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The RNA replication complexes of small positive-strand RNA 
viruses such as poliovirus are known to form on the surfaces of 
membranous vesicles in the cytoplasm of infected mammalian 
cells. These membranes resemble cellular autophagosomes in their 
double-membraned morphology, cytoplasmic lumen, lipid-rich 
composition and the presence of cellular proteins LAMP 1 and LC3. 
Furthermore, LC3 protein is covalently modified during poliovirus 
infection in a manner indistinguishable from that observed during 
bona fide autophagy. This covalent modification can also be 
induced by the expression of viral protein 2BC in isolation.

However, differences between poliovirus-induced vesicles and 
autophagosomes also exist: the viral-induced membranes are smaller, 
at 200–400 nm in diameter, and can be induced by the combina-
tion of two viral proteins, termed 2BC and 3A. Experimental 
suppression of expression of proteins in the autophagy pathway 
was found to reduce viral yield, arguing that this pathway facilitates 
viral infection, rather than clearing it. We have hypothesized that, 
in addition to providing membranous surfaces for assembly of viral 
RNA replication complexes, double-membraned vesicles provide a 
topological mechanism to deliver cytoplasmic contents, including 
mature virus, to the extracellular milieu without lysing the cell. 

Introduction

The process of autophagy, which leads to the destruction of 
cytosolic constituents, is well‑suited to the destruction of foreign 
invaders. Indeed, autophagy has been shown to play an important 
role in the innate immune response, helping to clear intracellular 
bacteria such as Mycobacterium tuberculosis1 and viruses such as 
herpesvirus and tobacco mosaic virus.2,3 This realization may have 
great practical importance in the short term as well as in future 
antimicrobial strategies. For example, during organ transplant to 
pediatric patients, major complications can result from the exposure 
of the young patients to viruses with which the donor was chronically 
infected, such as Epstein‑Barr (EBV) or other herpes viruses. Some 
evidence has suggested that the lympho‑proliferative disorder associ-
ated with EBV infection may be less severe if the post‑transplant 
immunosuppressant used is rapamycin, which can also suppress the 

growth of EBV‑transformed cells in tissue culture.4 Although the 
mechanism by which rapamycin suppresses viral infection is not yet 
known, it is tempting to speculate that this might be through the 
induction of autophagy, and heartening to think that the suppres-
sion could extend to other pathogens that chronically infect donor 
tissue as well.

Similarities and Differences Between Poliovirus‑Induced 
Vesicles and Autophagosomes

The innate immune response has an extensive arsenal to combat 
viruses. Successful viruses must evade or subvert this barrage at least 
well enough to establish transient infections. Spectacular examples of 
subversion exist, such as mink focus‑forming virus, which requires 
one of the caspases induced by the apoptotic response of infected cells 
to process a viral capsid protein.5 As discussed below, our laboratory 
has argued that picornaviruses subvert the process of autophago-
some formation for the generation of elaborate membranous vesicles 
crucial for viral RNA replication. Here, we discuss the evidence for 
this hypothesis and some possible interpretations.

Picornaviruses, like all positive‑strand RNA viruses, replicate their 
genomes on the surfaces of intracellular membranes. Cells infected 
with poliovirus, a well‑studied picornavirus, exhibit massive rear-
rangements of the intracellular membranes into clusters of vesicles 
200–400 nm in diameter.6 Electron microscopy has revealed that 
these vesicles contain two membrane layers, reminiscent of autopha-
gosomes.7,8 Furthermore, poliovirus‑induced double‑membraned 
vesicles display, in addition to the viral RNA replication machinery, 
biochemical markers from several intracellular compartments, 
including the autophagosomal protein LC3.9,10

To test whether the induction of double‑membraned vesicles is an 
antiviral response or a process induced by the virus with benefit for 
the virus, the effects of activation and inhibition of the autophago-
somal pathway on viral yield were tested. Stimulation of autophagy 
by tamoxifen and rapamycin also simulated intracellular yield of 
poliovirus, and inhibition of autophagy with either 3‑methyladenine 
treatment or the RNAi‑mediated decrease in expression of LC3 or 
Atg12 reduced intracellular virus yield. These data are certainly not 
compatible with an antiviral role for autophagy or autophagy‑related 
proteins. Instead, these data support a model in which the process 
of autophagosome formation itself, or the increased availability of 
autophagy‑related proteins such as LC3, facilitate viral replication. 
A recent publication documents a lack of effect on the yield of 
rhinovirus 2, a related picornavirus, following treatment of cells with 
3‑methyladenine, tamoxifen or rapamycin.11 Therefore, either this 
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rhinovirus is less dependenton the autophagy machinery, or its slower 
growth kinetics do not require new production of this machinery.

Molecular Inducers of Double‑Membraned Vesicles and LC3 
Modification

A particularly interesting detail of the mechanism by which 
autophagy protein LC3 is recruited to, or aids in the formation of, 
poliovirus‑induced vesicles, is the identity of the viral protein or 
proteins responsible. Poliovirus encodes three proteins, 2B, 2C and 
3A which, when expressed either in isolation or as their stable precur-
sors 2BC or 3AB, localize to intracellular membranes. Co-expression 
of the unprocessed precursor 2BC and the 87‑amino acid protein 3A 
was found to be sufficient to induce double‑membraned vesicles with 
associated LC3.9,10

During poliovirus infection, the lipidation of LC3 correlates 
with its membrane localization.12 We were surprised to find 
that, although both viral proteins 2BC and 3A were shown to be 
required for co-localization of LC3 and LAMP1 and the formation 
of double‑membraned vesicles, only protein 2BC was required to 
induce LC3 lipidation.12 To our knowledge, this is the first example 
of the uncoupling of LC3 modification from double‑membraned 
vesicle formation. Direct interaction between LC3 and 2BC was not 
observed in co-immunoprecipitation experiments, although the two 
proteins are recovered together in the same immunoprecipitate in 
the absence of detergent, arguing that they were present in the same 
membranous structure.12

Interestingly, when expressed singly and in other combinations, 
the membrane‑associated proteins encoded by poliovirus have been 
shown to induce other kinds of membrane morphologies. Protein 3A, 
for example, induces endoplasmic reticulum (ER) swelling and frag-
mentation, and slows the rate of anterograde transport between the 
ER and the Golgi.11 Expression of either the precursor protein 2BC 
or the 2C portion alone leads to the formation of large, single‑mem-
braned vesicles with no visible lumenal contents.9,14 When 2C and 
3A are expressed together, enlarged ER membranes with cytoplasmic 
invaginations can be observed.9 These dilated, invaginated ER 
membranes are similar to structures observed during infections of 
Atg5‑/‑ ES cells with murine hepatitis virus, another positive‑strand 
RNA virus.15 It is possible these alternate morphologies are either 
intermediates or off‑pathway products in double‑membraned vesicle 
formation by 2BC and 3A together, and during poliovirus infection.

The known molecular inducers of autophagosomes and 
double‑membraned vesicles and their presumed sites of action are 

listed in Table 1. Only the proteins encoded by positive‑strand RNA 
viruses, specifically poliovirus and equine arterivirus, are known 
to act directly at intracellular membranes. Given what is known 
of autophagic signaling and control, we suspect that these virally 
encoded proteins recruit LC3, and perhaps other constituents of 
the autophagosomal pathway, somewhere downstream of the initial 
signaling events. It is possible, for example, that the polioviral 2BC 
and 3A proteins intersect the canonical autophagy pathway some-
where between TOR signaling and the protein conjugation pathways 
that link ATG5 to ATG12 and LC3 to phosphatidylethanolamine. A 
working model for the formation of double‑membraned vesicles by 
poliovirus proteins 2BC and 3A, and during poliovirus infection, is 
shown in Figure 2.

Why Double Membranes?

The relationship between the life cycle of poliovirus and the 
normal cellular autophagy pathway is not yet known. As of yet,  
there has been no evidence of autophagosome‑associated protein 

Figure 1. Similarities and differences between poliovirus‑induced vesicles 
and cellular autophagosomes. Electron micrograph was taken by Thomas 
H. Giddings, Ph.D. (University of Colorado) and is taken from reference8 
with permission.

Table 1	 Inducers of autophagosomes and double‑membraned vesicles

Molecular Inducer	 Site of Induction	 Method of Induction	 Ref.
G‑protein overexpression	 Plasma membrane	 Effector of autophagy in HT‑29 cell background	 16
Tamoxifen	 Plasma membrane	 Signaling inhibits PI‑3 signaling and modulates C2 	 18,19 
		  ceramide levels to induce autophagy
C2 ceramide	 Intracellular	 Affects membrane homeostasis and lipid pools to 	 19 
		  stimulate autophagy
Sphingosine Kinase	 Intracellular	 Affects pools of lipid to stimulate autophagy	 20
Rapamycin	 Intracellular	 Inhibits TOR kinase function to stimulate autophagy	 21
Poliovirus 2BC and 3A proteins	 Endoplasmic Reticulum	 Induces double membrane vesicles and LC3 relocalization	 9,10
Equine Arterivirus ns2/ns3 proteins	 Endoplasmic Reticulum	 Induces double membrane vesicles	 22
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degradation in poliovirus‑infected cells. It is possible that poliovirus 
subverts the pathway of autophagosome formation, yet blocks the 
subsequent maturation and degradation of the autophagosom-
al‑like membranes (Fig. 2). Further experimentation is necessary 
to determine the similarities and differences between bona fide 
autophagosomes and the structures formed during viral infection.

We have noted that the double‑membraned topology of autopha-
gosomes, coupled with the ability to degrade the inner membrane 
partially or completely, has the topological effect of converting 
cytoplasm into lumen.10,16 Does the autophagy pathway, like the 
mulitvesicular body pathway and exosome formation, provide a 
mechanism of secretion? We have shown that reduction of LC3 or 
ATG12 abundance reduced the yield of extracellular poliovirus to 
a greater extent than intracellular virus,10 consistent with the idea 
that autophagosomes, or any kind of double‑membraned vesicle, 
can provide a cellular exit route for any cytosolic protein or complex 
that can withstand the conditions within such a vesicle. Beyond viral 
pathogenesis, these findings may lead to new biochemical insights 
into the membrane remodeling and recruitment events that charac-
terize cellular autophagosome formation and autophagy, and their 
effects on both the intracellular metabolism and the communication 
of eukaryotic cells.
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