distribution, nd(k). First, we show that, at each ther-
modynamic state point, there is an inherent distribution of cluster
sizes. The size of the largest cluster depends on the thermodynamic
state of the system. This dependence occurs because the molecular
bound pairs (i.e., links in the network of intermolecular interactions),
defined by Equation (1), break as molecular energies change with
thermodynamic conditions. At liquid-like conditions (W = �0:13,

Fig. 4 | Topology of supercritical fluids. (top row) Cluster size distributions and
(bottom row) degree distribution for supercritical water and the complex network
model. Different shades of blue represent isobars, (dark to light) Pr: 1.1, 1.6, 2.1, 2.6,
respectively. Both quantities exhibit three distinct regimes: (a, d) liquid-like state

(W = � 0:13), (b, e)Widom line (W =0), and (c, f) gas-like state (W =0:13). Network
model agrees well with MD simulations across wide range of thermodynamic
conditions. Arrow in d marks a peak in the degree distribution. Source data are
provided as a Source Data file.

Fig. 5 | Comparison with experiments. Comparison of cluster size distributions
from MD simulations and network model to experimental data of Bernabei et al.10

for four conditions: a Pr = 1.13 and Tr = 1.04, b Pr = 2.26 and Tr = 1.04, c Pr = 6.79 and

Tr = 1.04, and d Pr = 11.32 and Tr = 1.16. Source data are provided as a Source
Data file.
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Fig. 4a), the cluster size distribution exhibits faster than power-law
decay with one very large cluster that is of the same size as the system.
At theWidom line (W =0, Fig. 4b), there are clusters of all sizes and the
cluster size distribution obeys a power law. The observationof a power
law nc(s) ~ sτ with τ = − 2.2 in the cluster size distribution, which was
reported by Campi et al.18 along the percolation line, confirms that the
Widom line closely follows the percolation line for the studied range of
conditions. Across this transition, for gas-like conditions (W =0:13,
Fig. 4c), the cluster size distribution showsexponential decay anddoes
not contain clusters that span the system. We extend these results by
discovering self-similarity in the cluster size distribution along iso-
pleths of equalW. The cluster size distributions remain invariant along
each of these isopleths (four different thermodynamic state points are
shown for each regime in Fig. 4), an invariance that extends to reduced
pressures of at least 2.8.

Because the network model aims to predict the fluid behavior at
the level of molecular clusters, we compare its cluster size distribution
to that of supercritical water in the top row of Fig. 4. In each regime,
good agreement is observedbetween the networkmodel andMDdata.
This agreement confirms our hypothesis that the network model can
predict the clustering in supercritical water and, importantly, that the
microscopic structure of supercritical fluids can be analyzed as a
complex network of isotropic intermolecular interactions. Notably,
because of the short lifetime of H-bonds at supercritical conditions44,
their existence is not a prerequisite for a network analysis to be applied
to these systems. Therefore, the links in these networks have an iso-
tropic character and depend only on the intermolecular distance, but
not on the orientation. Because these underlyingphysical networks are
expected to be general, one can apply the proposed complex network
model to reproduce quantities such as cluster size distributions and
cluster fraction at different thermodynamic conditions in supercritical
fluids. To further emphasize this, we extend our analysis by comparing
predictions of the network model against experimental results by
Bernabei et al.10 As shown in Fig. 5, cluster size distributions obtained
using Hill’s energy criterion and predictions by the network model
reproduce experimental data for a range of conditions that span the
supercritical phase.

We proceed by analyzing the degree distribution, nd(k), which
describes the connectivity of clusters, as shown in the bottom row of
Fig. 4. The degree of a molecule, k, is defined by the number of its
neighbors: two molecules neighbor each other if their interaction
satisfies Hill’s energy criterion. It can be seen that for liquid-like
conditions, where molecules are closely packed, the degree

distribution is extended to larger values (W = �0:13, Fig. 4d).
Because onlymolecules near the cluster boundary have a low degree
of connectivity, in the high-density liquid-like state, a peak exists in
nd(k) (labeled with an arrow at k = 2 in Fig. 4d) that moves to lower
degree values with increasing temperature. In contrast, at gas-like
conditions (W =0:13, Fig. 4f), molecules have higher kinetic energy
and, thus, fewer interactions with other molecules in the system.
Fewer interactions among molecules, in turn, lead to smaller clus-
ters and a more compact degree distribution that peaks at k = 0.
Similar to the cluster size distribution, the degree distribution is self-
similar along isopleths ofW in the extended supercritical region. For
each W, Fig. 4 depicts four thermodynamic state points (repre-
sented with different shades of blue), where the connectivity of the
physical system remains invariant.

While the connectivity in the MD system evolves with the Widom
self-similarity W, the network model exhibits the same connectivity
behavior when the link density z is varied. We compare these two
systems for a range of conditions in the bottom row of Fig. 4. The
connectivities predicted by the network model and theMD data are in
good agreement for all three regimes. Based on these comparisons, we
show that the network model is capable of predicting the density and
distribution of molecular interactions of supercritical water. This
observation suggests that the network model elucidates the mechan-
ism of self-organization in supercritical fluids, not only at the system
level, but also at the microstate level, where pair interactions between
molecules define clusters.

Importantly, the networkmodel may be employed to accurately
predict the transition of supercritical fluids across theWidom line. In
assessing this capability, we consider the evolution of the two sys-
tems as a function of the average degree, �k. This quantity can be
interpreted as the average number of molecules in the first hydra-
tion shell. The size of the largest component in the system, Smax,
contains information about the percolation transition of the net-
work, i.e., the structural crossover between liquid-like and gas-like
states of supercritical fluids. When this cluster percolates the sys-
tem, it also contains the majority of molecules present. The relative
size of the largest cluster is defined as the fraction of molecules that
belong to this cluster56. In Fig. 6, we show that the network model
predicts the behavior that is observed from the MD solution when
crossing theWidom line. Remarkably, the crossover for supercritical
fluids does not change its behavior far from the critical point. This
result confirms the generality of our network model in predicting
the behavior of supercritical water.
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Fig. 6 | Relative size of the largest component as a functionof averagedegree in
the system. The network model is shown in red, while MD simulation data are
represented with symbols colored based on the isobar. Error bars represent one

standard deviation. The model captures the cluster evolution during the Widom
line crossover. Source data are provided as a Source Data file.
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System dynamics
By extending the analysis of statistical properties, we proceed to
examine the dynamics of the network model and to compare that
dynamics to MD data. For this, we evaluate the model based on its
predictions of molecular exchanges between clusters, which provides
understanding of why the cluster size and degree distributions evolve
across the Widom line.

Figure 7 shows that the molecular transfer rate peaks near the
Widom line for all conditions considered. This peak obtains a

consistent magnitude deep into the supercritical phase. Two balanced
processes define the peak in molecular transfers: the entropically-
favored fragmentation of clusters into gas-like molecules and the
energetically-favored agglomeration of clusters into liquid-like
assemblies57. Away from the Widom line, one of these processes
dominates and the number of transfers significantly decreases. In the
liquid-like state, the system’s energy is minimized by the existence of
one large cluster that contains the majority of the fluid molecules
(W = � 0:13 in Fig. 4). Themolecules that are enclosedwithin the core

Fig. 7 | Molecular transfers between clusters.Molecular transfers rate peaks
along the Widom line. (inset) Transfer matrices (with time increment dt= 2.5 ps)
show that molecular exchanges are localized at a given scale: largest cluster in the
liquid-like state (W = � 0:13) and small clusters in the gas-like state (W =0:13).

Along the Widom line (W =0), molecular exchanges occur among clusters of all
scales. Transfermatrices for the networkmodel replicate dynamics of fluid system.
Source data are provided as a Source Data file.
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of the cluster are unlikely to transfer to another (smaller) cluster and,
therefore, the number ofmolecular exchanges at liquid-like conditions
is low. In contrast, the gas-like state is characterized bymolecules with
high kinetic energy and very few clusters, thereby maximizing the
entropy of the system.Hence, the rarity of clusters and the high kinetic
energy of fluid molecules make cluster exchanges improbable in the
gas-like state. Evidence for the localization of thesemolecular transfers
is found in the cluster transfer matrices (insets of Fig. 7), which
quantify the number of molecular transfers between two subsequent
time steps as a function of cluster size. Along the Widom line, where
previously a scale-free cluster size distribution was found, we also find
molecular exchanges among clusters of all sizes.

To evaluate the performance of the network model in predict-
ing the cluster dynamics, in Fig. 7, we also compare the transfer
matrices of the model with those obtained by analyzing molecular
clusters in the supercritical phase. Because the network model has
no notion of time, the network iterations are assumed to represent
pseudo-time stepping in order to calculate the fraction of transfers
in this system. Both the network model and the supercritical fluid
system exhibit similar transfer distributions. Single-molecule
transfers, which are defined as the number of clusters of size s that
transition into size s ± 1 as a fraction of the total number of cluster
transfers, dominate both systems. The majority of single-molecule
transfers occurs due to agglomeration of unbound molecules into
two-molecule clusters or due to fragmentation of two-molecule
clusters, as shown in Fig. 8. There are fewer single-molecule trans-
fers among clusters of increasing size. The model accurately pre-
dicts the distribution of these molecular exchanges as a function of
cluster size. In agreement with the transfer matrices, the tail of the
single-molecule transfer distributions extends to larger clusters only
near the transition between liquid-like and gas-like behavior. The
fraction of single-molecule transfers among the smallest, two-
molecule clusters is the greatest in the gas-like regime, where no
large clusters exist. Based on these dynamical measures, we con-
clude that supercritical fluids not only organize in complex network
structures, but they also exhibit complex network dynamics.

Discussion
We have identified self-similarity in the molecular structure for pure
fluids and used this finding to show that supercritical fluids behave as
complex networks. In a fluid beyond the critical pressure, molecules
assemble into clusters of various sizes via a process that depends on
local energetics. The main idea of this work is to formulate these

clusters as components of a complex network of intermolecular
interactions. In this physical network, eachmolecule represents a node
that is connected to several other molecules, and the network’s links
are defined based on Hill’s energy criterion. To mathematically
describe the microscopic structure and dynamics of supercritical
fluids, we showed that a complex network model can predict this
behavior in terms of only few parameters. In contrast to previous
lattice-based models of supercritical fluids, the presented complex
network model does not prescribe orientation or density to the
molecular interactions in thefluid. Therefore, it can capture both static
and dynamic response of supercritical fluids as evidenced by direct
comparison to MD simulations and experiments.

Wewere able to reach the above insight by extendingHill’s energy
criterion to molecular species, which defined the cluster formation
mechanism in supercritical fluids purely via physics-based energy
arguments. Moreover, we proposed the Widom self-similarity, W, to
collapse the supercritical phase space. Finally, we demonstrated that
the cluster size and degree distributions can be represented via a
complex network model, whose link density z can be expressed in
terms of experimental observables, T and P. This model also captures
the molecular exchanges among clusters as observed from MD data.

The hidden-variable network model introduces the molecular
fitness, which was sampled from a distribution. Physically, this fitness
parameter can be related to the ability of a molecule to interact with
neighboring molecules based on their relative energy balance. There-
fore, the fitness landscape of the complex networkmodel is analogous
to the energy landscape that is traversed by each molecule to reach a
local energy minimum58. Saykally and collaborators59,60 have experi-
mentally characterized this energy landscape and the geometric
structure for small clusters in liquid water. Further theoretical work is
needed to characterize the molecular fitness in the context of super-
critical fluids to generalize this network model.

Both the extension of Hill’s criterion to molecular species and the
networkmodel present new opportunities to connect themicroscopic
structure of the supercritical phase to thermodynamic and transport
properties. The proposed network model can provide the cluster size
distribution or the connectivity in the supercritical phase, thereby
forming the foundation for developing constitutive models for
supercritical fluids.

Methods
Molecular dynamics (MD) simulations were performed to investigate
clustering in supercritical water. The MD data was obtained with the
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)
software package61,62 using a reactive force field (ReaxFF) potential for
hydrogen and oxygen. The ability of this force field to predict the
structure of supercritical water has previously been validated against
simulations and experiments40,41. Further validation is provided in
Supplementary Figs. 1–3, where the ReaxFF water model is shown to
closely replicate both macroscopic (density and enthalpy) and
microscopic (radial distribution functions) properties of water. The
ability of ReaxFF water to replicate the cluster size distributions based
on the experiments of Bernabei et al.10 (Supplementary Fig. 4) further
justifies the use of this force field over other models. The isothermal-
isobaric ensemble (NPT) was employed to study state points spanning
reduced pressures between Pr = 1.1 and 2.8 and reduced temperatures
from Tr = 0.46–1.9. For thermodynamic output data to converge, all
simulations were performed with 8,544 water molecules in a cubic
simulation box with periodic boundary conditions.

The equations of motion were integrated with the time-reversible
measure-preserving Verlet integrator. A total simulation timeof 250ps
was computed with a timestep of 0.25 fs. The presented results were
averaged over 187.5 ps. Charge equilibration was done with the QEq
method63 that used a Taper cut-off radius of 10 Å and an equilibration
tolerance of 10−6e.

Fig. 8 | Single-molecule transfers between clusters. The distribution of single-
molecule transfers peaks for the smallest clusters, especially at high temperatures
where no large clusters exist in the supercritical phase. The network model can
predict the fraction of single-molecule transfers in supercritical water. The error
bars represent one standard deviation, computed over 2500MD trajectory frames.
Source data are provided as a Source Data file.
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The network visualizations in Fig. 2 were created with the vis.js
visualization library64.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. The MD trajectories of
supercritical water are permanently preserved in the Stanford
Digital Repository at: https://doi.org/10.25740/nb780fd1620. The
data that support the findings of this study are available from the
corresponding author upon request. Source data are provided with
this paper.

Code availability
The MD simulations were performed with the open-source software
LAMMPS. Code for the hidden-variable network model and scripts for
the cluster analysis are available from the corresponding author upon
request.
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