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Abstract 

More than 5,000,000 Americans suffer from heart failure, a progressive disorder where the 

heart cannot meet the metabolic demands of the tissues and organs. Approximately 1.5 million 

hospitalizations each year are related to heart failure in the US. After release from the hospital, 

the American Heart Association recommends monitoring heart failure patients at home by 

measuring body weight daily - upward trends of more than a few pounds could indicate 

edema, and the need for rehospitalization. Recently, in addition to simply monitoring weight, 

many researchers have investigated new devices for monitoring hemodynamics in the home to 

reduce unnecessary rehospitalizations. 

This work proposes measuring both body weight and hemodynamics on the same device: a 

modified bathroom scale. Body weight measurement on a scale is straightforward; for 

hemodynamic monitoring, a combination of ballistocardiography and electrocardiography 

sensing technologies were developed. 

When a patient stands on the scale, small fluctuations in body weight caused by the 

heartbeat - the ballistocardiogram (BCG) - are measured and related to the strength of cardiac 

contractions. Furthermore, while standing on the scale, a patient grips detachable handlebar 

electrodes, allowing simultaneous measurement of an electrocardiogram (ECG) signal. These 

two signals were fused using a novel estimation algorithm, and the BCG signal was 

reconstructed from the recorded waveform composed of both signal and measurement noise, 

such as motion artifacts. 

To further improve robustness to motion, electromyogram (EMG) signals acquired from 

the subject's feet were recorded, and the correlation between the EMG power and the BCG 

noise was investigated. Floor vibrations represent another source of interference, and were 

mitigated by using a seismic sensor on the floor next to the scale and an adaptive algorithm. 

Using this approach, BCG recordings were obtained on a parked bus with the engine running 

- even under such extreme conditions the vibration interference was effectively eliminated. 

With this system, normal standards at rest were established for 92 healthy subjects. The 

timing and amplitude features of the signal were found to be comparable to those measured 

using cumbersome bed- or table-based BCG measurement systems. Frequency domain 

features were also explored: the power spectral density of the BCG signal was estimated and 

characterized. A correlation analysis yielded that features of the BCG signal combined with 

height and weight were correlated to left ventricular mass (R2 = 0.60, p < 0.001) and stroke 
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volume (R2 = 0.60, p < 0.01), two important cardiovascular parameters estimated using 

echocardiography. The correlation to left ventricular mass is an especially encouraging result, 

as the system could potentially be used in large scale screening of athletes for hypertrophy. 

After establishing standards at rest, the hemodynamics were modulated to determine the 

capability of the system to detect changes in cardiac output. For 10 trials involving nine 

healthy subjects, each subject exercised for 15 minutes then recovered while standing on the 

scale for 10 minutes. During the recovery, the gold standard for noninvasive cardiac output 

estimation - Doppler echocardiography - was used to measure this parameter repeatedly. The 

changes in cardiac output measured by Doppler were strongly correlated to the changes in root 

mean square (RMS) power of the BCG (R2 = 0.85, n = 275 data points, p< 0.001). The 

prediction error, calculated based on Bland-Altman methods, was found to be lower than any 

other noninvasive method disclosed to date. 

With this technology, heart failure patients could monitor both weight gain and cardiac 

output at home on the same device: an inexpensive, compact, modified commercial weighing 

scale. The subject compliance would be excellent, since the device is already a commonly-

used household item and does not require anything to be attached to the body. By using the 

BCG/ECG-equipped weighing scale every day for less than 15 seconds at a time, unnecessary 

rehospitalizations could decrease, improving the quality of care for the large population of 

heart failure patients. 
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Figure 7.9 Ratio of post-release to resting values for all subjects (mean ± 
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used to acquire Dopper ultrasound, and the CASE® Exercise 
ECG Testing System (GE Healthcare, Chalfont St. Giles, 
United Kingdom) was used to acquire the ECG. 
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1 
JL Motivation and Potential Applications 

Now there are more overweight people in America than average-weight 
people. So overweight people are now average. Which means you've met your 
New Year's resolution. 

-Jay Leno, The Tonight Show 

The most prevalent health monitoring device used in the home today is the weighing scale. 

Approximately $200 million are spent by Americans to purchase seven million scales each 

year [30, 31]; over 80% of all households have at least one scale [30]. While in the past, scales 

only measured body weight, modern devices can also estimate body fat percentage, store 

results, and compare these results to the normal healthy ranges. 

In addition to increasing the available features, manufacturers have also improved the 

technical specifications of weighing scales significantly over the years. Many modern scales 

have a resolution of 45 g, and a maximum capacity exceeding 150 kg. Although the scale is 

not considered a 'medical device' by a majority of the population, there are four key 

motivating factors for further improving the measurement capability of the device for health 

monitoring: 

1. The device has already penetrated such a large percentage of households. 
2. The frequency of use is generally very high: most people weigh themselves at least 

monthly or, in many cases, weekly or even daily. 
3. The scale is already the primary means for monitoring heart failure patients at 

home. 
4. When a subject stands on a scale, many physiologically relevant signals can be 

measured unobtrusively. 

The last point may not be obvious, and should partly be enabled by the work described in this 

dissertation. The third point is a major motivation for pursuing cardiovascular monitoring on a 

weighing scale: the population of heart failure patients needs an improved monitoring strategy, 

due to the disturbingly-high prevalence, mortality, and health care costs, and significant 

emotional burden of the disorder. 
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1.1. Heart Failure 

Heart failure is a progressive disorder in which the heart cannot supply enough blood to the 

tissues [32, 33]. In the U.S., it claims nearly 300,000 lives each year, and an estimated 

5,700,000 Americans suffer from the syndrome; among the elderly population (65 and older), 

nearly one in 100 are afflicted [34]. The incidence of heart failure exceeds half a million cases, 

and this number is growing rapidly due to the increasing percentage of the population that is 

65 and older (see Figure 1.1, redrawn after [7]). 

Since 1972, heart failure mortality has increased by 103.2% [35], rendering it the third 

leading cause of death in the US, following other diseases of the heart and malignant 

neoplasms [36]. Hospitalizations due to the disorder have increased more than 155% [37] in 

the past three decades. The age-specific breakdown of the prevalence of heart failure 

hospitalizations per 1000 population (US) is shown in Figure 1.2 from 1979-2004. In 2008, 

1,100,000 Americans were hospitalized with heart failure [34]. 

In addition to burdening these Americans with chronic disease, heart failure encumbers all 

tax-paying Americans in terms of its staggering health care costs: the 2009 costs are estimated 

to be $37 billion. More Medicare dollars are spent for the diagnosis and treatment of this 

condition than any other. An estimated $20.1 billion will be spent on direct hospital costs in 
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Figure 1.1 The projected effects of the growing elderly population on the incidence of heart failure (in the 
US), redrawn after [7]. Assuming a stable incidence in person age 65 and older, the number of 
new cases per year in the year 2040 is estimated to be one fifth of the US population. 
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2009 [38] - these hospital costs 

alone rival the total costs in 

1999, $21 billion [39]. 

Improving home monitoring 

technologies for these patients 

could reduce the number of heart 

failure hospitalizations and 

decrease the healthcare costs of 

the disorder. If the care at home 

is adequate and affordable, the 

patients will avoid returning to 

the hospital - most importantly, 

this will greatly improve the 

quality of their lives. 

This section discusses the 

pathophysiology of heart failure 

and describes some of the technologies that have been developed for monitoring the disorder 

at home. 

1.1.1. Pathophysiology of Heart Failure 

A failing heart is unable to adequately pump blood to the body. In terms of hemodynamic 

parameters this translates to low cardiac output - or the volumetric flow rate of blood from the 

heart. In the early stages of heart failure, resting cardiac output is the same as for the healthy 

population. However, during exercise the heart is unable to increase its output to meet the 

elevated demands of the body. In later stages, the heart is unable to pump enough blood to the 

tissues even at rest. The condition is progressive due to the inability of the compensatory 

mechanisms of the body to sustainably increase cardiac output. 

One of the compensatory mechanisms is fluid retention, a result of increased circulating 

vasopressin. Normally, the heart can increase its output by increased ventricular filling, or 

preload, according to the Frank-Starling relationship [32] (described in Chapter 2, below). 

However, with chronically elevated vasopressin levels, intravascular volume and ventricular 

preload increase beyond the optimal level for cardiac efficiency. Elevated filling pressures 

reduce subendocardial flow and promote pulmonary edema and shortness of breath. 
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Table 1-1 Concept of hemodynamic profiles for heart failure patients. Redrawn and adapated from [12]. 

No Congestion Congestion 

Adequate Perfusion 

"Warm-Dry" 
Quadrant A 

Optimal profile: focus on 
preventative measures. 

"Warm-Wet" 
Quadrant B 

Administer diuretic and 
continue therapy. 

Critical Hypoperfusion 

"Cold-Dry" 
Quadrant L 

Limited further options 
for therapy. 

"Cold-Wet" 
Quadrant C 

Administer diuretic and 
majorly redesign oral regimen. 

Another compensatory mechanism is the activation of the sympathetic nervous system, 

resulting in beta adrenergic receptor activation. Increased sympathetic tone in a normal heart 

will lead to higher contractility and, thus, higher cardiac output for a given preload. In the 

short term, for a failing heart, this increase in beta adrenergic receptor stimulation will lead to 

higher cardiac output and improved state. However, long-term elevated beta receptor 

activation leads to adverse remodeling. 

In the clinic, physicians can assign heart failure patients to one of four hemodynamic 

profiles based on the assessment of congestion (wet vs. dry) and perfusion (warm vs. cold) at 

rest. These profiles were shown to be predictive of the heart failure outcome, and are visually 

depicted in Table 1-1, redrawn and adapted from [12]. Perfusion is assessed by measuring 

cardiac output; congestion by measuring the pulmonary capillary wedge pressure (PCWP). 

PCWP, measured with a balloon-tipped catheter inserted in the pulmonary artery, provides an 

estimate of the left atrial pressure (LAP) - elevated LAP is associated with overfilling of the 

ventricles, or 'congestion.' 

The optimal profile is A, where the perfusion of the tissues is adequate and the filling 

pressures are not elevated. The highest risk of death is for profiles B and C. This results from 

the fact that excess fluid retention can overload the ventricle and cause elevated filling 

pressures, reducing coronary flow. 

1.1.2. Heart Failure Management at Home 

In the clinic, excess fluid volume is monitored by a pressure sensor on a catheter, and, if 

there is congestion, diuretics are administered [40]. Outside the clinic, to indirectly monitor 

fluid retention, daily body weight monitoring is used. Studies have shown that monitoring 

body weight at home can decrease mortality and hospitalization rates significantly for heart 
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failure patients [41]. Chaudhry, et ai, showed that, for the cardiac-related hospitalizations, a 

marked increase in body weight of 2-5 pounds was apparent one to two weeks preceding the 

hospitalization [42]. 

However, body weight monitoring is less reliable in the long-term: the non-fluid weight 

could also increase or decrease, compromising the specificity of the measurement [43, 44]. 

Decrease in body weight is regularly observed in patients with chronic disorders, due to loss 

of apetite, anemia, or metabolic abnormalities (cachexia) [45]. 

Additionally, even increasing trends in fluid weight represent the compensatory efforts of 

the body in reaction to worsening cardiac performance, not the worsening performance itself. 

By monitoring cardiac hemodynamics directly, an earlier warning of worsening condition may 

be obtained. Furthermore, by combining cardiac hemodynamic information and subsequent 

increases in body weight, the assessment of the patient's condition may be more accurate and 

specific. 

1.1.3. Technologies for Monitoring Heart Failure Patients at Home 

Recently, many studies have attempted to reduce hospitalizations for heart failure using 

modern diagnostic tools [46]. These approaches include monitoring external [47] or internal 

[48, 49] thoracic impedance, heart rate variability [50, 51], and intracardiac pressures [52, 53]. 

They are discussed below, in order of invasiveness, and the operation principle and level of 

invasiveness are summarized in Table 1-2. 

External, trans-thoracic impedance cardiography (ICG) is a technique for estimating the 

flow of blood through the thorax using impedance changes. The physical basis is that the 

impedance of the thoracic volume changes as blood flows in or out of the volume. This 

change, usually on the order of tens to hundreds of milliohms, is measured and inputted to an 

empirically-defined model, including height, weight, and age, which then estimates stroke 

volume [54, 55]. 

The effectiveness of ICG measurements has yet to be conclusively demonstrated for heart 

failure management [44, 46]. Some studies have shown that, when measured at regular 

intervals, external impedance cardiography can predict the risk of acute decompensation [47]. 

The obvious disadvantages of this approach are that it requires frequent hospital visits (every 

two weeks) and is highly sensitive to electrode positioning on the thorax [56]. For most 

commercial instruments, four to eight electrodes must be positioned on the body: one (or two) 

on each side of the neck, and one (or two) at the xiphoid level on the sides of the chest. The 
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Table 1-2 Comparison table of technologies for monitoring heart failure patients at home, ordered by 
degree of invasiveness. 

Technology Operation Principle 
Invasive or 

Noninvasive 
Weighing Scale Daily bodyweight 

measurements are used to 
estimate fluid volume 
status. 

External Impedance Four-point impedance 
measurement of thorax; 
cardiac output is estimated 
by empirical equation. 

Heart Rate Variability Heartbeat intervals are 
measured using an 
implanted pacemaker or 
external sensors. 

Internal Impedance Impedance measurement is 
taken internally to 
estimated stroke volume 
and cardiac output. 

Intracardiac Pressure Left atrial pressure is 
measured directly using the 
lead of an implanted 
pacemaker. 

Noninvasive 

Noninvasive, but 
obtrusive 

Noninvasive, but 
obtrusive (external) 

Invasive (pacemaker) 

Invasive 

Invasive 

distance between electrodes on the same side of the neck or chest must be fixed at a few 

centimeters, precisely, for the measurement to be accurate. 

Heart rate variability, an indirect assessment of autonomic control, has been demonstrated 

to be a promising predictor of mortality in heart failure patients [50]. Heart rate variability 

quantifies an individual's normal sinus arrhythmia due to respiration (respiratory sinus 

arrhythmia [57]). Continuous long-term heart rate variability measurement, using an 

implanted pacemaker, has been shown to be useful in clinical management of heart failure 

patients, providing early warning of decompensation [51]. Although these trials have been 

limited to invasive measurements of heart rate variability, noninvasive methods using textile 

or chest-strap electrodes are also available, and may be used in future studies to provide an 

effective platform for home monitoring. The success of this approach may be limited by 

patient compliance, since the sensors must be attached to the body. Furthermore, motion 

artifacts could degrade the accuracy of the extracted heartbeats, particularly during daytime 

measurements. On the other hand, for invasive measurements of heart rate variability, while 

intervals can be robustly extracted continuously throughout the day and night, the applicability 

is limited and the cost effectiveness must be addressed. Additionally, whether heart rate 
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variability can lead to improved outcomes or reduced acute decompensation incidents is not 

yet conclusively demonstrated [44]. 

Internal impedance measurements have also demonstrated reasonable results in providing 

early warning of decompensation [48, 49]. For these measurements, a special pacemaker is 

implanted in the left pectoral region and a defibrillator lead is inserted into the right ventricle. 

The impedance between this defibrillator lead and the pacemaker case is recorded to detect 

fluid overload prior to heart failure related hospitalization. Unfortunately, the data supporting 

these measurements are limited [46], and a cost analysis has not yet been attempted. 

Additionally, the method is disadvantaged since other factors besides volume overload can 

change intrathoracic impedance, and measurements taken in the first 30 days after 

implantation are unreliable due to changes in the soft tissue surrounding the pacemaker 

generator [44, 56]. 

Another promising technology is continuous intracardiac pressure management using an 

implantable hemodynamic monitor. This technology hinges on estimating fluid status by 

measuring LAP - fluid overload should lead to elevated LAP. While devices capable of 

accurately measuring LAP have been manufactured, the clinical trials to date have not yet 

demonstrated the clinical benefit of the device [46, 52]. Heart failure events were not 

significantly reduced in these trials, with complications related to the device being a major 

source of problems. 

1.2. Ballistocardiography and Electrocardiography for Home 

Monitoring of Heart Failure 

This work proposes a new technology for monitoring heart failure at home: 

ballistocardiography and electrocardiography acquired on a modified electronic weighing 

scale. A commercial weighing scale is utilized as the sensor for acquiring these signals, 

resulting in an integrated solution capable of unobtrusively measuring body weight and 

cardiovascular health parameters from a patient. This allows the estimate of both perfusion 

and congestion, providing a full assessment of the patient's hemodynamic profile that could 

not be obtained by any other device alone. 

Furthermore, the device is compact, inexpensive and easy to use. From the patient's 

perspective, the monitoring apparatus and procedure appears not to change - every morning 

before breakfast he or she steps on a bathroom scale for 5-10 seconds. However, since that 

same scale would now provide an early warning of declining cardiac output, the end result 

may change drastically: fewer visits to the hospital translate to a higher quality of life; 
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confidence in the care at home allows the patient psychological freedom from the constant 

burden of a chronic disease. Ultimately, a direct measure of cardiac performance will likely 

provide a more specific and accurate assessment of cardiac condition than the indirect 

measurement of body weight alone. This would also allow a more controlled titration of 

cardioactive drugs and diuretics, eventually enhancing the quality of life of the patient. 

To meet this important clinical need, the engineering objectives of this thesis were set as 

follows: 

1. To devise methods for enabling robust measurements on this simple platform 
2. To fully characterize the system in terms of noise, interference, and measurement 

repeatability 
3. To establish normal standards for the measured BCG signals 
4. To find features of the measured signals that relate to important cardiovascular 

parameters, particularly cardiac output changes. 

With these objectives met, the next step would be to design a large clinical trial to use this 

system in managing heart failure at home, and determine the extent to which it could improve 

the state-of-the-art in heart failure management. 
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2 Ballistocardiography 

Our ignorance of history causes us to slander our own times. 
- Gustave Flaubert 

Even in the valley of the shadow of death, two and two do not make six. 
- Leo Tolstoy 

Ballistocardiography is a non-invasive measurement for monitoring the health of the heart 

and vasculature [9, 58]. As the heart contracts and forces blood into the aorta, an equal but 

opposite reaction force is experienced by the body. This force can be measured externally by 

placing the body on a compliant platform, and connecting a force sensor to the platform or the 

body. This chapter describes the relevant physiological background, history and diagnostic 

value of the BCG, and provides an overview of some modern BCG measurement systems. 

2.1. Excitation-Contraction Coupling 

Cardiac muscle cells - cardiomyocytes - contract mechanically as a result of the electrical 

inflow of ionic currents [1]. A local increase in the extracellular potential causes voltage-gated 

sodium channels to open, resulting in a 

rapid inrush of sodium ions into the 

cell. After this spike of sodium influx, 

and a rapid increase in intracellular 

potential, an influx of calcium ions 

causes an amplified release of more 

calcium from the sarcoplasmic 

reticulum. By binding to troponin-C, 

calcium prevents troponin-I from 

inhibiting the actin-myosin interaction, 

and the myocyte contracts. This process 

linking the electrical to the mechanical 

event is generally referred to as 

T Contractility 

Time 

Figure 2.1 Force of contraction versus time for an 
isolated cardiac muscle for two cases: A, the 
control, and, B, increased contractility. In B, 
the peak force of contraction has heightened 
and the time to peak force is reduced. 
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excitation-contraction coupling. Note 

that there is also some reciprocal effect 

- mechanical stimulation can lead to 

electrical depolarization. For a 

thorough description, the reader is 

referred to the literature, e.g. [1]. 

Since the mechanical contraction is 

caused by the electrical depolarization 

of the cell, there is a time delay 

between the two; the length of this 

delay is related to the strength of the 

ensuing contraction. As the contractile 

state of the cell, or muscle, is elevated, 

3) Ventricular Ejection (Systole) 

4) Isovolumetric 
Relaxation , 4 2) Isovolumetric 

Contraction 

1) Ventricular Filling (Diastole) 

Left Ventricular Volume 

Figure 2.2 Depiction of pressure-volume relationship for 
the left ventricular during a single cardiac 
cycle, adapted from [1]. 

this period of time between electrical influx of ions and mechanical contraction of the cell 

shortens, and the force of contraction increases. This is illustrated diagrammatically in Figure 

2.1. 

2.2. Ventricular Mechanics 

These basic concepts developed at the cellular level can be extrapolated to describe the 

mechanics of the ventricles: the force-length relationships for isolated cardiac muscle 

correspond to pressure-volume relationships for the ventricle. A tool commonly used for 

visualizing these relationships is the pressure-volume (PV) loop, as shown in Figure 2.2. 

The PV loop illustrates the pressure-volume relationships for the left ventricle during one 

cardiac cycle. Point A represents the opening of the mitral valve, which allows blood to begin 

filling the left ventricle (phase 1). As the ventricle continues filling with blood, the pressure 

increases to the point where it rises above the left atrial pressure - at this point (B), the mitral 

valve closes. Then, the ventricle begins its isovolumetric contraction, phase 2, against the 

closed aortic valve, increasing the left-ventricular pressure. At point C, when this pressure 

increases above the pressure in the aorta, the aortic valve opens, beginning the third phase of 

the cycle: ventricular ejection. Finally, at point D, the aortic valve closes, and the ventricle 

begins the isovolumetric relaxation phase (4). 

The ventricular volume at point B is referred to as the end diastolic volume (EDV); at point 

A is the end-systolic volume (ESV). Stroke volume (in milliliters), which is defined as the 

volume of blood ejected in each beat, is simply the difference between the EDV and ESV. The 
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Figure 2.3 PV loop showing the effects of compliance, 
preload, afterload, and contractility changes 
on stroke volume. The stroke volume is the 
horizontal width of the loop: end-diastolic 
volume minus the end-systolic volume 

product of stroke volume (converted to 

liters) and heart rate (in beats per 

minute) is cardiac output (in liters per 

minute), the average volumetric flow 

rate of blood pumped by the heart in a 

minute. 

2.3. Cardiac Output 

Cardiac output is one of the most 

important parameters used in clinical 

settings to evaluate a patient's 

cardiovascular health [1]. As described 

in Chapter 1, it is crucial for directing 

therapeutic decisions for heart failure 

patients. To change cardiac output, one can either vary heart rate or stroke volume, or both, as 

described below. 

Stroke volume is controlled by three factors: left ventricular EDV (preload), the resistance 

presented to the heart by the vasculature (afterload), and the contractile state of the heart 

(contractility). The effects of changing preload, afterload, and contractility on stroke volume 

are shown visually in Figure 2.3. Effects of changing the compliance of the ventricle on the 

PV loop is also shown, as this factor will determine the achievable preload for a given end 

diastolic pressure. The direction of the arrows in this figure indicates the effect increasing each 

of these parameters has on the boundary conditions for the loop. As shown in this figure, 

stroke volume increases with elevated preload and contractility, and decreases with a higher 

afterload. 

2.4. The Frank-Starling Law of the Heart 

The effects of preload on the heart are described in detail by the Frank-Starling Law of the 

heart. The Frank-Starling curve, illustrated in Figure 2.4, defines how stroke volume should 

increase as preload increases. As shown in this figure, if contractility is increased, a much 

larger change in stroke volume results from a fixed change in preload compared to the normal 

state. In contrast, for a failing heart, increasing preload by the same amount would lead to a 

much smaller change, or no change, in stroke volume. This implies that the ejection fraction, 

defined as the ratio of stroke volume to EDV (or preload), decreases with increased preload 
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for a failing heart. Eventually, excess fluid in 

the ventricles can lead to pulmonary edema 

and shortness of breath. Unfortunately, one 

of the body's standard compensation 

mechanisms for raising cardiac output is to 

increase preload - hence the unstable positive 

feedback loop discussed in Chapter 1. 

One main hypothesis of this dissertation is 

that the combination of the BCG, which 

measures cardiac ejection force, and the 

ECG, which measures electrical 

depolarization of the heart, can provide a 

measure of both cardiac output changes and 

contractility changes. The human subjects 

trials used to test this hypothesis are 

discussed in Chapter 7. If both cardiac output 

and contractility changes could be estimated, 

it would be possible to determine if a subject 

were moving to a different Starling curve compared to his/her normal state. For example, 

during exercise both preload and contractility should increase compared to rest. If the BCG 

does not show an increase in stroke volume as a result, the subject may be at risk of 

developing heart failure, or may already have a weakened ventricular state. This form of 

assessment - tracking relative changes in a person's cardiovascular health - is different from 

the diagnostic applications for which the BCG was historically used. These applications 

targeted making absolute diagnoses based on a subject's recording compared to a population 

norm. 

2.5. Brief History of the BCG 

The phenomenon of body movement in response to the heartbeat was first discovered by 

Gordon in 1877 [59]. While standing on a weighing scale, he noticed that the display needle 

oscillated synchronously with his heartbeat. In 1905, Henderson first recorded these 

movements of the body in response to the heart's contractile force using a "swinging table" 

with a set of levers [60]. He also suggested that the amplitude of these deflections might be 

related to cardiac output. Eight years later, Douglas developed a simplified version of 

Increased 
Contractility 

Preload 

Figure 2.4 Illustration of the Frank-Starling law 
of the heart. Starling curves for a 
normal and failing heart are shown. 
For the normal heart, as preload 
increases, stroke volume increases as 
well. As contractility is increased, 
stroke volume increases much more 
with the same increase in preload. On 
the other hand, a failing heart cannot 
increase its output by simply 
increasing preload. 
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Henderson's apparatus and postulated the 

effects of altitude on cardiac output on the 

Pike's Peak expedition [61]. For the next 

twenty-five years, several other researchers 

strived to create instrumentation capable of 

acquiring robust and repeatable measurements 

of this heart-induced body movement. Finally, 

in 1939, Starr's research group succeeded with 

Figure 2.5 A typical BCG waveform for one the invention of a precise, table-based 
heartbeat, redrawn after [9], The 
arrow indicates the timing of the measurement system [9]. 

Starr, et al. constructed a mechanical table 

with a steel spring opposing its lateral motion. The subject would lie supine, fixed to this 

table, and displacements were recorded mechanically. The signal measured on their innovative 

apparatus was named the ballistocardiogram (BCG), derived from the Greek words ballein (to 

throw), kardia (the heart), and grafein (to write). They then proceeded to conduct the first 

correlation study, linking features of this signal to stroke volume measured by the ethyl iodide 

method: the correlation was relatively strong (R2 = 0.74). 

According to Starr, et al, mechanical displacements resulted mainly from five events in 

healthy subjects: isovolumetric contraction at the onset of systole, ventricular ejection of 

blood, reversal of direction at the aortic arch, deceleration of blood at the abdominal aorta, and 

diastolic filling. These physiological events were linked to reproducible waves in the BCG 

recordings: H, I, J, K, L, M, and N, respectively. (Some of these ascriptions of the waves to 

physiological events of the cardiac cycle are disputed in this work - in particular, waves L-N 

are believed to be mechanical resonances following the cardiac ejection impulse. This is 

discussed more in Chapters 4 and 6.) 

Figure 2.5 shows a typical BCG beat, redrawn after [9]. In this figure, the arrow denotes 

the timing of the corresponding ECG R-wave peak. While the Starr, et al, system of 1939 

accurately captured the events of the cardiac cycle, it introduced some errors into the BCG 

signal due to in-band mechanical resonance [62-64]. The frequency content of the BCG signal 

was shown to lie between 1-10 Hz, but the resonant frequency of the Starr, et al, apparatus 

was 9 Hz [65]. 

Additionally, the Starr, et al, system was expensive (« $25,000 in 2007 dollars [66]) and 

could not easily fit in a doctor's office (2 x 0.75 x 0.75 meters in size [58]). This limited its 
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use to research settings where it was used extensively. To introduce the BCG into clinical 

settings, some researchers attempted more practical approaches. One of these approaches 

succeeded [67]: the Dock direct-body ballistocardiograph of 1949 [68]. 

For this method, the subject would lie freely on any rigid surface (such as a bed or table) 

and the portable BCG recorder was connected to the lower legs. The recorder consisted of an 

electromagnet set on the surface between the subject's legs, and coils attached to the lower 

legs. The current generated in the coils resulting from displacements of the body was 

amplified into a voltage signal with amplitude on the order of a raw ECG. This voltage signal, 

the BCG, was fed into an existing ECG instrument where it was displayed to the physician. 

This apparatus was highly practical: portable, less expensive (« $1,000 in 2007 dollars 

[66]), and interfaced directly to already-existing ECG instruments. This practicality 

immediately allowed the Dock ballistocardiograph to become a widely used clinical tool. 

Unfortunately, within a decade, many physicians realized the relative unreliability of the 

signals obtained using this apparatus compared to the Starr, et al, table [69-71]. The Dock 

instrument provided inconsistent and distorted BCG traces which were shown to be much less 

valuable in clinical settings, leading to a decline in its clinical use. 

2.6. Diagnostic Value of the BCG 

Both the Starr and Dock BCG recorders were used extensively in clinical trials to 

understand the diagnostic capabilities of the BCG signal. First, the relative timing of the BCG 

with respect to the healthy cardiac cycle was established by using a simultaneous ECG as a 

reference [71]. Based on the findings of these studies, the BCG (for healthy subjects) is shown 

in Figure 2.6 alongside several other well known signals of the cardiac cycle [2, 13]. In this 

figure, the BCG and ECG are the top two traces, the phonocardiogram (PCG) - representing 

the acoustic signals generated by the valve closures - is the third trace, the aortic pressure is 

the fourth trace, and the left ventricular pressure and volume are the final two traces. The 

cardiac cycle has been segmented into diastole and systole, and the valve openings and 

closures have been noted by grey dashed vertical lines. 

As shown in this figure, the BCG follows the QRS complex of the ECG. The maximum 

peak of the BCG (J-wave) occurs 200-250 ms after the ECG R-wave peak, synchronous with 

maximal aortic and ventricular pressure. The width of the main complex (UK) of the BCG is 

approximately 250 ms [72], corresponding to the average duration of ventricular systole. 

After establishing the timing of the BCG for healthy subjects, researchers studied the BCG 

waveforms from diseased patients to link timing and morphological variations in the signal to 
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specific cardiovascular 

pathologies. They found 

the BCG to be highly 

effective in evaluating the 

strength of the 

myocardium [73-80]. 

To show that weak 

cardiac contractions 

resulted in abnormal BCG 

recordings, several studies 

were conducted from 

1940-1960 on patients 

with coronary artery 

disease (CAD) [74, 78, 79, 

81]. In these works, 

simultaneous BCG and 

ECG signals were recorded 

from a total of 1,019 

patients of ages 20-80: 618 

with CAD and 401 

healthy. BCG and ECG 

signals were classified as 

normal or abnormal for 

each subject. The results 

from these papers are 

summarized and quantified 

here in terms of sensitivity 

and specificity. 

The BCG was more 

sensitive than the ECG in 
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4 Atrio-ventricular valves open 

Figure 2.6 Diagram illustrating relative timing of the BCG signal with 
respect to other more well known cardiovascular signals. 
Adapted from [2] and [13]. 

detecting CAD, but less specific. The sensitivity to CAD of the BCG was 89% and of the 

ECG was 72.9%; the corresponding specificities were 80.9% and 95.8%, respectively. 

Specificity of the BCG was shown to be highly dependent on age [74]. For patients under 50, 
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the specificity of BCG was comparable to the ECG. For patients over 50, it decreased as age 

of the patients increased. The high occurrence of abnormal BCG readings from elderly 

patients resulted from the sensitivity of the signal to properties of the aorta [82-84]. 

Aging generally lowers the ratio of elastin to collagen in the aortic walls, resulting in 

decreased aortic compliance and increased caliber. Consequently, there was a higher 

prevalence of abnormal BCG recordings in elderly patients. However, for patients under 50, 

the BCG sensitivity was higher than and specificity was comparable to that of the ECG, 

rendering it an effective non-invasive tool for evaluating myocardial strength. 

2.7. Absolute versus Relative BCG Measurements 

As the volume of blood ejected by the heart increases, so does the force imparted by the 

heart on the blood. Consequently, for a given subject, increasing the stroke volume should 

increase the amplitude of the measured BCG signal. However, the capability of the BCG to 

provide information about the absolute output of the heart is now in question [85]. The 

waveform morphology is significantly dissimilar among healthy populations, rendering the 

amplitudes of the various peaks difficult to analyze. 

The variability in BCG morphology most likely results from anatomical differences. The 

BCG signal represents the reaction force of the whole body to the cardiac event that occurs at 

the heart and the aortic arch. For absolute measurements this results in potential errors - the 

force imparted by the heart and the aortic arch propagates through an inhomogeneous 

medium, the body, to the sensor. The precise manner in which the anatomical structure will 

impact the waveform morphology, and amplitude, is still unknown, and is a subject of future 

research. 

While large anatomical variations can be expected from person to person, such variations 

are greatly reduced when considering the same person over time, resulting in highly 

reproducible waveform morphologies. Thus, serial BCG measurements could be used to 

accurately estimate relative changes in cardiac output, or contractility, for one subject, as 

shown in Chapter 7. 

Notably, in 1953, Mandelbaum and Mandelbaum measured the BCG signals of one 

hundred recovering heart attack patients during clinic visits over 18 months and concluded 

that the BCG was a valuable prognostic indicator of functional recovery [80]. The degree of 

restoration of the BCG signal to normal was correlated to the patient's recovery, judged by the 

ability of the patient to return to regular work duties as well as the occurrence or absence of 

further heart-related episodes. Of the patients whose BCGs improved to a higher grade of 
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Transverse 'BCG' (Seismocardiogram, 
Kinetocardiogram, etc.) 

t = 

< >. 
Longitudinal BCG 

(Starr Table, Dock Electromagnet, etc.) 

Figure 2.7 Illustration of longitudinal versus transverse BCG signals. The original Starr and Dock systems 
measured longitudinal forces; this is the true definition of the BCG. However, some of the 
modern systems do not differentiate between the two types of measurement and group both 
signals into the same category. For this reason, many of the 'BCG' signals shown in the modern 
literature do not resemble a true BCG waveform; they are more similar to a phonocardiogram 
waveform, suggesting that the signal source is the heart valves. 

normalcy, 85% recovered well and returned to their homes. Of the patients whose BCGs 

continued to be abnormal or worse, 31% died and 55% were cardiac invalids. 

Another longitudinal study confirmed that decreasing BCG amplitude over time was an 

accurate sign of degrading cardiac health [86]. Starr followed 211 healthy subjects for 17-23 

years, measuring their BCG waveforms once in the late 1930s, then a second time in the late 

1950s. The subjects with lower BCG amplitude in the first test had far higher incidence of 

heart disease and mortality than those with normal or higher BCG amplitude. For many 

subjects, the BCG prognosis preceded other clinical evidence of heart disease by years. 

2.8. Modern BCG Systems 

In the past thirty years, several research groups have developed new systems for acquiring 

the BCG. For many of these groups, the goal was to facilitate BCG measurement in the home, 

an ideal setting for taking serial measurements over a long period of time. As a result, the 

efforts have focused on improving the practicality of the instrumentation - reducing hardware 

costs, miniaturizing the system, improving usability, and eliminating the need for a medical 

professional to administer the test. The most notable of these systems have been static-charge-

sensitive beds (SCSBs) [87], piezoelectric strain sensors (EMFi) [88], custom force plates 

[89], accelerometers [90], and modified commercial weighing scales [91, 92]. 

Before discussing these approaches, one important clarification is needed regarding the 

axis along which the 'BCG' is measured: the BCG, as described by Starr, represents the heart-

induced body movements along the longitudinal axis (headward-to-footward) [9]. In contrast, 

Cs 
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some of these modern 'BCG' 

measurement systems are 

measuring the deflections along the 

transverse axis (sternal vibrations). 

This is illustrated in Figure 2.7. 

In the broadest definition of the 

signal as, 'body movements caused 

by the heart,' it would still be 

technically accurate to name this 

transverse signal the BCG. 

However, the physical 

phenomenon measured along this 

axis is quite different from the 

original measurements taken by 

Starr: While the longitudinal BCG 

results from the reaction force of 

the body to cardiac ejection, these 

transverse deflections of the chest wall are likely associated with the acoustic pressure waves 

generated by the valves. As a result, changes in cardiac output will have vastly different 

effects on these two signals - thus, the longitudinal BCG will increase in RMS power 

proportional to the changes in cardiac output while the transverse signal will not. To 

complicate the issue further, some systems acquire a combination of both forces, longitudinal 

and transverse, and have yet to be characterized to determine the degree to which each couples 

into the sensor. 

For these reasons, some authors prefer to name the transverse signal the kinetocardiogram 

(KCG) [93] or the seismocardiogram (SCG) [94], thus explicitly differentiating it from the 

BCG; unfortunately, a majority simply refer to it as a BCG [90, 95]. Visually, the signals are 

quite different: the transverse signals, being related to valve action, have two main peaks 

whereas the longitudinal BCG has one. Additionally, the transverse signals have significantly 

more high frequency content than the longitudinal BCG. Figure 2.8, redrawn after [4], shows a 

transverse 'BCG' beat with a corresponding ECG to illustrate the differences between this 

signal, and the signal measured by Starr, et al. [9] (Figure 2.5). Furthermore, the naming of the 

waves seems somewhat arbitrary in this figure as there are two or three deflections following 

Transverse 
'BCG' 

ECG 

Figure 2.8 Transverse 'BCG' signal, redrawn and adapted 
from [4]. The labeling of the 'BCG' waves appears 
to be arbitrary. Additionally, the 'BCG' has 
significantly greater high frequency content 
compared to the standard, longitudinally-measured 
waveform, as well as two compact pulses of energy 
rather than one. The signal is more similar to a 
phonocardiogram than a BCG. 
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the K-wave that could easily be named L-N; instead, these deflections are unnamed, and the 

waves in the second complex are named L-N. 

Accordingly, in this section describing the various modern methods for BCG acquisition, 

the direction along which the signal is measured has explicitly been noted in the title of each 

sub-section. If the researchers measured a combination of longitudinal and transverse forces, 

without differentiating between the two signals, the sub-section title reads, "Longitudinal and 

Transverse Forces." If both were measured separately and independently, the title reads, 

"Longitudinal and/or Transverse Forces." 

2.8.1. Static-Charge-Sensitive Bed—Longitudinal and Transverse Forces 

The static-charge-sensitive bed (SCSB) was the first modern BCG measurement system, 

developed in the early 1980s by researchers in Finland [96]. The apparatus involved a mattress 

with a large, built-in metal-insulator-metal capacitor, with the subject lying flat on top. 

Vertical movements of the body in response to sternal vibrations generate static charges on the 

top plate, which are then amplified by a conventional circuit. Longitudinal movements also 

generate static charges, however, since the body depresses into the soft mattress, the 

movements along this axis are dampened. The extent to which these movements are dampened 

would most likely depend on both body mass and composition - this issue has not been 

discussed in the literature, and certainly has not been quantitatively characterized. 

Nevertheless, with this apparatus, high-quality recordings were demonstrated from subjects 

at rest and recovering from exercise. Additionally, a preliminary study was conducted to 

evaluate the effect of changes in contractility on the BCG. Exercise and isoprenaline, an 

inotropic agent, were used to increase the contractile state of the heart, and under these 

conditions the interval between the ECG R-wave and the BCG J-wave peaks (R-J interval) 

was shown to decrease significantly compared to rest for three subjects. To decouple these 

changes from heart rate variations alone, atropine, a chronotropic agent with no positive 

inotropic effects, was also administered - in this test, while there was a significant difference 

in heart rate, no significant difference was observed in the R-J interval [97]. The authors 

suggested that this system would be most suitable for sleep studies or patient monitoring, 

where long-term recordings are required. 

2.8.2. EMFi-Sensor-Based Chair - Longitudinal and/or Transverse Forces 

In 2004, Koivistoinen, et al., introduced an ElectroMechanical-Film-equipped BCG 

measurement chair [88]. ElectroMechanical Film (EMFi) is a pressure sensor which consists 

of a plastic film coated with permanently polarized electronically conductive layers [98]. Their 
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BCG chair used two layers of EMFi 

sensors: one on the seat, and one on the 

backrest. With this setup, both the 

transverse and longitudinal forces could 

be measured separately. 

While the apparatus is inexpensive, 

compact, and capable of independently 

measuring both BCG and SCG signals, 

the signal quality is relatively low, as 

shown in Figure 2.9. The resulting BCG 

signal varies significantly from one 

heartbeat to the next, even for data taken from healthy subjects, without any cyclic features 

that are synchronized to the heart rhythm. Additionally, the consistency of multiple recordings 

taken from one subject has not been quantitatively addressed. Thus, a majority of the work 

surrounding EMFi-sensor-based BCG measurement has been focused on automatic beat 

detection and classification; in contrast, the clinical relevance of the signals obtained by this 

method has not been adequately assessed. 

2.8.3. Custom Force Plate for Lavatory Measurements - Longitudinal Forces 

In the mid-1990s, Japanese researchers developed a custom force plate for measuring 

excreta weight in the lavatory [89]. This force plate was designed with a capacity of 2000 N 

(200 kg mass) and a sensitivity of less than 50 mN. With this apparatus, body weight and 

urine weight were unobtrusively recorded daily for several months at a time. In their efforts to 

measure excreta weight, these authors noticed the BCG, measured along the longitudinal axis, 

as a noise in their measurement, and presented it as an incidental finding in their work. 

Unfortunately, no quantitative characterization of the frequency response, signal-to-noise ratio 

(SNR), or consistency of the measured BCG was presented in this work. 

2.8.4. Sternal Accelerometer - Longitudinal and Transverse Forces 

An accelerometer was attached to the chest of subjects lying supine, and the deflections of 

the body caused by the heartbeat were recorded [90, 95]. In one study, conducted by McKay, 

et ai, where only the accelerations along the longitudinal axis of the body were recorded [90], 

the information from the BCG and ECG were combined and correlated to stroke volume 

measured simultaneously by a pulmonary artery catheter: the correlation was strong 

(R2 = 0.76) for 30 subjects. 

I + I \ i n * 

i — , — | — , — , — | — | — , — K 

20 22 24 26 28 
Time (s) 

Figure 2.9 BCG signal acquired using EMFi sensors 
redrawn from Fig. 4 of [14]. The ECG 
signal shown in the original figure has been 
replaced by arrows at each R-wave. The 
original caption reads, "ECG and BCG 
records of a filtered normal young subject 
using a band pass filter (1-45 Hz) for ECG 
and (1-10 Hz) for BCG. As can be seen, 
there are some motion artifacts in the BCG 
signal, which were not removed by 
filtering." 
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Recently, another group has developed a similar system for BCG acquisition [95]; for this 

work, the primary direction sensed by the accelerometer is transverse, resulting in 

significantly different waveforms compared to McKay, et al. Regardless of the measurement 

axis selected on the accelerometer, both of these setups would record a combination of 

transverse and longitudinal forces, since the body is lying supine on an immovable platform -

a mattress or the floor. The relationship between sternal acceleration and BCG measurements 

is a subject of future research. 

2.8.5. Modified Commercial Weighing Scale - Longitudinal Forces 

In 1990, the idea of measuring the BCG from a modified commercial weighing scale was 

first disclosed by Jim Williams in a Linear Technology Application Note on bridge circuits 

(AN-43) [91]. In designing a circuit capable of precise body weight sensing - 4.5 gram 

resolution at 135 kg full scale - Williams noticed the heart-induced fluctuations of the weight 

signal as a noise in the measurement. He noted that these fluctuations were, in fact, the BCG 

and showed that, after exercising, their amplitudes increased. 

Five years after Williams' AN-43, Sepponen disclosed the idea of non-invasively 

estimating heart rate and cardiac output by measuring the BCG on a modified weighing scale 

[99]. Unfortunately, no results were provided in his disclosure, and this idea was never 

revisited in the patent or academic literature. 

Part of the work described in this dissertation focuses on assessing the robustness and 

repeatability of weighing-scale-based BCG measurements, including the quantification of 

frequency response, SNR, sources of noise and interference, and methods for reducing these 

noises. These subjects are discussed in the following chapters, particularly Chapters 3-5. 

2.9. Value of Combining ECG and BCG 

There are multiple advantages to combining both the ECG and BCG for diagnostic 

purposes. The signals are synchronized in time, but corrupted by independent noise sources, 

allowing the use of one to improve the signal quality of the other. The most direct application 

of this is R-wave triggered ensemble averaging of BCG beats, as described in Chapter 4. 

Similar results can also be achieved by feeding the signals into an adaptive signal 

enhancement algorithm, as shown in Figure 2.10, adapted from Ferrara, et al. [6]. 

In addition to improving signal quality, acquiring both signals simultaneously can enhance 

the diagnostic power of the measurement. The ECG and BCG represent complementary 

physiological information: electrical depolarization of the myocytes versus cardiac force 
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ECG 
Filtered 

BCG 

imparted on the aorta. The 

timing interval between the 

two signals, as discussed in 

Chapter 7, is modulated by 

changes in the contractile state 

of the heart. Furthermore, by 

combining the morphological 

features of the ECG with the 

amplitude of the BCG, 

arrhythmia detection could be 

improved. Preliminary data 

showing the effects of two arrhythmias on the signals are also provided in Chapter 7. 

These advantages demonstrate the need for measuring both signals simultaneously, since 

more robust and informative diagnostic results can be obtained. This work provides novel 

instrumentation approaches to facilitate simultaneous and unobtrusive ECG and BCG 

measurement on a modified weighing scale. It also describes new methods for fusing the 

information from the two signals to lower the measurement error, and extract clinically 

relevant diagnostic features from the signals. 

Figure 2.10 Conceptual diagram of adaptive signal enhancement 
algorithm for averaging the BCG signal using the ECG 
as a reference. Adapted from [6]. 
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3 
^J Instrumentation Design and Verification 

The aim of every artist is to arrest motion, which is life, by artificial means and 
hold it fixed so that a hundred years later, when a stranger looks at it, it moves 
again, since it is life. 

- William Faulkner 

Sometimes the questions are complicated and the answers are simple. 
- Theodor Seuss Geisel (Dr. Seuss) 

The first ECG instrument was made in 1901: Willem Einthoven developed a string 

galvanometer for measuring electrical currents flowing through the body caused by the 

heartbeat. While initially this instrument was used primarily for research, it soon found a place 

in the clinic as a tool for diagnosing heart disease [100]. Since then, major advances in both 

analog and digital electronics have improved ECG instrumentation tremendously. As a result, 

it is now one of the most prevalent tools used for evaluating cardiovascular health: ECG 

recorders can be found in nearly all hospitals and clinics in the US. 

Until the 1970s, it seemed that the BCG would follow a similar trajectory as the ECG, and 

become the mechanical complement to its electrical counterpart as a cardiovascular 

diagnostic. In 1939, Isaac Starr's revolutionary instrumentation for measuring the BCG - the 

Starr BCG Table - pioneered its use in research and clinical settings [9]. For the following 

thirty years, the BCG was investigated in both settings, and encouraging results were 

obtained; however, by the mid-1970s existing BCG instruments were growing obsolete, and 

few scientists were pursuing research in the field. Perhaps the strongest driver for the decline 

of the BCG was the cumbersome instrumentation required for accurately measuring the signal. 

In the past ten years, there has been a gradual resurgence of BCG research. Interestingly, 

instrumentation is, again, the major driver. There is a need today for low-cost, simple medical 

instrumentation usable outside the clinic; specifically, as-needed cardiovascular monitoring in 

the home. The application requires a new class of BCG instruments: practical devices capable 

of acquiring high fidelity waveforms. And, in the past decade, several attempts have been 

made at developing such an instrument. In this work, a modified commercial bathroom scale 

combined with custom electronics and secondary sensors was used for BCG measurement. 
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This chapter describes the design and verification of this instrumentation. Specifically, it 

focuses on the design of the analog circuits used for amplifying and filtering the signals, and 

the characterization of the BCG sensor. Initially, the circuits were implemented using standard 

topologies, with high-fidelity, commercially available, discrete components. Then, novel 

circuits for BCG and ECG measurement were developed, and compared to the standard 

circuits in terms of electronic performance and physiological accuracy. The chapter is 

organized as follows: first, the design and verification of the standard circuits is presented; 

then, the new tools, and techniques for characterizing the BCG sensor are discussed; finally, 

novel circuits for ECG and BCG acquisition are described. 

These new circuits were needed in this research for two main reasons: reducing the 

electronic noise in BCG measurement, and enabling low-power, low-noise ECG recording 

with only two electrodes contacting the body (the handlebars of a commercial bathroom 

scale). For the BCG, lower electronic noise was required to increase the electronic signal-to-

noise ratio (SNR). The sources of noise and interference in BCG recordings are discussed in 

this chapter, in Section 3.3. As discussed in Section 3.3, sources of interference, such as 

motion artifacts and floor vibrations, are generally more pronounced than the electronic noise 

in BCG measurements - nevertheless, as these interferences are mitigated or eliminated by the 

solutions discussed in Chapter 5, the electronic noise will set the sensitivity of the instrument. 

To reduce electronic noise, a lock-in BCG amplifier was designed, as described in Section 3.5. 

These noises interferences would further be reduced by the addition of an ECG sensor to 

the apparatus, thus enabling triggered averaging of the BCG. In particular, the innovative 

methods for averaging described in Chapter 4 leverage the timing information of the ECG to 

provide a full reconstruction of the BCG signal from a recording corrupted by noise and 

interference. 

For integrating ECG sensing into the scale, the handlebar electrodes of an existing 

commercial scale were used, with a novel two-electrode ECG amplifier, described in Section 

3.6. Note that all analog circuits were interfaced to a data acquisition card (USB6218, National 

Instruments, Austin, TX) and stored on a laptop computer using dedicated software written by 

Dr. Laurent Giovangrandi and adapted by Mozziyar Etemadi, both at Stanford University. 
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Figure 3.1 Full schematic for standard ECG amplifier circuit. Note that the LT1014 integrated circuit is a 
quad package operational amplifier - accordingly, the powering is not shown separately for all 
four amplifiers (A-D). Decoupling capacitors are not shown in this schematic for convenience; 
0.1 uF ceramic capacitors were used next to all integrated circuit packages. The IC pin numbers 
are also shown next to the terminals. 

3.1. Standard ECG Amplifier 

3.1.1. Design Considerations and Circuit Schematic 

The ECG is a biopotential with amplitude on the order of 0.5^4 mVPp, and frequency 

content spanning 0.01-250 Hz [101]. For reliable heartbeat (R-wave) detection, the bandwidth 

can be narrowed to 5-15 Hz, where the energy of the QRS complex is maximized [102]. The 

ECG is generally sensed on the surface of the skin using gel-based electrodes which are then 

connected to an electronic amplifier for conditioning; the output of this amplifier is sampled 

using an analog-to-digital converter (ADC) and stored in memory or transmitted to a remote 

location. 

Standard ECG amplifiers use a low-noise instrumentation amplifier as the front-end, 

followed by band-pass filtering and, in some instances, a subsequent gain stage. The most 

important considerations in voltage-mode ECG sensing are generally high common-mode-
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rejection ratio (CMRR) and low input-referred voltage noise density (em); both are primarily 

set by the first stage. Accordingly, the selection of the instrumentation amplifier is crucial in 

determining the performance of the overall amplifier. The importance of filtering should also 

not be overlooked: as in any other sensing application followed by an ADC, the filtering must 

be of high enough order to significantly reduce aliasing of higher frequencies in the 

subsequent sampling stage. 

In this work, a standard ECG amplifier was developed using discrete components. The 

main purpose of this amplifier was to enable highly-accurate R-wave detection; as a result the 

full 0.05-250 Hz bandwidth was not targeted in the design. The design objectives were as 

follows: 

1. Differential voltage gain of 1,000 (60 dB). 
2. Frequency response spanning 0.2-100 Hz. 
3. Greater than 50 dB attenuation at Nyquist rate of the ADC. 
4. Electrical isolation for patient safety. 
5. Greater than 100 dB CMRR at 60 Hz. 
6. Less than 15 nV VHz'1 of input referred voltage noise density. 
7. Less than 1 uVpp of input referred voltage noise at low frequencies (0.1-10 Hz). 

The full schematic is shown in Figure 3.1. An LT1167 was used as the front-end 

instrumentation amplifier, due to its high CMRR (greater than 120 dB), low eni (approximately 

7.5 nV VHz"1), and low total low-frequency voltage noise (0.28 |iVpp from 0.1-10 Hz) at a 

differential voltage gain of 40 dB. The gain of the front-end was set at 40 dB rather than the 

total desired differential gain of 60 dB to avoid saturation due to low-frequency baseline 

wander and motion artifacts. The remaining 20 dB of gain was provided by the final 

amplification stage of the circuit, a non-inverting amplifier. 
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Figure 3.2 Measured gain and phase response of the ECG amplifier. 
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Figure 3.3 Measured common-mode-rejection ratio Figure 3.4 Input referred noise spectral density for 
(CMRR) versus frequency, using an the ECG amplifier. The thermal noise 
SR780 signal analyzer. For measuring level was 15 nV^s VHz'1 and the noise 
the common-mode gain, an input corner frequency was approximately 
voltage of 2 VRMS was used, and for 2 Hz. The total noise integrated over the 
differential gain, 1 mV^s. The CMRR 0.1-200 Hz bandwidth was 2.4 UVRMS. 
was greater 130 dB for the bandwidth of 
the amplifier. 

To reduce the baseline wander in the first stage, an integrator was used in the feedback 

loop of the LT1167. This forced the output voltage of the LT1167 to zero at low frequencies 

(< 0.2 Hz), providing an overall high-pass filtering effect. Subsequent high-pass filtering was 

achieved by ac-coupling between stages; for low-pass filtering, two cascaded second-order 

Sallen-and-Key low-pass filters were used, with an overall cutoff frequency (-3dB) of 100 Hz. 

The output of the final gain stage was fed into an analog isolation amplifier (ISO 122). This 

integrated circuit provides a 1 kV isolation barrier to protect the patient from the equipment 
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Table 3-1 Measured electrical specifications for the 
standard ECG circuit. 

Specification Measured 
Value Units/Comments 

Supply Voltage 

Supply Current 

Bandwidth 
(-3dB) 

Mid-Band Voltage 
Gain 

CMRR 

Input-Referred 
Voltage Noise 

Total Harmonic 
Distortion 

18 

13.5 

0.2 - 104 

61.2 

>130 
>50 

2.4 

<-60 

V 

mA 

Hz 

dB 

dB/0.2-104Hz 
dB/0.2 Hz-100 kHz 

P-VRMS 

dB/0.5-100 Hz 

used for storing the signal - in this 

work, a laptop computer. The ISO 122 

was powered on both the isolated and 

non-isolated side by ±9V. 

Additionally, since it introduced a 

500 kHz ripple voltage of 20 mVpp 

onto the output signal, a simple 1 kHz 

cutoff frequency first-order-RC filter 

was used on the output prior to 

inputting the signal to the ADC. 

3.1.2. Electronic 

Characterization 

The ECG amplifier was fully 

characterized and the electronic 

specifications are summarized in 

Table 3-1. First, the gain and phase of 

the amplifier were measured versus 

frequency, and are shown in Figure 

3.2. The mid-band gain was measured 

as 61 dB and the frequency response 

spanned from 0.2-104 Hz (-3 dB 

cutoff). At 500 Hz, the attenuation 

was 50 dB with respect to the mid-

band gain, and at 1 kHz it was 78 dB 

- as a result, 8-bit accuracy could be 

obtained at a 1 kHz sampling rate, and 13-bit accuracy at 2 kHz sampling. The common-mode 

gain was measured by inputting a sine wave, 2 VRMS, into the two differential inputs (tied 

together) and measuring the transfer function on the SR780 (Stanford Research Systems, 

Sunnyvale, CA). The ratio of common- to differential-mode gain (CMRR) was then calculated 

at various frequencies, and is shown in Figure 3.3 (after moving averaging over 10 points). 

The CMRR was greater than 130 dB for the full bandwidth of the amplifier (0.2-104 Hz). 

The output noise spectral density was measured using the SR780, and the input referred 

voltage noise spectral density is shown in Figure 3.4. The thermal noise level was 15 nV VHz"1 

10 
Frequency (Hz) 

10 

Figure 3.5 Total harmonic distortion versus frequency. 
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Figure 3.6 BCG amplifier circuit schematic. Note that decoupling capacitors are not shown, and the fourth 
amplifier on the LT1014 integrated circuit (LT1014B) is unused. The IC pin numbers are also 
provided for convenience. 

and the noise comer frequency was 2 Hz; the total input referred noise integrated over the 

amplifier bandwidth was 2.4 UVRMS. 

The total harmonic distortion (THD) versus frequency was also measured using the SR780, 

and is shown in Figure 3.5. The THD was less than -60 dB (0.1%) for the amplifier 

bandwidth. The THD at 10 Hz was less than -70 dB (0.03%). 

3.1.3. Practical Considerations 

In practice, the internal noise of the electronic amplifier will generally be overwhelmed by 

the interferences in ECG recording: electromyogram (EMG) interference caused by the 

contraction of muscles around the electrode site [103], motion artifacts due to the stretching of 

the stratum corneum layer of the skin under the electrode [104], microphonics due to cable 

motion, and electromagnetic interference coupling to the body [8]. The latter can be mitigated 

substantially by using shielded cables, where the shield is connected to the ground of the 

amplifier at the circuit, or driven actively by the sensed common-mode voltage at the input. 

3.2. Standard BCG Amplifier 

The BCG represents a force along the longitudinal axis of the body. The bathroom scale 

used for BCG sensing (BC-534, Tanita Corporation, Tokyo, Japan) consisted of a glass 

platform mounted on four strain gauges, one at each corner of the device, which varied in 

resistance proportional to the vertical force that loaded the platform. The strain gauges were 

assembled in a Wheatstone bridge configuration such that the resistors on the complementary 
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Table 3-2 Measured electrical specifications for the 
standard BCG circuit. 

Specification Measured 
Value Units/Comments 

arms of the bridge varied in opposite 

direction due to a downward force 

on the platform. The details of 

characterizing the BCG sensor are 

described below. 

Vertical forces on the scale 

generate a differential voltage across 

the strain gauge bridge; this voltage 

was sensed using a similar circuit to 

the ECG amplifier, with a much 

narrower bandwidth and higher gain. 

As a result, the design objectives 

were similar, with the relevant 

bandwidth of the BCG signal being 

1-10 Hz [65, 105], and the signal being on the order of tens of microvolts at the input of the 

circuit. The circuit used for sensing the BCG is shown in Figure 3.6. 

Similarly to the ECG amplifier, the LT1167 instrumentation amplifier was used as the 

input stage, with integrator feedback to the reference terminal reducing the low frequency drift 

in the output. Since the sampling rate used for the BCG was always the same as for the ECG, 

while the bandwidth was ten times narrower, one Sallen-and-Key filter (2nd order) was 

sufficient for reducing aliasing. The low-pass cutoff frequency (-3 dB) was set at 24 Hz by this 

Supply Voltage 

Supply Current 

Bandwidth 
(-3dB) 

Mid-Band Voltage 
Gain 

CMRR 

Input-Referred 
Voltage Noise 

Total Harmonic 
Distortion 

18 

16 

0.15-24 

90 

> 130 

140 

<-65 

V 

mA 

Hz 

dB 

dB/1-10 Hz 

nVRMs 

dB/1-10 Hz 

BCG 
Output 

Force-to- Voltage Conversion Amplification and Filtering 

Figure 3.7 Block diagram showing sources of noise and interference in standing BCG recordings at the 
sensor input, due to the sensor, and due to the electronic amplifier. 
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filter, and the high-pass filtering resulting from the integrator feedback in the first stage and 

the ac-coupling throughout had a cutoff frequency of 0.15 Hz. 

The measured electrical specifications for the BCG circuit are summarized in Table 3-2. 

The gain and frequency response of this circuit were found to be 90 dB and 0.15-24 Hz, 

respectively. The CMRR was greater than 100 dB over the full BCG bandwidth. Using an 

oscilloscope (TDS3012, Tektronix, Beaverton, OR), the output voltage noise was found to be 

1.5 mVRMs; when referred to the input, this corresponds to a voltage noise of 140 nVRMs- The 

measurement was repeated using a 5'/2-digit digital multimeter (34401 A, Agilent 

Technologies, Santa Clara, CA): the output voltage noise was found to be 0.9 HIVRMS which, 

referred to the input, corresponds to a voltage noise of 82 nVRMs- The THD was less than 

-65 dB for the bandwidth of the amplifier. 

3.3. Sources of Noise and Interference in Standing BCG Recording 

Noise and interference can be introduced into standing BCG measurements at various 

stages of the acquisition process. The word 'standing' is used here to highlight the fact that if 

the measurements were taken from a prone subject - such as on a table- or bed-based system -

some of these effects would be much less pronounced or not present at all. The block diagram 

in Figure 3.7 shows the signal path and details each significant source of noise or interference 

than can corrupt standing BCG measurements. 

In general, there are two classes of noises and interferences that corrupt the recordings: 

those inherent to the sensors or amplifiers, such as voltage noise, distortion, and drift, and 

those caused by external sources, such as motion artifacts or floor vibrations. The former can 

be minimized by the proper selection and design of the sensor and amplifier. In this work, the 

sensor was a commercial product - as a result, the majority of the work was focused on 

characterizing the sensor to understand and mitigate its shortcomings. These methods are 

discussed below in the following section. In addition, various new techniques were 

implemented to reduce the effects of external interferences, as discussed in Chapters 4 and 5. 

3.4. Characterization of the BCG Sensor 

3.4.1. Static Characterization: Spring Constant, Force-to-Voltage Gain and 

Linearity 

The modified weighing scale was statically characterized as a force sensor to determine the 

gain factor and linearity in translating input force to output voltage across the strain gauge 

bridge. 
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Figure 3.8 Large-signal characterization of scale. 
The force-to-voltage transfer was shown 
to be linear (R2 = 1.00). 
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Figure 3.9 Small-signal characterization of scale. 
The force-to-voltage transfer was shown 
to be linear (R2 = 1.00). 

The gain and linearity of the scale were 

measured for both large and small forces by 

loading the scale with several weights and 

measuring the differential voltage across the 

bridge. The bridge was biased at ±9V for all 

experiments, and the unloaded resistance of 

each strain gauge was 1.49 kQ ± 0.01 kQ. 

To test large signal linearity, iron plates of 

known mass were loaded onto the scale in 

increments of 4.5 kg from zero to 102.5 kg. 

At each weight, the differential voltage 

across the bridge was measured using a 5!/2-

digit multimeter (34401 A, Agilent 

Technologies, Santa Clara, CA). To test 

small signal linearity, the scale was biased 

with 65.9 kg and several calibrated 45 g 

masses were consecutively loaded from zero 

to 270 g. For each weight, the differential 

voltage across the bridge was amplified 

using a dc-coupled instrumentation 

amplifier and measured with the same 

multimeter. 

The results are shown in Figure 3.8 for the large-signal characterization and Figure 3.9 for 

the small-signal characterization. The scale was shown to be linear (R2 of 1.00) as a transducer 

from force to differential voltage across the bridge for both large and small loads. The force to 

differential voltage gain factor was 19.1 uV N'1. Since the expected amplitude of the BCG was 

on the order of a few Newtons peak-to-peak, this corresponded to an input voltage on the 

order of tens of microvolts at the input of the amplifier, as discussed in Section 3.2 above. 

3.4.2. Dynamic Characterization: Frequency Response, Distortion, Drift 

For testing the dynamic response of the scale-circuit system, the test setup shown in Figure 

3.10 was used. The scale was loaded by iron weights of known mass and a loudspeaker - with 

an accelerometer attached to its cone - was set on top. With this setup, the frequency response, 

distortion, and drift of the system were measured. 
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Figure 3.10 Block diagram showing setup used for dynamic characterization of the BCG sensing scale. 

The frequency response of the scale-circuit system was measured indirectly by analyzing 

the step response of the system in the frequency domain. The scale was modeled as a second-

order mechanical system - where the glass scale platform with the human body on top was 

considered to be a spring loaded by a mass - with resonant frequency given by: 

(3.1) 

where fres is the resonant frequency (in Hz), k is the spring constant (in N m"1), and m is the 

mass loading the spring (in kg). The mass on the scale was varied and the resonant frequency 

was computed at each load; a best least-squares fit was then used to estimate the spring 

constant of the scale. 

To measure the step response, the loudspeaker was driven by square waves generated by a 

bench-top function generator fed through an HP467A power amplifier (Hewlett-Packard 

Company, Palo Alto, CA). The voltage output of the BCG amplifier was recorded 

simultaneously as the signal from the accelerometer mounted on the speaker cone. The total 

mass loading the scale was varied and the step response was measured repeatedly at each load. 

The accelerometer data was used as a trigger to ensemble average the step responses of the 

scale output for each load. At each load, the peaks of the accelerometer signal were manually 

located and an ensemble of step responses was formed from the scale output. The ensemble 
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Figure 3.11 Characterization of the drift in the BCG sensor: the loudspeaker was driven such that the output 
voltage of the BCG circuit was comparable to a typical BCG signal (2 Npp). The RMS of the 
accelerometer and BCG waveforms are shown above after normalization and moving averaging 
(1 min. window). The BCG sensor drift was thus found to be negligible. 

average over all responses for a given load was then computed; the periodogram, computed as 

the fast Fourier transform (FFT) of the autocorrelation sequence for this average response, was 

then found to estimate the power spectral density (PSD). 

The peak frequency of this estimated PSD was manually located and recorded as the 

resonant frequency of the scale for each load mass. This process was then repeated for all 

masses, providing the resonant frequency of the scale as a function of load mass. As described 

above, this data was then used to find the spring constant of the scale: 1.19 N nm"1, within 6% 

of the spring constant determined statically by Richard Wiard (Stanford University), as 

described in Inan, et al. [92]. With this spring constant, body masses up to 300 kg could 

theoretically be tolerated on the scale without lowering the resonant frequency below the 

upper end of the BCG bandwidth, 10 Hz - in reality, the capacity of the scale was 150 kg, 

which is adequate for the majority of the population. 

The total harmonic distortion (THD) introduced by the scale in converting vertical force-

to-voltage was investigated: this would directly influence the morphological accuracy of the 

measured BCGs. The scale was biased at 40 kg and the speaker cone was loaded by small 

masses, attached by adhesive to the cone, such that a 10 Hz sine-wave excitation of the cone 

produced a low distortion 2 Npp mechanical force on the scale. (Note that this force was 

measured using the force-to-voltage gain factor of the scale computed above.) The signal from 
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the accelerometer was monitored simultaneously as the output signal from the BCG amplifier, 

and the THD of both were computed from the first five harmonics and compared. 

For the accelerometer signal, the THD was measured as 0.5%, or -46 dB; for the scale 

amplifier output, the THD was 0.76%, or -42.4 dB. The difference was considered to be the 

excess distortion introduced by the scale-circuit combination: 0.26%, or -51.7 dB. For a force 

input of amplitude 2 Npp, on the order of a BCG signal, this corresponds to a distortion level 

on the order of 5 mNpp; this is comparable to the input referred voltage noise of the amplifier 

which was found to be 4-7 mNpp (80-140 nVpp). 

The drift was determined by monitoring the ac force-to-voltage gain of the scale was 

monitored continuously for a 30-hour period to determine the drift. For this measurement, the 

same 10 Hz, 2 Npp sine wave was used to mechanically excite the scale, and the accelerometer 

and scale amplifier outputs were recorded continuously. The results of this characterization are 

shown in Figure 3.11. As shown in this figure, the ac gain trended similarly for both signals 

for this period of time. 

As a result, for BCG measurements taken over recording periods on the order of five to ten 

minutes, the drift in sensor gain was not considered to be a confounding variable. This result is 

important for the data analysis presented in Chapter 7, below, where the RMS power of the 

BCG was monitored for ten minutes 

Modulation Demodulation 
• 

sfl) »(x) > s(t) sin(2xji) >(x) * 

T T 
s(t) siniQnfi) 

continuously 

recovery. 

during exercise 

sinQnft) sinQxfi) 

Figure 3.12 Standard lock-in amplifier modulation and 
demodulation procedure. The output consists of 
half the original signal plus half the signal shifted 
to twice the carrier frequency. 

Demodulation 

s(t) sin(2rtfl) 9 >| x 1 \-

I x -11 
s(t) \si»Qnfl}\ 

Figure 3.13 Phase-synchronous demodulation circuit used in 
this work, based on [3]. The switch is toggled in 
phase with the carrier. 

3.5. Lock-in BCG Amplifier 

With the BCG sensor fully 

characterized, a lock-in BCG 

amplifier was designed to lower the 

electronic noise in BCG 

measurements. The predominant 

component of electronic noise in 

BCG measurements is flicker noise 

in the first stage of the amplifier. 

The lower end of the BCG spectrum 

can extend below 1 Hz, which is 

less than the noise corner frequency 
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of most commercial instrumentation amplifiers - for example, the LT1167 instrumentation 

amplifier used in this work has a corner frequency of 7 Hz (at a voltage gain greater than 100). 

For a lock-in amplifier, the signal to be measured is modulated up to a higher frequency 

than the signal bandwidth, amplified, and demodulated. By boosting the modulated version of 

the signal, the amplifier operates well beyond its noise corner frequency. Then, since the noise 

is mainly thermal, the noise density is less than it would be at lower frequencies (around dc). 

Several implementations of lock-in amplifiers can be used depending on the requirements of 

the system in terms of performance and complexity. In this work, a square-wave modulation 

signal is used, followed by differential amplification and synchronous demodulation, as 

described by Horowitz and Hill [3]. This chapter briefly discusses the theory of lock-in 

amplification, describes the circuit design and characterization of the lock-in BCG amplifier, 

and shows recordings obtained using this approach. 

3.5.1. Basic Lock-In Amplifier Theory 

The simplest lock-in amplifier, in terms of theoretical analysis, modulates a signal with a 

sine wave then multiplies the signal by the same sine wave for demodulation (see Figure 

3.12). The bandwidth of the signal must be much lower than the frequency of modulation for 

this technique to be effective. The output of the demodulator can be expressed as 

v0ut(t) = s(t)sin2(2nft) 

. Jl - cos(2n(2nt)\ 
= s & { 2 J <3-2) 
= 1/2s(t) - y2s(t)cos(2n(2f)t) 

This output, vout(t), is then passed through a low-pass filter, which is assumed to be ideal in 

this analysis, resulting in the original signal, s(t) (with half the original amplitude lost). 

In this work, the simple demodulator was replaced by a phase-synchronous demodulation 

circuit, shown in Figure 3.13, based on the Horowitz and Hill text [3] and Williams' AN-43 

[91]. Although the waveform used for modulation in this work was a square wave, the theory 

presented here is for sine wave excitation; this analysis could then be extended for square 

waves by using a Fourier series representation of the square wave as a sum of sine waves. 

For this demodulation scheme, the switch toggles the gain between positive and negative 

one in phase with the original carrier. This effectively sets the output as the absolute value of 

the carrier sine wave, with amplitude modulated by the signal: 
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vOut(0 = s(t)\sin(2nft)\ 

s(t) 

s(.t) 

= s(t)^Jsin2(2nft) „ „ 

V2 
Vl - cos(27r(2/)t) 

The statement in the radical, which will always be nonnegative, can be expanded by a Taylor 

series taken about zero as follows: 

vout(f) = ^ [ l ~cos(2n(2f)t) -^cos2(2n(2f)t) 

^cos\2n(2f)t)-^cos\2n(2f)t) (3-4) 

• — cos5(27r(2/)t) - — c o s 6 ( 2 7 r ( 2 / ) t ) - • 

Again, assuming that this output signal will be passed through an ideal low-pass filter, and 

that the bandwidth of s(t) is much less than/ this expression can be greatly simplified. Note 

that only the even powers of the cosine function will have frequency components at dc. On the 

other hand, the odd powers of cosine will only have frequency components at and above the 

fundamental modulation frequency,/ 

As a result, the odd powers in equation (3.4) can be excluded from the analysis. The 

Fourier transforms of the even powers, cos2, cos4, etc., will include impulses at dc with the 

following magnitudes: [1/2, 3/8, 5/16, . . . ] . Note that these magnitudes can be calculated 

directly by using the convolution property of the Fourier transform. All other frequency 

components of the even powers of cosine will be greater than or equal to twice the 

fundamental modulation frequency (2/), and thus will be substantially attenuated by the low-

pass filter operation. 

Accordingly, when low-pass filtered, the output can be approximated as: 

•^-^-©©-(^(D-^KfJ-] 
« 0.648 s(t) 

(3.5) 
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Figure 3.14 Block diagram showing the stages of modulation and demodulation for signal, s(t). An example 
of the waveforms that would be seen at points A-D is provided below. 
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Figure 3.15 Illustration of phase-synchronous demodulation scheme. The original signal is recovered with a 
scaling factor of approximately 0.64 after low-pass filtering (some of the signal amplitude is lost 
to the harmonics of the signal). The original signal is one quarter-cycle of a 0.01 Hz sine wave, 
and the modulation signal is a 1 Hz sine wave. The low-pass filter cutoff is 0.2 Hz. 

Considering these first four terms of the series yields a scaling factor of 0.648; with all of the 

terms considered, the scaling factor converges to 0.637. 

The principle of operation for this demodulation scheme is shown visually in Figure 3.14 

and Figure 3.15. In this example, the original signal was a quarter-cycle of a 0.01 Hz sine 

wave, and the modulation carrier was a 1 Hz sine wave. The upper-right plot in Figure 3.15 

shows the modulated version of the original signal; the bottom-left, the output of the phase-

synchronous demodulator. When the demodulated signal is low-pass filtered with a cutoff 
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Figure 3.16 Full schematic for lock-in BCG amplifier circuit. Note that the power supply connections for the 
LT1884A (in the feedback loop of the LT1167) are not explicitly shown since it is in the same 
package as the LT1884B to its side. Additionally, power supply decoupling capacitors (0.1 uF at 
both supply pins of each IC) and the second op-amp in the relaxation oscillator package are not 
shown. The IC pin numbers are provided next to the packages for convenience. 

frequency of 0.2 Hz, the original signal is recovered with a scaling factor of 0.637. As a result, 

the demodulation is successfully achieved with approximately one third of the signal 

amplitude lost. 

3.5.2. Circuit Design 

The full circuit schematic is shown in Figure 3.16. An op-amp relaxation oscillator was 

designed to excite the strain gauge bridge of the scale. The op-amp (LT1884, Linear 

Technology, Milpitas, CA) was selected based on a smooth large signal step response, rail-to-

rail output swing capability, and an adequate slew rate for the application (approximately 

1 V us"1 to facilitate high quality 10 Vpp, 3 kHz pulses). The frequency of oscillation, fosc 

(in Hz), was set using the following equation: 

fosc ~ 2 ln(2) R7C5 

(3.6) 
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With R7 set at 5.6 kQ, and C$ at 22 nF, the oscillator frequency was designed to be 3.7 kHz. 

The square wave output of this oscillator is shown in Figure 3.17 - the measured oscillation 

frequency was 3.3 kHz. 

An ac-coupled differential amplifier was designed for boosting the voltage generated 

across the strain gauge bridge. For this purpose, a commercial instrumentation amplifier 

(LT1167, Linear Technology, Milpitas, CA) was used with a series RC combination in place 

of the gain-setting resistor: RG and CG in Figure 3.16. The voltage gain of the instrumentation 

amplifier input stage of the circuit, Avl(jco), can then be written as: 

49 9 kfi. 
Avx(ja>) = 1 + — (1 +joRGCc) (3.7) 

where the 49.9 kQ value is given in the LT1167 datasheet. 

To set the mid-band gain at 250, RG was selected to be 200 Q; for a low-end cutoff 

frequency of 100 Hz, the capacitor was then selected to be 3.3 uF. To provide another order of 

high-pass filtering, an inverting op-amp integrator was used from the output to the reference 

terminal of the instrumentation amplifier. The gain and phase response of this amplifier, 

measured using the SR780 signal analyzer (Stanford Research Systems, Sunnyvale, CA), are 

shown in Figure 3.18. For this measurement, an input level of 10 mVRMs was used. 

This differential amplifier was 

described above. The LTC1043 

switched capacitor building block, 

with built-in charge injection 

cancellation circuitry, was used for 

the switching. Although in this 

implementation the op-amp 

oscillator was directly connected to 

the clock input of the LTC1043, in 

some instances some phase 

compensation may be required at 

this input [91]. For this purpose, a 

simple RC low-pass filter with a 

potentiometer in parallel with the 

followed by the synchronous demodulation stage as 

Table 3-3 Measured electrical specifications for lock-in BCG 
amplifier. 

Specification v . Units/Comments 

Supply Voltage 

Supply Current 

Bandwidth 
(-3dB) 

Mid-Band Voltage 
Gain 

Input-Referred 
Voltage Noise 

Input-Referred 
Force Noise 

10 

12 

0.2-12 

97 

21 

0.97 

V 

mA 

Hz 

dB 

nVRMS/BW: 0.3-10 Hz 

mNRMs/BW: 0.3-10 Hz 
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Figure 3.17 Square-wave output from op-amp relaxation oscillator 
(fosc = 3.3 kHz). 
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Figure 3.18 Gain and phase response of input stage with an ac-
coupled instrumentation amplifier. The mid-band 
voltage gain was 48 dB, and the low frequency cutoff 
(-3 dB) was 300 Hz. 
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Figure 3.19 Gain and phase response of the output stage. The mid-
band voltage gain was 49 dB and the bandwidth was 
0.3-12 Hz. 

capacitor would suffice for 

adjusting the phase. 

The output of the 

synchronous demodulation 

stage was fed into a band-pass 

filter block with a gain of 280 

and a bandwidth (-3 dB) from 

0.3-12 Hz. The gain and phase 

response of this stage are 

shown in Figure 3.19. The 

attenuation at the clock 

frequency was greater than 

80 dB with this filtering. At 

500 Hz, the Nyquist frequency 

for the sampling rate typically 

used in this work, the 

attenuation was approximately 

60 dB, corresponding to 10 bits 

of dynamic range before the 

aliasing limit. The electronic 

specifications are summarized 

in Table 3-3. 

3.5.3. Noise Measurements 

for Standard and Lock-In BCG 

Amplifiers 

The output voltage noise 

density was measured as a 

function of frequency for the 

standard BCG amplifier 

described in 3.2 and the lock-in 

amplifier. For this 

measurement, the unloaded 

BCG scale was connected to 
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Figure 3.20 Input referred force noise density (in HINRMS VHZ"1) versus frequency for the lock-in and standard 
BCG amplifiers. The flicker noise is eliminated by the lock-in technique since the signal is 
modulated to a frequency beyond the corner frequency of the LT1167 before amplification. To 
convert the units to Volts, the force-to-voltage gain of the scale was used; then the thermal noise 
of the lock-in BCG amplifier was approximately 7.8 nV VHz'1. 

the input of each amplifier, and the output voltage spectrum was recorded using the SR.780. 

Both circuits were battery operated and placed in a Faraday cage to reduce external 

interference. The spectra were averaged (N = 50) using the RMS averaging feature of the 

signal analyzer. 

To refer the output voltage noise density to the input, the force-to-voltage gain of the entire 

system was used for both circuits. Accordingly, the input referred force noise densities for 

both circuits are shown in Figure 3.20. As shown in this figure, the flicker noise has been 

eliminated from the spectrum in the lock-in amplifier: while the standard BCG amplifier noise 

density has a typical inverse relationship to frequency, the lock-in noise density is relatively 

constant in frequency. 

To find the total noise for both circuits, the square of the noise density was integrated over 

the desired bandwidth (0.3-10 Hz) and the square root was taken: 
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10 Hz 

v^rms) ~ rni,totK'*rms j FniVYdf (3.8) 

/=0.3 Hz 

where F»Uol (in Newtons, RMS) is the total force noise taken over the 0.3-10 Hz bandwidth, 

and Fni(/) (in N VHZ"1) is the force noise density as a function of frequency. The total noise for 

the standard BCG circuit was found to be 2.4 HINRMS (52 nVRMs), and, for the lock-in circuit, 

0.97 HINRMS (21 nVRMs), corresponding to a total noise reduction of 7.7 dB. 

3.5.4. BCG Measurements Using Standard and Lock-In A mplifier 

A BCG measurement taken using the lock-in amplifier is shown in Figure 3.21. The signal-

to-noise ratio is sufficiently high to detect the heartbeat peaks, and the morphology of the 

BCG appears undistorted. Unfortunately, simultaneous recordings with both the standard and 

lock-in BCG amplifiers could not be made: stacking two scales vertically would alter the 

mechanical frequency response of the setup and placing them side-by-side with one foot on 

each may not equally distribute the BCG forces to the two scales. 

Nevertheless, to ensure that the lock-in amplifier was not distorting the measured BCG 

waveform, BCG recordings were acquired from one subject using both circuits sequentially. 

The ECG was recorded simultaneously such that the ensemble averages using both circuits 

could be compared in the time and frequency domains. 

The ensemble averages, and the corresponding PSDs, using both circuits are shown in 

Figure 3.22. Visually, the averages look similar in both the time and frequency domain. The 

residual was also computed for the averages, and the variance of this residual was less than 

5% of the variance of the 

ensemble averaged BCG 

acquired by the standard 

BCG circuit. The cross-

correlation of the two 

averages, with the auto­

correlation of each 

normalized to unity, was 

found to be 0.98. 
Figure 3.21 A BCG signal measured using the lock-in amplifier, after . 

the standard digital filtering operations used for the BCG Accordingly, the lock-in 
signal. 
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Figure 3.22 Ensemble average BCGs (n = 45 beats), with amplitude 
normalized to unity, and corresponding PSDs, computed 
for two sequentially taken recordings from the same 
subject. The variance of the residual of the two averages 
was less than 5% of the variance of the standard average, 
demonstrating that the BCGs were not distorted. 

amplifier was not 

significantly distorting the 

measured BCG signal. 

3.5.5. Discussion 

The circuit described in 

this section could be used to 

significantly reduce the 

electronic noise in BCG 

measurement. In practice, 

electronic noise is typically 

not the dominant source of 

error in standing BCG 

recordings - motion artifacts 

and floor vibrations are 

usually most prominent. 

However, as the technology for reducing these interferences improves, the electronic noise 

will be the next limiter of achievable SNR. At that point, by using a lock-in approach rather 

than a standard amplifier, an extra 7.7 dB of headroom can be attained. 

It should be noted that the electronic noise for the lock-in amplifier described here is also 

significantly lower than a BCG amplifier circuit disclosed in the recent literature [106]. In this 

paper, the noise floor of the BCG acquisition system was 3.9 HINRMS- This value takes into 

account power supply rails of ±9V, and the highest sensitivity scale described in their work. 

For the other scales discussed in their study, the force noise would be higher proportional to 

the decrease in sensitivity of the scale. 

Additionally, if the scale is used in other measurement conditions, such as on a chair under 

a seated subject, the effects of motion and floor vibrations would be significantly reduced, 

rendering the electronic noise a much more significant portion of the overall noise and 

interference corrupting the recording. Finally, since the noise reduction is most effective at 

lower frequencies, the slowly-varying heartbeat amplitudes of the lock-in signal may track 

respiration more accurately than the standard circuit. 
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3.6. Novel Two-Electrode ECG Circuit 

Design 

In some settings, applying electrodes to the subject 

for simultaneously acquiring ECG alongside BCG 

signals is impractical. However, simultaneous ECG 

acquisition is the best option for robust BCG 

recording, since the timing of the ECG can be used for 

signal estimation (as described in Chapter 4). For this 

reason, a scale with handlebar electrodes - originally 

intended for use in body fat analysis via impedance 

measurements - was investigated: the Omron HBF-

500 (Omron Healthcare Inc., Bannockburn, IL), 

shown in Figure 3.23. The handlebar electrodes, 

attached by a phone cable to the scale base, were disconnected from the internal circuitry and 

interfaced to an ECG amplifier. 

Unfortunately, since there were only two electrodes available for ECG recording, the 

Figure 3.23 Omron HBF-500 bathroom 
scale with handlebar 
electrodes. 

Amplifier 

\v{t)dt 

t i n - R x l 

Transimpedance Amplifier 

•*» v , OUT 

Figure 3.24 Block diagram describing the circuit topology. In this diagram, RE represents the electrode-skin 
interface resistance, RCFB represents the active current feedback series resistance, and R is the 
open-loop transimpedance gain of the amplifier. VBM denotes the unloaded ECG voltage at the 
surface of the skin. 
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Figure 3.25 Full circuit schematic for two-electrode biosignal amplifier. Note that power supply decoupling 
capacitors are not shown. For both supply pins of the IC, 0.1 \iF ceramic capacitors were 
connected to ground. 

standard three-electrode amplifier described above would not provide stable results in this 

application. Standard ECG circuits depend on having a third connection to the body which is 

either passively coupled or actively driven to the ground of the circuit. Without this third 

'ground' electrode, the common-mode input voltage can drift outside the allowable range of 

the amplifier, causing intermittent saturation problems where the signal is lost. Additionally, 

the common-mode-rejection of the circuit degrades significantly without this third electrode, 

causing an intolerably high level of power-line interference overwhelming the quality of the 

measured ECG. As a result, a new ECG amplifier was designed specifically for use in two-

electrode systems. This section describes the design and verification of this amplifier. 

3.6.1. Design Considerations and Objectives 

The goal was to design an ultra-low power, low noise ECG amplifier capable of stable 

operation with only two electrodes connected to the body. These objectives would need to be 

met without compromising the signal quality of the measured ECGs. 
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To achieve an ultra-low quiescent power, the circuit uses a composite transimpedance 

topology to circumvent the low gain-bandwidth-product (GBWP) of commercially available 

micro-power operational amplifiers. Additionally, the active current feedback stabilized the 

common-mode input voltage of the amplifier to reduce electrode drift and amplifier saturation 

problems that can be present in typical two-electrode systems. 

A block diagram of the circuit is shown in Figure 3.24. The differential ECG voltage at the 

skin is denoted VDM. This voltage sources current through the resistance of the skin-electrode 

interface, RE, into the transimpedance stage, which provides an amplified voltage output 

proportional to the current input. A non-inverting integrator filters the slowly varying 

components of the output voltage and feeds back a current to the electrode at the input. Since 

the amplifier has inverting open-loop gain, this has an overall negative feedback effect, 

driving the average low frequency variations in output voltage to zero. 

The fundamental difference between this circuit and standard biosignal amplifiers is that it 

amplifies current rather than voltage. The input stage presents low differential input 

impedance to the body, which reduces cable noise and interference without the need for 

shielding or guarding. 

The full circuit schematic is shown in Figure 3.25. The two electrodes are connected to the 

positive and negative inputs. While the discussion of this circuit here is primarily focused on 

ECG acquisition, the same topology could readily be adapted for electroencephalogram 

(EEG), electrooculogram (EOG), and electromyogram (EMG) acquisition as well. 

A composite amplifier topology is used to allow a micro-power (low GBWP) operational 

amplifier, such as the LT1496 (Linear Technology Inc., Milpitas, CA), to be used without 

compromising the full medically-relevant bandwidth required for an ECG amplifier. This 

operational amplifier has a quiescent current of less than 1 \xA per amplifier, at the expense of 

very low GBWP (2.7 kHz). For an ECG amplifier, where a gain of at least 100 to 1000 and a 

bandwidth exceeding 150 Hz is necessary, this gain bandwidth product is insufficient. The 

composite amplifier extends the bandwidth such that the ECG amplifier requirements are met 

with the lowest power operational amplifiers that are available. An alternate solution to the 

composite amplifier would be cascaded gain stages, resulting in higher output noise. 

3.6.2. Mid-Band Gain and Frequency Response 

The amplifier was designed such that the mid-band voltage gain would be approximately 

40 dB at electrode-to-skin interface resistances of 250 kQ - this requires a transimpedance 

gain of approximately 50 MQ. To achieve this high transimpedance gain, a T-network was 
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used in the feedback loop, simulating a higher valued resistance without introducing high 

Johnson noise. The equivalent resistance, Rfttq, of a T-network consisting of two larger 

resistors, RA, and a smaller resistor to ground from the T-junction, RB, is: 

R*2 

Rf,eq = 2RA+-£- (3.9) 

For the values used in this circuit (RA = 1.5 MQ, RB= 100 kQ) this corresponds to an 

equivalent feedback resistance of 25.5 MQ. Note that the transimpedance gain of the circuit is 

further boosted by Rx and RCFB, as shown in the closed-loop transfer function given below. 

Nevertheless, Rjeq is explicitly defined here to simplify the presentation of the following 

equations. 

Including the effects of these resistors, the mid-band transimpedance gain of the circuit, in 

Ohms, can be written as: 

*-=-(M*+i£)+*(»+£)) <310) 

Including the effects of the electrode-to-skin interface, the mid-band differential voltage gain 

of the circuit can then be written as: 

AVdm,mb — - ,D , A — (3•1 *) 
LKE +aRE 

In this equation, RE is the electrode-to-skin interface resistance for each electrode, and the 

imbalance in electrode-to-skin resistance between the two electrodes is denoted ARE. 

Furthermore, assuming ideal operational amplifiers, the closed-loop transfer function for the 

circuit, excluding the output low-pass filter stage, can then be written as follows: 

.RCFBRINTCINTL , a
cARxRf,eq\ 

Acl(s)=Amb7 / ' • " C
K ±Z±-L (3.12) 
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Here, the effects of the non-inverting integrator have also been incorporated. This integrator 

feedback sets the high-pass cutoff frequency of the circuit at: 

fhvf = 5TB p—7— ^3"13-) 

The low-pass cutoff frequency is set by the equivalent T-network resistance in parallel with 

the feedback capacitor, CA. 

2ltRfieq CA 

Since the LT1496 has a relatively low gain-bandwidth product, this ideal operational 

amplifier transfer function should be extended to include the effects of the dominant pole of 

the amplifier. Accordingly, a single-pole model for the amplifier's open-loop transfer function 

is introduced here: 

A ^ = TTTr ( 315 ) 

With this equation, the voltage gain of the second stage of the composite amplifier can then be 

written as: 

^w=irfe (3-16) 

where 

(A0 + l)i?i + R2 
A0,2 = , . , \ n . „ (3-17) 

and 
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T 2 - (^ 0 + l)R1 + «2
 (3"18) 

Note that as A0i2 approaches infinity, this voltage gain becomes (1 + R2/R1), as expected. 

Without considering the effects ofRcomp and Ccomp temporarily (these are discussed below), the 

closed-loop transfer function in equation (3.12) can be expanded as follows: 

Acl.exv \s) 

— " m b 
' «,.., V Ami ) (3.19) 

(' + '^T^f") ("TOjfe) + &£%r) (' + S f l«CJ 

As expected, as the open-loop voltage gain of the amplifiers approach infinity, this expression 

converges to equation (3.12). 

For fine-tuning the roll-off of the input stage, the /?compCcom/, pair was placed in the local 

feedback loop of amplifier 'A' from the negative input terminal to the output. Taking these 

components into account, and considering only amplifier 'B' to be a non-ideal operational 

amplifier, the closed-loop transfer function can be further expanded as follows: 

, . Rf,eq V ^rnb / VRf,eq ?2Ccorny) „ 20) 

m (l | 3
RCFBRINTCINT\( AQ,2 J „ 1 (i ! ^ 0 , 2 ^ 1 ! 3?\ 

V Rf.eq )\Rf,eqT2Ccomp T2 V Ccomp) J 

By adjusting the value of Ccomp, the quality factor, Q, of the second-order roll-off can be set as 

follows: 

Q = p A C (3-21) 

An 10,2 

The effect of this local feedback pair on the overall closed-loop transfer function is shown 

visually in Figure 3.26. In this figure, the transimpedance gain of the first stage is plotted 

versus frequency with and without Rcomp and Ccomp. These curves illustrate the sharper roll-off 
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achieved by including these 

components, with Q set at 0.77. 

Including the Sallen-and-Key filter 

output stage of the amplifier, the 

overall low-pass cutoff (-3 dB) 

frequency of the circuit is set at 200 

Hz. 

3.6.3. Input Impedance 

The magnitude of the 

differential-mode input impedance, 

\Zin,DM(s)l is given below for 

frequencies greater than the high-

pass filter cutoff of 0.05 Hz: 

150 
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Figure 3.26 Transimpedance gain versus frequency for the 
first stage of the circuit with and without local 
feedback around amplifier 'A.' This feedback 
allows tight control of the second-order roll-off 
quality factor. 

Jin,DM (S)\ = 
-A mb 

i+fe+feS-Kcw^wi (3.22) 

As |/4op(s)| approaches infinity (as is the case for an ideal operational amplifier), the 

differential input impedance approaches zero. Using the component values shown in Figure 

3.25, and equations (3.15—3.18) with the electronic specifications for the LT1496 

(/40 = 250 V/mV, x = 14.7 s), the magnitude of the differential input impedance at low 

frequencies (1 Hz) is calculated to be 1.1 kQ. This hand calculation was confirmed by the 

simulation result: 1.1 kQ. 

3.6.4. Common-mode-rejection ratio 

While in a standard transimpedance amplifier configuration the positive terminal of the 

input operational amplifier is grounded, in this circuit it is connected via a 1.25 MQ resistor to 

ground. This resistor increases the common-mode-rejection-ratio (CMRR) of the amplifier by 

matching the single-ended transimpedance gain of the circuit looking into the positive and 

negative input terminals of the amplifier. 

Figure 3.27 shows an equivalent circuit model for the body-amplifier interface for 

common-mode inputs at mid-band. In this model, RCFB is shorted to ground since the non-
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Figure 3.27 Equivalent model for common-mode inputs to the circuit. The node denoted by the asterisk (*) 
is considered a virtual ground in this model since the frequencies considered (typically 60 Hz) 
are beyond the cutoff frequency of the non-inverting integrator. 

inverting integrator is beyond its cutoff frequency and the low-pass filtering capacitors are 

open-circuited. Based on this equivalent circuit, the value of Rx can be tuned to maximize the 

CMRR of the circuit. 

For perfectly balanced electrode-skin resistances (RE), the CMRR can theoretically be 

infinite. However, in reality, the two electrodes will have some finite imbalance, represented 

in Figure 3.27 as ARE. The mid-band common-mode voltage gain of the circuit is: 

Considering the case where RA » RB and ARE = 0, the common-mode gain can be minimized 

by selecting an Rx value as follows: 

Rxl cm,MB -

RCFB RA 

— RCFB II RA (3.24) 
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Table 3-4 Measured electrical specifications for two-electrode 
ECG circuit 

Specification Measured 
Value Units/Comments 

Supply Voltage 

Supply Current 

Bandwidth 
(-3dB) 

Mid-band Voltage 
Gain 

CMRR 

Input-referred 
Current Noise 

Output Noise 
Voltage 

Total Harmonic 
Distortion 

3 

3.5 

0.05 - 200 

48 

50 

23 

1.2 

-74 

V 

uA 

Hz 

dB/Measured with 
RE=100kn 

dB/Measured with 
RE=100kfi 

pApp 

mVpp/Open-circuit input 

dB/Measured with 
Vin=10mVRMs,f;n = 2Hz, 

RE=300kn 

For the component values used in 

this work, and assuming realistic 

RE and ARE values of 100 kQ and 5 

kQ, respectively, the theoretical 

common-mode gain of the circuit 

is 3.3 dB. Using Equation (7.5), 

the differential-mode gain under 

the same conditions is 48 dB, 

resulting in a theoretical CMRR of 

44.7 dB. 

3.6.5. Experimental Results 

The amplifier was built and the 

electrical specifications were 

measured. The key specifications 

are summarized in Table 3-4. The 

gain and phase response of the 

circuit, measured using an SR780 

dynamic signal analyzer (Stanford 

Research Systems, Sunnyvale, 

CA), are shown in Figure 3.28. 

The SR780 was operated in swept-

sine mode, with an output signal 

level of 10 mVRMs input through a 

300 kQ resistor to the circuit. For 

typical skin-electrode resistances, 

this gain corresponds to an ECG 

output voltage of approximately 

IVpp. 

For the noise measurement, the 

input terminals were left open and 

the peak-to-peak output voltage was measured using an oscilloscope. Then, the output noise 

spectral density was measured using the SR780. The output noise voltage was found to be 1.2 

mVpp, corresponding to an input referred current noise of 23 pApp. For a typical low-frequency 

65 
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Figure 3.28 Gain and phase response of the circuit measured 
using an SR780 (Stanford Research Systems, 
Sunnyvale, CA) dynamic signal analyzer. An input 
voltage of lOmVRMs through a source resistance of 
300kfi was used for this measurement. Note that 
the gain is given is Ohms (dB). 
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Figure 3.29 Input referred current noise spectral density for transimpedance ECG amplifier. The thermal 
noise component was found to be 258 fA/VHz, and the noise corner frequency was below 1 Hz. 
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Figure 3.30 Performance comparison of this work to several other biosignal amplifiers from the literature: 
Input referred voltage noise (uVpp), for a 200 Hz bandwidth, plotted versus power consumption 
(uAV). To convert the input referred current noise density, measured as 23 pApp, to voltage, a 
typical low frequency skin-electrode resistance of 300 kf2 was assumed. Designs using discrete 
components are shown by circles, and integrated designs are shown as squares. Note that all 
amplifiers in this figure, besides the amplifier shown in this work, require three electrodes on the 
subject; the circuit in this paper uses only two. 
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skin resistance of 300 kQ, this 

corresponds to an input referred 

voltage noise of 6.9 \xVpp. The 

noise spectral density, referred to 

the input, is shown in Figure 3.29. 

The total noise, integrated over the 

bandwidth 0.1-200 Hz, was found 

to be 4.3 PARMS-

Figure 3.30 shows input 

referred voltage noise (in uVpp), for 

a 200 Hz noise bandwidth, versus 

power consumption (in uW) for 

the circuit from this work 

compared to several other 

biosignal amplifiers from the 

literature. Designs using discrete 

components [107-110] are shown 

as circles, and integrated designs 

[111-119] are shown as squares. It 

should be noted that in addition to 

comparing favorably to these other 

amplifiers, the circuit from this 

work uses only two electrodes, 

without the need for a third 

'ground' connection to the body. 

For this figure, to achieve a fair 

comparison of electrical 

performance, all RMS values were 

converted to peak-to-peak values 

by a factor of six multiplication 

t« 

J8 ° 
2 -1 
H 

1 

0.5 

0 

-0.5 

i U U J A A W A ^ / I ^ 

•go 

w 
\ / ^ NAJA^^AJAA 

0 1 2 3 
Time (seconds) 

Figure 3.31 Sample ECG recordings taken from one subject 
with a standard (three electrodes, instrumentation 
amplifier input) and transimpedance ECG amplifier 
(two electrodes). 
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Figure 3.32 Ensemble averages for the proposed 
transimpedance amplifier and the standard 
amplifier taken simultaneously from a subject. 
Both signals were normalized to unity standard 
deviation. The residual is also shown for 
morphological comparison (note the difference in 
the vertical axis between the signals and the 
residual). 

and bandwidths were normalized 

by multiplying the reported noise voltage by the square-root of the ratio of 200 Hz to the 

bandwidth specified in the work. 
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The total-harmonic-distortion 

(THD) was measured on the 

signal analyzer: with a 2Hz, 

IOHIVRMS amplitude, sine wave 

through a source resistance of 

300kQ, the THD was -74 dB 

(0.02%). At input frequencies of 

25 and 50 Hz, the THD was 

measured to be -70 dB (0.03%) 

and -53 dB (0.2%), respectively. 

The source resistance was 

chosen to be on the higher end of 

normal electrode-skin resistances 

such that the worst case THD 

would be measured. 

In addition to the electronic characterization, the morphological accuracy of the measured 

ECG signals was verified using the standard ECG circuit discussed above, with the bandwidth 

increased to 180 Hz rather than 104 Hz. 

ECG signals were measured from one subject simultaneously using both circuits. Five 

electrodes - two for the transimpedance, and three for the standard amplifier - were attached 

to the subject, and both amplifiers were operated on separate power supplies (batteries) with 

separate isolation amplifiers approved by Stanford Clinical Engineering. Figure 3.31 shows 

raw ECG signals, with no digital filtering, measured simultaneously using the two-electrode 

amplifier and the standard three-electrode amplifier. The subject provided written consent for 

participating in the study (Stanford IRB Protocol #6503). 

To quantitatively compare the morphological accuracy of the transimpedance based 

recording, the ECG signals were processed digitally to remove baseline wander, normalized to 

zero mean and unity standard deviation, and ensemble averaged using the ECG R-waves as a 

trigger. The residual was also computed for the normalized averages and is shown alongside 

the averages in Figure 3.32. The variance of this residual was less than 0.54% of the variance 

of the standard ECG, demonstrating the morphological accuracy of the transimpedance 

measurement. The amplitude spectra of the averages were also computed and analyzed to 

ensure that the frequency information of the ECG was accurately preserved. These are shown 
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Figure 3.33 Amplitude spectra for the standard and 
transimpedance ECG amplifiers, and the residual. The 
frequency characteristics of the signal were accurately 
preserved by the new design. 
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(c) (d) 

Figure 3.34 (a) Handlebar electrodes from the Omron HBF-500 bathroom scale. These electrodes, combined 
with the footpad electrodes, are intended to be used for biompedance-based body fat 
measurements, (b) The handlebars were opened and a printed circuit board (PCB) version of the 
two-electrode ECG circuit was placed inside. The electrodes were soldered to the circuit and the 
output was connected to the cable, (c) A mini-XLR (TA-4F) connector was soldered to the end 
of the cable from the handlebars such signal, ground, and two supply voltages could be 
connected between the handlebars and the base of the scale (where the batteries were housed), 
(d) Screw terminals inside of the handlebars were used to fix wires to the electrodes. These wires 
were connected to the input terminals of the circuit. 

in Figure 3.33. The frequency characteristics of the ECG were accurately preserved by the 

new design. 

It should be noted that the amplitude of the transimpedance ECG will not necessarily 

match that of the standard ECG, since the voltage gain of the circuit is not fixed, but rather 

dependent on the electrode-to-skin resistance (see equation (3.13), above). In some instances, 

where ECG amplitude is an important feature for the diagnosis, this is a shortcoming of the 

approach. However, in many instances, such as arrhythmia detection, amplitude is much less 

relevant than morphology and timing, which are accurately preserved in the transimpedance 

configuration. For the work described in this thesis, the most important objective of ECG 

acquisition was to acquire a strong R-wave for triggering the BCG averaging methods 

described below in Chapter 4. The integration of the transimpedance ECG circuit into the 

handlebars of the Omron scale is described below. 
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Another limitation of the circuit is that the bandwidth can also, to some extent, be 

compromised at low values of RE (higher values of voltage gain) due to the limited gain-

bandwidth product of the LT1496. If RE is less than 50 kQ, the circuit bandwidth will fall 

below the acceptable bandwidth for standard clinical ECG recorders, 100 Hz [101, 120]. The 

circuit was optimized for typical ranges of electrode-to-skin resistance for surface electrodes -

several tens to hundreds of kQ cm"2 [121, 122] - for which the bandwidth is more than 

adequate for ECG acquisition. In situations where lower electrode-to-skin resistance is 

expected, as is the case with skin preparation for example, the voltage gain of the circuit can 

readily be decreased by increasing the value of RB to 200 or 500 kQ to mitigate the problem. 

3.6.6. Integration of Two-Electrode Circuit in an Omron HBF-500 Scale 

The handlebar electrodes of the HBF-500 scale are shown in Figure 3.34 (a). In Figure 

3.34 (b), the handlebars have been opened, and the two-electrode transimpedance circuit 

placed inside. A printed circuit board (PCB) layout was completed with a 2.5 x 4.5 cm 

footprint for the circuit using dual in-line (DIP) package integrated circuits and through-hole 

discrete components. 

The batteries (4 x AA) for powering the circuit were contained in the base of the scale, and 

were connected via two free conductors in the original phone cable to the ECG circuit in the 

handlebars. For interfacing the phone cable to the base of the scale, a low profile, mini-XLR 

(TA-4M/F) connector was used (Figure 3.34 (c)). The scale originally had wires connected to 

the handlebar electrodes via screw terminals (Figure 3.34 (d)); these wires were de-soldered 

from the commercial PCB, which was removed, and soldered to the input terminals of the 

custom ECG circuit PCB. The output from the ECG circuit was passed via the existing cable 

to the base of the scale, where it was then interfaced to a panel-mount BNC connector fixed on 

the back side of the scale (behind where the heels are placed). When reassembled and 

packaged, the scale was visually unchanged from its original state, aside from the BNC cable 

output. 

ECG signals were then measured using this apparatus, and an example trace is shown in 

Figure 3.35 alongside a standard ECG taken from the hands with three gel electrodes. Note 

that both signals have been digitally band-pass filtered (0.5-55 Hz), to remove baseline 

wander and power-line interference. In this figure, the handlebar signal appears to be distorted 

compared to the standard measurement. The R-wave amplitude is much higher relative to the 

T-wave, indicative of a high-pass filtering effect which is likely due to the non-ideal electrode-

skin interface. 
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Time (s) 

Figure 3.35 (Top) ECG signal acquired from the hands of a subject 
using the standard ECG amplifier and three gel electrodes. 
(Bottom) ECG signal acquired simultaneously using the 
transimpedance-based amplifier and the handlebar 
electrodes in the Omron scale. The QRS complexes could 
readily be extracted from both signals using standard 
detection algorithms. 

While for the standard 

ECG the electrodes are 

adhered to the skin with an 

Ag/AgCl gel which 

effectively increases the 

electrode-skin contact 

capacitance (low 

impedance), the handlebar 

electrodes are simply metal 

pads touching the surfaces of 

the palms, a much smaller 

capacitance. As a result, the 

lower frequency components 

of the signal are suppressed 

by the handlebar 

measurement. 

The periodogram-PSDs 

for ensemble averages taken 

from both signals were computed to quantify the frequency distortion introduced by the 

handlebars. After the ensemble averages were found for both signals, they were normalized to 

unity R-wave magnitude, and the PSDs were found. The ratio of the handlebar PSD to the 

standard ECG circuit PSD is shown in Figure 3.36. At low frequencies, the ratio of the PSDs 

exhibits a 10 dB/decade increasing slope, typical of a derivative operation. 

To further verify that the distortion was mostly at low frequencies, the maximum cross-

correlation between the two signals, with the autocorrelation of each normalized to unity, was 

found for the raw signals, and for the signals passed through a digital high-pass filter (fc = 20 

Hz). The filtered signals are shown in Figure 3.37. The maximum cross-correlation was found 

to be 0.66 for the raw signals and 0.91 for the signals after high-pass filtering. This further 

supports the theory that a majority of the distortion is at the lower frequencies. 

In addition to the frequency distortion introduced by the handlebar electrodes, both ECG 

signals exhibit elevated levels of EMG interference due to the hands gripping the handlebars. 

The finer morphological features of both signals are corrupted by these EMG signals; 

however, the QRS complexes could readily be extracted from either trace using standard 
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Figure 3.36 Power spectral density ratio for amplitude-normalized 
ensemble averages from the handlebar and standard 
ECG circuits. At low frequencies, the ratio of the 
spectra exhibits a 10 dB/decade increasing slope, 
typical of differentiation. The frequency distortion 
introduced by the handlebar ECG is likely a result of 
the electrode-skin interface being capacitively coupled, 
rather than nearly dc-coupled as in Ag/AgCl gel-
electrodes. 
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Figure 3.37 Standard ECG (gel-electrode) and handlebar ECG 
signals after digital high-pass filtering (20 Hz). While 
for the raw signals the cross-correlation maximum 
value, with the autocorrelations normalized to unity, 
was 0.66, after high-pass filtering it was increased to 
0.91. This demonstrates that the handlebar electrodes 
affect the lower frequency components of the ECG, 
such as the P- and T-waves. 

methods [102]. Most 

importantly for this application, 

as shown below in Chapter 6, 

this method of ECG 

measurement was used for 

nearly 100 subjects without any 

instances of amplifier 

saturation, demonstrating the 

effectiveness of the active 

current feedback approach. 

3.6.7. Discussion 

The ECG circuit described 

in this section has several 

advantages over existing ECG 

amplifiers both in terms of 

electrical specifications and 

practicality for portable 

applications, for discrete or 

integrated (ASIC) 

implementations. For ECG 

amplifiers using discrete 

components, the quiescent 

current of this circuit is the 

lowest reported in the literature, 

allowing for long continuous 

use without battery 

replacement. Additionally, the 

relatively low differential input 

impedance (kD versus GQ for a 

typical instrumentation 

amplifier input stage) of the 

circuit allows for unshielded, 

lightweight cables to be used 
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without significant cable noise and interference - in the integrated scale implementation, this 

is crucial since the handlebar electrodes are in a plastic case and will move around in the 

subject's hands during signal acquisition. The use of active feedback to suppress electrode 

drift enables robust two-electrode ECG recording without intermittent problems due to 

amplifier saturation. 

3.7. Conclusions 

This chapter presented the instrumentation designs used in this research for ECG and BCG 

measurement. Standard circuits were developed, capable of acquiring high fidelity 

measurements. These circuits were thoroughly characterized in terms of gain, frequency 

response, distortion, and noise. In addition to these standard topologies, novel circuit designs 

were conceived to achieve state-of-the-art electronic specifications - for the BCG, the lock-in 

amplifier reduced the electronic noise floor by 7.7 dB; for the ECG, the transimpedance 

amplifier jointly optimized noise and power consumption, producing better results than any 

design disclosed in the existing literature. Furthermore, the ECG amplifier was designed to 

accommodate two-electrode recordings, such that a handlebar-equipped bathroom scale could 

be used for combined ECG and BCG measurements. For all new designs, the physiological 

accuracy was benchmarked against the standard topologies to ensure that the diagnostic 

quality of the signals was not compromised by the new designs. The next chapter describes 

how the robust dual ECG and BCG acquisition could be used for improving BCG 

measurement robustness. 
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4 
I ^ BCG Signal Estimation 

A toothache, or a violent passion, is not necessarily diminished by our 
knowledge of its causes, its character, its importance or insignificance. 

- T. S. Eliot 

Estimating a biomedical signal from a recording consisting of both the 'signal' and noise is 

an important, yet not straightforward, problem. If properly estimated, the reconstructed signal 

can provide access to otherwise obscured, diagnostically relevant features. Furthermore, by 

estimating the signal one can readily estimate the noise - the two of these together can provide 

an estimate of the signal-to-noise ratio (SNR) for the entire recording and various parts of the 

recording. 

In the case of the BCG, the estimated noise trace can be used for evaluating auxiliary noise 

sensors, to determine whether accurate and time-synchronous indices of BCG noise could be 

obtained without the use of a simultaneous ECG. For example, in Chapter 5, the 

electromyogram (EMG) signal acquired from the subject's feet is evaluated as a noise 

reference for standing BCG measurements - for assessing this approach, the BCG noise is 

estimated using methods described here, and correlated to features of the EMG. 

The SNR estimate can also be used to quantitatively compare various sensors, algorithms, 

and measurement setups: for example, the SNR of standing BCG measurements can be 

compared to seated; or weighing-scale-BCG measurements to EMFi recordings. However, 

many researchers - for the BCG as well as other biosignals - choose to specify only the 

electronic SNR of their measurements. For this, they measure the electronic noise of the 

circuit (and, in some cases, the sensor as well) and compare this noise to the peak amplitude of 

the signal. 

Alihanka, et al. claim an SNR of 20 for their static charge-sensitive bed (SCSB) system, 

providing only the explanation that this is "based on the BCG amplitude" [96]. Schwerdt, et 

al. disclose SNR estimates of 15-30, again based on the peak amplitudes of the BCG [123]. 

Gonzalez-Landaeta, et al. assert that their SNR is 27-38 dB (22-79), depending on the type of 

electronic weighing scale used (the different strain gauge resistances cause the thermal noise 
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to differ among the scales) [106]. For this calculation, they compute the ratio of the peak 

signal amplitude to the combined RMS noise voltage of the circuit and scale. This is a 

somewhat nonstandard method since, usually, the peak signal amplitude is compared to the 

peak noise amplitude, or both are analyzed as RMS values. Regardless, even the approaches 

that are incontestably valid for computing electronic SNR inappropriately ignore the other 

sources of noise and interference that corrupt the recordings: motion artifacts, floor vibrations, 

and beat-to-beat interference. Since these other noise sources are usually more prominent than 

the electronic noise, the real SNR of the measured signal is never known. 

Some authors even describe new algorithms for improving the quality of the BCG signal 

and claim SNR improvement without any quantitative evidence. For example, Postolache and 

Girao report an 'adaptive neuronal network' for improving the SNR of BCG recordings; 

however, the SNR of the recordings were not estimated before, nor after, the processing [124]. 

A method for estimating the real SNR of BCG recordings - beyond simply considering the 

electronic noise - is lacking in the existing literature. The most likely reason is that, unlike the 

ECG and other more prevalent biomedical signals, the physiological origin of the BCG is not 

fully understood. For a normal ECG recording, it is relatively straightforward to visually 

discern which components of the signal are cardiac-related, and which are artifacts due to 

noise or interference (see Figure 4.1). (Although, it should be noted that even for the ECG, 

some of the most basic 

characteristics, such as 

amplitude, are still fervently 

being researched today (e.g., 

[125, 126]).) On the other hand, 

for BCG recordings this is not 

necessarily the case. Other than 

the main peak (J-wave) which is 

clearly synchronized to the heart 

rhythm, the definitions of what 

parts of BCG recordings are 

cardiac-related 'signal' and 

which components are mainly 

due to noise are somewhat 

ambiguous. 
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Figure 4.1 Illustration of baseline wander and EMG interference 
in the ECG signal. The noises and interferences in 
ECG recordings can be readily discerned from the 
cardiac-related 'signal.' 
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This ambiguity could be resolved by implementing one, or a combination, of the following 

approaches: empirical studies, mechanical modeling, or statistical estimation techniques. Of 

these three, empirical approaches have dominated the literature. In fact, mechanical modeling 

has scarcely been applied, and the statistical treatment of the BCG has been limited to 

ensemble averaging the signal over several beats. In this thesis, Chapters 6 and 7 present 

hypothesis-driven empirical studies designed to establish important correlations between BCG 

features and cardiovascular parameters. Mechanical modeling is left as a subject for future 

work, and is currently being pursued by Richard Wiard at Stanford University. 

Statistically estimating the BCG 'signal' from a measurement composed of both signal and 

noise is addressed in this chapter. First, some assumptions are made regarding the BCG signal 

and the characteristics of the noise based on physiological considerations and observations in 

the recorded BCGs. Second, the amplitudes of each BCG beat are estimated using the timing 

information provided by the ECG, and first-order statistical methods. Third, an ensemble 

averaged BCG beat is computed using standard methods. Fourth, the amplitude information is 

combined with this ensemble average to compute a modified ensemble averaged BCG beat. 

Finally, this beat is used to reconstruct the BCG time trace. The reconstruction is applied to 

two BCG signals with significantly different SNRs for visual comparison, and a synthetic 

model is used to quantitatively validate the estimate, and compare the results to the existing 

methods in the literature. Before describing this new algorithm for BCG signal estimation, the 

standard methods for signal estimation in the existing literature are described below. 

4.1. Standard Signal Estimation Methods for Biomedical Signals 

Many signal (or, similarly, SNR) estimation algorithms have been developed for 

biomedical signals in the existing literature, mainly for ECGs [127, 128] and evoked 

potentials [128, 129]. Some of the most notable algorithms are described in this section. 

For ECGs, SNR estimation is rather straightforward for three reasons: first the signal is 

compact in time, yielding segments between the beats where the 'signal' goes to zero; second, 

the amplitude variations from beat-to-beat are rather minimal; third, the signal level is 

relatively high, allowing the peaks to (usually) be reliably detected. The ECG SNR could be 

estimated by comparing the power of the ECG R-wave to the power of the segment between 

the T- and P-waves, where the ECG 'signal' is essentially zero. Alternatively, an ensemble 

averaged ECG beat can be subtracted from each beat of the signal, rendering an estimate of 

the measurement noise - the ratio of the variance of the ensemble average to the variance of 

this noise estimate can then be considered the SNR [127]. 
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For evoked potentials, electrical potentials recorded from the body in response to stimuli, 

signal averaging techniques are used to increase the signal level above the noise floor of the 

recording system. These potentials are usually only a few microvolts in amplitude. Since they 

are responses to the external stimuli, the stimuli can directly be used as timing references for 

triggered averaging. Furthermore, the time interval between successive stimuli can be set 

longer than the expected duration of the evoked response, eliminating any possibility of 

signal-to-signal interference in the averaging. The averaging methods range from the simplest 

- ensemble averaging - to more complex methods such as maximum likelihood (ML) or SNR-

based weighted averaging [129]. Two of the most commonly-used SNR estimators are 

described below. 

The evoked potentials can be arranged in a matrix, X, such that each /* row contains a 

measurement composed of both signal (the evoked potential) and additive noise: 

Xi = s + rii (4.1) 

where X; is the i* row of X, s is the desired evoked potential signal, and «, is the additive noise 

for the i* waveform. The ensemble average over all M recorded waveforms can then be taken 

directly as follows: 

M 

3 = ^*1 <4-2> 
£ = 1 

where s represents the ensemble averaged evoked potential. As described by Sornmo and 

Laguna [128], the SNR of this ensemble average can then be estimated by separating the data 

set into two equally sized subsets, computing two sub-ensemble averages (Si and s2), then 

using an ML SNR estimator [15]: 

_ 2£k=iSiMs2[/c] 
SNRML ~ EU^M-M*])2 

Alternatively, the two sub-ensemble averages can be compared using a cross-correlation [16] 

SNR estimator, which first requires the correlation coefficient to be computed between the 

averages: 
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_ T.Lk=iSi[k]S2[k] 
r ~ r~, (4-4) £ 
The SNR estimate, SNRn is then given by: 

SNRr = A—— + B (4.5) 
1 - r 

where the constants 

A = exp{rh) (46) 

and 

1 

& ) 
B= - _ | i - « p ( _ _ ^ j | (4.7) 

cause the estimate to be unbiased for large values of N. 

These SNR estimators can also be used over the entire ensemble of waveforms to 

determine the SNR of the overall recording rather than of just the ensemble average. For this 

estimate, the equations above would be applied to each combination of two waveforms from 

the recording, and the average over all pairs would be considered the SNR of the recording. 

4.2. Standard Approaches to BCG Signal Estimation 

The BCG signal presents more challenges than the ECG and evoked potentials in terms of 

signal estimation for the following reasons: the signal is not compact in time, thus no 

segments exist in the recording where the BCG 'signal' has gone to zero; the beat-to-beat 

amplitude variations are quite significant, usually 5 or 10 times greater than for a typical ECG; 

and, although a trigger may be available for averaging (the ECG R-wave, as described below), 

the time interval between successive beats is shorter than the length of each beat's pulse 

response, causing signal-to-signal interference. This last point is known since the ensemble 

averaged BCG does not decay to zero within the time frame of one cardiac cycle. 
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Figure 4.2 Spectrogram of a typical ECG signal. The P-, R-, and T-waves are separated in time and 
frequency, allowing approaches such as the wavelet transform and matched filtering to be 
effectively employed. 

The standard approaches to BCG estimation leverage the fact that the ECG (from a resting 

subject) provides a reliable timing reference to be used for triggered averaging of the BCG. 

Specifically, the ECG R-wave is an excellent fiduciary point since it is readily discernable 

from its surrounding waves both in the time and frequency domains: in the time domain, the 

R-wave is generally larger than the surrounding waves, and its energy is compact; 

accordingly, in the frequency domain, the R-wave contains more high-frequency content than 

its counterparts. This is illustrated in an example spectrogram - or short-time Fourier 

transform (STFT) - of a typical resting ECG signal shown in Figure 4.2. The P-wave, which 

occurs first in time, contains frequency content between 5-25 Hz; the R-wave, occurring next, 

from 5-40 Hz; and the T-wave, occurring last, from 1-10 Hz. As a result, combined time-

frequency approaches, such as the wavelet transform, or simple matched-filtering algorithms, 

are well-suited for detecting these peaks, and have been utilized successfully in dozens of 

works in the literature, e.g. [130, 131]. 

4.2.1. R-Wave-Triggered Averaging of the BCG 

The most straightforward method for estimating the BCG signal from a recording involves 

first computing an ensemble averaged BCG using R-wave-triggered averaging. To generate a 

beat ensemble, the BCG waveform is segmented into an array of beats, with each ensemble 

member beginning at the ECG R-wave, and having a fixed length. This length must be less 

than the length of the minimum R-R interval for the recording to ensure that the beats do not 

overlap. The average is computed over all beats in the array, and this ensemble averaged BCG 

is then considered the best statistical estimate of one beat of the overall signal. 
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This approach has three main limitations: first, any beat-to-beat variations of the signal will 

be lost in the averaging process; second, the length of the average is confined to the minimum 

R-R interval, such that if the beat extends beyond that length, some of the information will be 

lost; and, third, changes in the signal over time are lost in the averaging. 

4.2.2. Reconstructing a BCG Signal from an Ensemble Averaged Beat 

While the first and second limitation listed above cannot be addressed using standard 

methods, the third can, to some extent, be mitigated using the following approach. Since the 

timing of each BCG beat is known based on the R-wave peaks of the ECG, the ensemble 

averaged BCG can simply be 'placed' at each R-wave to reconstruct an estimated BCG signal. 

Mathematically, this 'placement' can be described as follows: first, a train of unity amplitude 

impulses is generated, with each impulse occurring at the R-wave peaks of the ECG; then, the 

ensemble averaged BCG is convolved with this impulse train to reconstruct the entire 

waveform. The output of such a process is shown in Figure 4.3, with the measured BCG 

signal on top (a), and the reconstructed signal on the bottom (b). 

In addition to the limitations listed above, this process results in discontinuities (gaps) in 

the resultant waveform since most of the R-R intervals are longer than the minimum interval. 

Namely, there will be segments of the original BCG signal that would not be reconstructed by 

this process. Note that the 

amplitude variations of the 

original signal are also not 

addressed using this standard 

technique. 

The new methods for BCG 

signal estimation described 

below address these limitations 

by combining the ECG timing 

information with a statistical 

model for the BCG. These 

methods are validated using a 

synthetically generated BCG 

signal with additive white 

Gaussian noise, as described 

below. 

Figure 4.3 (a) Measured BCG signal, (b) Reconstructed signal 
using an ensemble averaged beat 'placed' at the R-wave 
locations of the ECG. Note that the amplitude variations 
in the original signal are lost, and there are clear 
discontinuities between various beats due to the 
limitation on the length of the ensemble average (the 
length must be, at most, the minimum R-R interval for 
the trace). 
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Figure 4.4 ECG signal, filtered to extract the QRS 
complexes, with peaks located using a 
simple automatic peak detection algorithm 
described in the text. 

4.3. BCG 

Processing 

The first steps in processing the 

recorded BCG (and ECG) to obtain an 

estimate of the cardiac-related BCG 

'signal' are described here. First, the 

BCG was digitally band-pass filtered 

using an FIR filter (Kaiser window) with 

a bandwidth of 0.5-15 Hz (-3 dB) and a 

length of 4,467 samples. Next the low-

frequency baseline wander in the BCG 

was eliminated by polynomial 

subtraction. The same steps were then applied to the ECG signal, except that the band-pass 

filter spanned a bandwidth of 10-45 Hz with a length of 727 samples. This bandwidth was 

chosen to optimally extract the QRS complexes of the signal for the ensuing simple peak 

detection algorithm described below. 

For peak detection, first the derivative of the filtered and baseline-wander-removed ECG 

signal was computed. Then, the signum function of the ECG derivative was computed. The 

locations at which the absolute value of the derivative of this function's output was unity were 

then considered the possible peak locations. For all such indices within the trace, those that 

1 corresponded to ECG amplitude higher than the user defined threshold (usually half the 

maximum amplitude of the rectified ECG signal), and 2 did not occur within the user defined 

time interval (usually 300 ms) of the previous peak, were considered to be detected peaks of 

the ECG signal. An example filtered ECG signal with detected peaks (shown as circles above 

the R-waves) is provided in Figure 4.4. With these pre-processed ECG and BCG signals, and 

the located ECG R-wave peaks, the following algorithm was applied to estimate the BCG 

'signal' and the SNR of the recording. 

4.4. Estimation of BCG Heartbeat Amplitudes 

The simple statistical model developed for the BCG uses the following assumptions: 

1. The system was assumed to be linear. 
2. The BCG signal was assumed to be morphologically identical from beat-to-beat, 

except for slow amplitude variations. 
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Figure 4.5 ECG, BCG, and respiration signals acquired from a subject at rest. The BCG amplitude 
modulates at the respiratory frequency. 

3. These amplitude variations were considered to be slower than the heart rate. 
4. The timing of the beats was assumed to be deterministic. 
5. The noise was assumed to be uncorrelated to the BCG and zero mean. 

It is important to briefly note that the slow amplitude variations in the BCG are not noise; 

rather, BCG amplitude is known to modulate due to respiration (see Figure 4.5). In 1946, Starr 

and Friedland investigated the causes of this variation, determining that it was due to cardiac 

filling and not to changes in heart position [132]. As a result, accurate estimation of this 

amplitude envelope could be used for respiration sensing as well. 

Using the four assumptions listed above, the measured BCG signal, xfk], was written as N 

repetitions - or heartbeats - of a template function, hfk], with a slowly varying amplitude 

component, a„, as follows: 

x[k] = y anh[k — Tn] + z[k] (4.8) 

n = l 

The template function is the pulse response of the BCG: the mechanical forces resulting from 

the ejection of blood in each heartbeat. As shown in this equation, the template is repeated at 

times T„. Additionally, there is an additive noise component, z[k], which could, for example, 

represent the electronic noise of the circuit, motion artifact, or floor vibrations. The period 

between successive occurrences of h[k], was then defined as follows: 

71 



Tn = Tn- Tn_! (4.9) 

where T„ represents the heart period for the nth beat. 

Similarly to the standard methods of estimating the BCG signal, the first step in finding the 

full length pulse response consisted of computing a truncated ensemble averaged BCG. This 

truncated average was then used to determine the amplitude estimates for each beat, as well as 

to cancel the overlapping beats in the full length average, as discussed below. 

To compute a truncated ensemble average, a windowing function was used: 

wn[k] = n 
k-xn 

T • 'min 
(4.10) 

where Tmin is the minimum heart period, or R-R interval, for the given recording. By using the 

minimum heart period for the recording, the signal-to-signal interference in the windowed 

beats was minimized. 

For purposes of convenience, the Yl[k] function was defined as follows: 

« 
0<k<A ( 4 H ) 

else 

An ensemble of JV heartbeats was then generated by windowing the measured BCG, x[k], with 

this windowing function: 

xn[k] = x[k]wn[k] (4.12) 

From this ensemble of beats, a truncated estimate of hfk] was directly computed by shifting 

each windowed beat to the origin and averaging over all TV beats: 

N 

s[k]=±;YJ
x"[k + Tn] (4>13) 

n=l 
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Figure 4.6 Illustration of template matching and subtraction 
procedure for an example long-windowed BCG 
beat (a). The waveform shown in (b) was subtracted 
from (a), resulting in the interference-cancelled beat 
shown in (c). 
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Figure 4.7 (a) Conventional ensemble average taken over long-
windowed BCG beat array, (b) Modified ensemble 
average of interference-cancelled and time aligned 
long-window beats. The artifacts are substantially 
reduced in this average, which is then considered 
the best estimate of the BCG pulse response. 

where sfkj is the truncated 

estimate of hfkj. Note that the 

weighting vector was considered 

to be unity mean. This simply 

implies that the amplitude vector 

represents the relative magnitudes 

of each BCG beat with respect to 

the average of all beats, without 

any loss of generality. 

These methods, to this point, 

describe the standard ensemble 

averaging techniques for the BCG, 

using the ECG R-wave trigger. 

Using this ensemble averaged 

beat, the amplitude scaling factor 

for each heartbeat, an, was 

computed using first-order 

statistics: the ratio of the cross-

correlation between the ensemble 

average and a given beat evaluated 

at T„, normalized to the 

autocorrelation at zero lag for the 

ensemble average, 

a„ = 
Rxns[rn\ 
RssiO] 

(4.14) 

where Rxy is defined as the cross-

correlation sequence for x and y. 

This addresses the first limitation 

described above for signal 

estimation since, with the 

ensemble averaged beat and the 
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estimated scaling factors, the BCG signal could be reconstructed with beat-by-beat amplitude 

variations included. However, the other limitations remain: the ensemble average is still 

limited in length to the minimum heart period for the recording, and, as a result, the 

reconstructed signal would have gaps between the beats. Note that these discontinuities would 

artificially lower the SNR for the trace, since the signal components coinciding with these 

gaps would incorrectly be considered to be noise by the estimator. 

4.5. Modified Ensemble Averaging Methods 

The amplitude estimates were then used in the following modified ensemble averaging 

procedure to cancel overlapping beats and acquire a full-length ensemble average. This 

average could then be used to reconstruct the BCG trace without any gaps between beats. The 

truncated estimate ofh[k] and the estimated amplitudes of each heartbeat were used to find the 

full-length estimate of h[k]. First, a longer windowing function was defined: 

wn[k] = n k r« + U l ( 4 1 5 ) 

4Tmax 

This function was then used to generate an ensemble ofN-3 quadruplets, as shown in Figure 

4.6 (a), including one heartbeat, the preceding heartbeat, and the two following heartbeats: 

xn[k] = x[k]wn[k] (4.16) 

The conventional ensemble average of these quadruplets was then computed to estimate the 

full-length template function, h[k], using a similar approach as in equation (4.6): 

W-3 

Konik] = JjY,*n[k+ Tn ~ Tmax] (4>17) 

n=l 

This conventional ensemble average, hcon[k], is shown in Figure 4.7 (a). Since there is a 

significant amount of overlap between beats, this approach does not yield an adequate 

estimate of hfkj: the preceding and following heartbeats manifest as artifacts in the average. 

As a result, the following modified averaging approach was implemented to reduce these 

artifacts, producing a more accurate average BCG pulse response. Since the best estimate of 
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Figure 4.8 Measured and estimated BCG signals from a subject with high signal quality. The amplitude 
variations in the signal are captured well by the estimate. 

each «th heartbeat is the ensemble average, s[k], weighted by the corresponding amplitude 

estimate, Sn, and shifted in time by a known delay, r„, the full-length estimate of h[k] was: 

N-2 

n=2 

~ a n + l 5 L ^ — T'n+l 'maxi 

~ &n+2slk ~ Tn+2 ~ Tmaxl 

(4.18) 

Here, the best estimates of the previous and following beats were subtracted prior to averaging 

the windowed beats. This process is depicted in Figure 4.6 (b) and (c). 

The resulting estimate of the template function, h[k], after the time-alignment procedure, is 

shown in Figure 4.7 alongside the conventional ensemble average, hcon[k]. The artifacts 

caused by the interfering beats are substantially reduced in the modified average. 
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Figure 4.9 Measured and estimated BCG signals for the 
same subject as in Figure 4.8 zoomed in around 
t = 30 s into the recording. This demonstrates 
the morphological accuracy achieved by the 
signal estimation method. Additionally, note 
that although the same template function has 
been used for all beats, the beats in the resulting 
signal are not identical and, in fact, preserve the 
original features of the measured waveform. For 
example, the afterwaves of the first beat are 
larger than the second for both traces. 

4.6. Reconstructing the BCG 

Signal 

This modified ensemble averaged 

BCG was considered to be the best 

estimate of the full BCG pulse 

response given the measured data. It 

was then used to reconstruct an 

estimate of the BCG signal and, thus, 

provide an estimate of the SNR. 

An impulse train was generated, 

with each impulse occurring at each 

R-wave peak, and the amplitude of 

each impulse being the estimated 

BCG amplitude for each beat. The 

pulse response was then convolved 

with this impulse train and the 

resulting trace was the best estimate 

of the BCG signal: 

BCG[k] = h[k]*YJ
anS[k-rn] 

n = l 

(4.19) 

The measured and estimated BCG signals are shown in Figure 4.8 for a high SNR BCG trace 

- this demonstrates that the estimator can properly track the amplitude variations in the BCG 

signal. Figure 4.9 shows the same signals, zoomed in around / = 30 s into the recording. 

The measured and estimated waveforms are shown in Figure 4.10 for a low SNR BCG 

recording. In this recording, the noise has been substantially reduced in the estimated signal: 

most prominently, the respiratory amplitude modulation is apparent in the estimated signal, 

but obscured by the noise in the original trace. 

For both of these recordings, the estimated BCG signal qualitatively fits the data well, with 

no discontinuities between beats. Accordingly, all of the limitations of the standard methods 

were addressed by this new approach. 
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Figure 4.10 Measured and estimated BCG traces for a subject with lower signal quality. The reconstructed 
BCG signal tracks the overall amplitude variations that are not due to noise. Note that the 
envelope of these amplitude variations appears to be periodic, at a frequency approximately four 
times slower than the heart rate. This suggests that the respiratory amplitude variation of the BCG 
has been accurately reconstructed by the algorithm. 

Note that although the same template function is used for each beat, the resulting signal 

does not look identical from beat-to-beat. This is a result of the longer pulse response 

interfering from one beat to the next; due to normal sinus arrhythmia, this interference is 

sometimes constructive and other times destructive. This is consistent with the hypothesis that 

the underlying template function does not vary beat-to-beat. Furthermore, the afterwaves may 

likely be mechanical resonances of the body-scale combination, or the vasculature within the 

thorax, that are underdamped and extend beyond the length of a single BCG beat. 

4.7. Performance Evaluation Using Synthetic Signals 

4.7.1. Synthetic Signal Model 

If the morphology of the BCG did not vary significantly from person to person, a subject 

with bradycardia could be found to directly measure the real pulse response of the BCG. This 

measured pulse response could then be compared to the estimated pulse response to evaluate 

the methods. Alternatively, if infinite recording times were feasible, a conventional long-

windowed ensemble average could be taken over the infinite number of beats, yielding the 

true pulse response of the BCG. However, since the BCG signal morphology does vary 
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significantly from person to person, can never be acquired with no noise or interference, and 

recording times are practically limited by subject compliance, the validity of these methods 

can best be assessed using synthetic signals. For these synthetic traces, the signal, noise and 

SNR will be known and used to assess the accuracy of the estimated BCGs. 

Accordingly, a synthetic model was developed for the BCG based on the assumptions 

developed above, the existing literature, and observations made in this and previous works 

about the characteristics of the signal. Mathematically, the signal was written as follows: 

M 

Y[k] =^h[k- Tt]At + V[k] (4.20) 

Ai-N(l,aA) (4.21) 

Tt = Tt - r£_i 

~N(HT,OT) (4-22) 

V~N(0,(JV) (4.23) 

where h[k] is the template function of the BCG; Tt is a normally distributed random variable, 

representing the heart periods, with fjT mean and aT standard deviation; At is a normally 

distributed random variable, representing the amplitudes of the beats, with unity mean and aA 

standard deviation; V[k] is a normally distributed random variable, representing the additive 

noise, with zero mean and uv standard deviation; and Y[k] is the resulting synthetic BCG. 

For a template function, the waveform in Figure 4.11 (a) was used, with unity standard 

deviation, ah. The locations of the heartbeats, given by z;, were considered to be deterministic 

for this analysis. The SNR of the traces was set as follows, by varying av appropriately: 

SNR = % = A (4-24) 

As shown in equations (4.13-4.16), there are three parameters that can take on various 

different values depending on the physiology and the measurement conditions: 

1. Mean inter-beat interval, fiT. 
2. Standard deviation amplitude scaling factor, aA. 
3. Standard deviation of the noise, av. 
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Figure 4.11 (Top left): Template function used for generating synthetic signal. (Top right): Synthetic BCG 
signal, generated using equations (4.13-4.16). (Bottom left): Power-spectral density (PSD) 
estimate for synthetically generated, band-limited white noise. The estimate was computed by 
Welch's method, with a Hamming window, 2000 sample segment length, and 50% overlap. 
(Bottom right): Synthetically generated BCG signal with additive noise (SNR = 0.5). 

Note that the standard deviation inter-beat interval, aT, was always considered to be 7.5% of 

the mean inter-beat interval based on observations from real data. The effects of different 

mean inter-beat intervals - or heart periods - on the SNR estimation was investigated first by 

holding aA constant at 0.25. Then, the effects of different aA values on the SNR estimation 

was quantified by holding the mean heart period constant at 1 s (heart rate of 60 bpm) and at 

0.6 s (100 bpm). For all three experiments, SNR values of 0.1, 0.2, 0.5, 1, 2, 5, 10, and 20 

were used, corresponding to av values of 10, 5,2, 1, 0.5, 0.2, 0.1, and 0.05, respectively. 

In each case, the sum of the square errors (SSE) in SNR estimation was defined as follows: 

SSE = Y)SNRest,i ~ SNRactualii\
2 

i = l 

(4.25) 

The experiment was iterated twenty times to quantify the standard deviation over multiple 

trials. For each iteration, data were generated randomly from the distributions shown in 
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Case 1: 
Hr" 1000 
crr= 75 
or, = 0.01 
SNR =10 

SNRest = 10.2 
SNRML = 14.3 
SNRR = 14.8 

Case 2: 
Ar= 1000 
oy= 75 
^ = 0.2 
SNR= 10 

SNRes, = 10.3 
S N R M . , - 1 1 . 9 

SNRR = 15.4 

Case 3: 
Ar =1000 
crr= 75 
0-̂  = 0.01 
SNR = 1 

SNR„ 1.02 
SNRML=1.50 
SNRR=1.54 

Case 4: 
^ , = 1000 
cr r=75 
(7̂  = 0.2 
SNR=1 

SNRes,= 1.01 
SNRML=1.49 
SNRR=1.59 

Figure 4.12 Synthetically generated BCG, synthetic BCG plus additive band-limited white noise, and 
reconstructed BCG - using the methods described in this chapter - for four combinations of 
parameters. The SNR estimates for this method, maximum likelihood (ML) and the cross-correlation 
method (R) are also provided for comparison. 
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Figure 4.13 Error in SNR estimate versus mean heart rate (bpm) 
for synthetically generated data. The results are 
compared to maximum likelihood (ML) and 
correlation coefficient (Corr Coef) based SNR 
estimation methods from the literature [15, 16]. At 
each heart rate, the SNR is estimated in twenty 
separate trials for eight different values (SNR = 0.1-
20), and the average (±o) SSE are shown. The 
algorithm described here outperforms both other 
methods at all heart rates. 

equation (4.20-4.23). The 

template function, synthetically 

generated signal, noise spectral 

density, and synthetic signal with 

additive noise are shown in 

Figure 4.11. 

4.7.2. Results of SNR 

Estimation 

The SNR estimates, computed 

using the novel signal estimation 

algorithm, were compared to the 

ML and cross-correlation 

methods for all of the estimation 

trials. Figure 4.12 shows the 

synthetically generated BCG, the 

synthetic signal with band-

limited additive white noise, and 

the reconstructed signal - using 

methods described here - for 

four combinations of the various 

parameters of the synthetic 

model. The SNR estimates are 

also shown for the three methods 

for comparison. For each case, 

the SNR estimation method 

described in this chapter 

outperforms the other methods. 

This analysis was rigorously 

performed for multiple trials 

using various combinations of 

the synthetic model parameters. 

The SSE versus mean heart rate (bpm) - with aA fixed at 0.25 and aT fixed at 7.5% of the 

mean heart period (juT) - is shown in Figure 4.13 for synthetically generated data. Each data 
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variation, ML would be the ideal estimator of SNR. 

point represents the mean (±o) 

values over 20 separate trials 

for eight different values of 

SNR (0.1-20). The algorithm 

presented here outperformed 

both other methods at all heart 

rates. 

This result illustrates two 

major advantages of the 

methods described here over 

ML and correlation coefficient 

estimators of BCG SNR: first, 

these other two methods do not 

take amplitudes variations into 

account, and, second, they 

cannot differentiate 

interferences due to overlapping 

beats from random noise. 

The errors of these two 

methods at low heart rates are due to the inability to account for amplitude variations. At 

higher heart rates, the beat-to-beat interference becomes stronger, leading to the sharp rise in 

SSE for both ML and correlation coefficient estimators. The correlation coefficient method 

performs optimally when the width of the beat is approximately equal to width of the template 

function: at this point, the successive beats are most correlated to each other. 

The effects of different aA values on SNR estimation are shown in Figure 4.14 for a 

constant heart rate of 60 bpm, and in Figure 4.15 for a constant rate of 100 bpm. The method 

described here outperformed both other methods at all values of aA, except when aA was 0.05 

and the heart rate was 100 bpm. With these settings, since the beats were not overlapping 

significantly, and the amplitude variation was negligible, ML was the minimum square error 

estimator of SNR, by definition. 

Finally, Figure 4.16 illustrates the effects of overlapping beats on the morphology of the 

BCG. A synthetically generated BCG is shown, with no added noise, but with the heart rate 

set at 120 bpm (//r= 500). The other parameters used were as follows: aA = 0.2 and crT= 37.5. 
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Figure 4.16 Illustration of effects of overlapping beats on the beat-by-beat morphology of the BCG. 
Although the same template function is used for each beat, and no noise is added to the signal, 
the afterwaves from one beat interfere with the next due to the length of the template function 
being longer than one cardiac cycle. 

Note that although no noise is added to the signal, and the same template function is used for 

each heartbeat, there is significant beat-to-beat variation in the morphology of the signal. This 

is simply due to the constructive and destructive interferences of the afterwaves, due to the 

fact that the template function is longer than a single cardiac cycle, and that the heart rhythm 

is aperiodic. 

4.8. Conclusions 

This chapter presented methods for BCG signal (and SNR) estimation that overcome the 

main limitations of the standard methods. The amplitude variations were accurately captured 

by first-order statistical techniques. Furthermore, the length of the ensemble average was not 

limited to the minimum R-R interval of the trace, due to the modified-averaging procedure 

with interfering-beat-subtraction. As a result, the entire signal was reconstructed without any 

discontinuities between the beats, enabling a more accurate SNR estimate for the recording. 

Note that the noise was estimated for all times in the recording; furthermore, there was no 

requirement that the noise be stationary for this procedure to be effective. Transient changes in 

the noise level, such as those caused by motion artifacts, can thus be captured, as shown in the 

next chapter. 

Additionally, the methods presented here for BCG estimation could enhance the 

fundamental understanding of the physical origin of the signal. For example, the fact that the 

afterwaves of the signal following the UK complex do not attenuate within a cardiac cycle 

suggest that these waves could be resonances of an underdamped mechanical system. This 

opposes the accepted interpretation of these waves as diastolic waves [62]. Finally, the same 

methods described here could be applied to other biomedical signals, such as the 

phonocardiogram, impedance cardiogram, or photoplethysmogram, in signal estimation 

problems, to improve feature extraction or SNR estimation. 
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External Interference Detection and Reduction: 
Motion Artifacts and Floor Vibrations 

But did thee feel the earth move? 
- Ernest Hemingway, For Whom the Bell Tolls 

As mentioned in Chapter 2, BCG measurement on a commercial weighing scale has 

several practical advantages over the alternatives - tables [9], beds [96], electromagnets [67], 

chairs [88], and custom force plates [89] - in terms of compactness, ease of use, and long-term 

reliability. As a result, this modality is well suited for home monitoring applications. 

However, one disadvantage of using a weighing scale for BCG measurement is the increased 

susceptibility to motion artifacts and floor vibrations. 

Motion artifacts are pronounced in these measurements since the user stands on the device 

rather than sitting or lying prone. Floor vibrations affect the signal since the measurement axis 

is parallel to the primary direction of the vibrations. To increase measurement robustness, a 

second sensor, indicative of the motion or floor vibration, can be used as a noise reference for 

artifact detection and cancellation. This chapter describes methods that were used in this work 

to increase the robustness of the weighing-scale-based BCG instrumentation to external 

interferences - specifically, these methods targeted the detection of motion, and cancellation 

of floor vibrations. 

5.1. Motion Artifact Detection Using Lower-Body Electromyogram 

Signals Acquired from the Feet 

For motion artifact detection, a novel noise reference was proposed: the lower-body 

electromyogram (EMG) signal measured from the feet of the subject [133]. Motion of the 

subject on the scale would result in a reactive contraction of the muscles in the feet and legs to 

stabilize the body, thus increasing the lower-body EMG power. The correlation between BCG 

noise and EMG power was investigated to determine if it was a viable reference for detecting 

motion noise in standing BCG measurements. 
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ECG and EMG Amplifiers 
Differential Gain 60 dB 
Freq. Resp. 0.15-200 Hz 
CMRR >I00dB 

Data 
Acquisition 

fTTTT-r-ll 

BCG Amplifier 
Differential Gain 90 dB 
Freq. Resp. 0.1-24 Hz 
CMRR >100dB 

Figure 5.1 Block diagram showing setup for evaluating lower-body EMG as a motion noise reference for 
standing BCG measurements. 

5.1.1. Materials and Methods 

Fourteen healthy adults - eight males and six females - participated in this study. Their 

demographics were as follows (min-max): height (1.57-1.88 m), weight 

(57.5-95.5 kg), age (21-37 years). All subjects provided written consent before participating 

in the Stanford Institutional Review Board approved study (Protocol Number 6503). 

BCG, lower-body EMG, and electrocardiogram (ECG) signals were acquired from all 

subjects for 60 seconds as they stood on the scale (see Figure 5.1). The recording period was 

chosen to be long enough for averaging a high number of beats, but not so long that the 

subject would have difficulty standing still. Subjects were not instructed how to stand on the 

scale during data collection; they were only guided to fix their eyes on a focal point positioned 

approximately two meters in front of them on the wall. The standard BCG and ECG amplifiers 

were used for BCG and ECG acquisition, and the ECG amplifier was also used for EMG 

acquisition. All signals were sampled at 1 kHz. 

For ECG recording, each subject was asked to attach electrodes to their chest and hip in the 

standard Lead I configuration. For EMG recording, the electrode placement was not standard: 

rather than placing a local electrode pair on the muscle of interest, an electrode was attached to 

the top of each foot, and the differential voltage across the feet was measured. The electrodes 

were attached to the top of each foot since, if attached to the bottom, the weight of the person 

would sandwich the electrode between the foot and scale; this was found to cause large motion 

artifacts and intermittent amplifier saturation. Since the primary objective was to test the 

hypothesis - that EMG signals from the feet could provide a noise reference for standing BCG 
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Figure 5.2 BCG, ECG, and lower-body EMG signals acquired from two subjects, (a) One subject with high 
SNR BCG signals and low EMG RMS power throughout the recording, (b) One subject with 
lower SNR BCG signals and higher EMG RMS power. 

recordings - these motion artifacts would be confounding variables in the experiment. 

Nevertheless, preliminary EMG recordings were acquired from the bottom of the feet, as 

described below, using the electrodes on the bathroom scale. 

With this setup, the electrical signals from any of the muscles in the legs and feet between 

the electrodes were integrated to provide an aggregate lower-body EMG signal. This electrode 

placement was selected over the standard placement - a pair of electrodes placed locally on a 

given muscle - since the objective was to detect the presence of motion rather than to locally 

probe the contractile strength of a specific muscle. 

5.1.2. Statistical Analysis: Correlation Analysis 

The lower-body EMG variance was plotted against the BCG noise-to-signal ratio (NSR), 

calculated using the methods described in Chapter 4, for all subjects. Although the data were 

found to be correlated, the correlation coefficient was found to be relatively weak (R2 = 0.33, 

F-statistic p-value < 0.05). The correlation plot is shown in Figure 5.3 (left) for all 14 subjects. 

Note that the error bars show the standard error in each measurement. 

Since the linear correlation was not strong, a multiple linear regression analysis was used 

to determine if height, age, or body weight combined with the lower-body EMG variance 

would yield a higher correlation: this was, in fact, the case as the coefficient of multiple 

determination (R2) was relatively high at 0.73 and the F-statistic p-value, 0.01, confirmed the 

statistical significance. The coefficients providing the best correlation were as follows (for 

convenience, the units for each parameter are also given in italics): 6.12 (constant), -0.049 

(height, cm), 0.033 (weight, kg), 0.015 (age, years), and 0.34 (variance of EMG, 1000 x V2). 

87 



OS 
I 

e 
M 
• 

o 

e 
Z 
o u 
03 

1.6 

1.4 

i.2 -i 

1.0 

0.8 -

0.6 -

0.4 

0.2 

0.0 

R2 = 0.33 (p < 0.05) 
N= 14 subjects u 

H H 

1.4 -

.2 1.2 H 
«*» 9} 

OJ 
— 1 -
OS ' 

s M 

* 0 . 8 -

** 4 „ , 
J 0.6 -
o Z 
a o.4-
03 

0.2 -

0 -

R2 = 0.73 (p = 0.01) 
N = 14 subjects 

IT m 
T A-T r 

/ 
* / 

i ' ' ; < i 

I / 

* T/ 
/ 

' 

T 

4* 
1 

V I 
1 / 

£ , r 

T / 
/ 

I' 
^1 

t 

0 0.5 1 1.5 

Variance of EMG (V2 x 1000) 
0.5 1 1.5 

Multiple Linear Regression 
NSR Estimate 

Figure 5.3 Left: Correlation plot showing BCG noise-to-signal ratio (NSR) versus lower-body EMG 
variance (in units of V2 x 1000, for convenience). Right: Correlation plot showing BCG NSR 
versus multiple linear regression NSR estimate derived from EMG variance and subject 
demographics. The correlation is much stronger when height, weight, and age are taken into 
account. Note that the error bars indicate standard error in computing the NSR and EMG. 

8 t 0.05 
a "o 0 
8 S -0.05 

u otofw«t*4i^^#»»**^^*ll'^ •riw«Ul»t 
S -0.2 
tit 

0 10 15 20 25 30 35 40 45 50 
Time (s) 

Figure 5.4 ECG, BCG, moving RMS of the BCG noise, BCG baseline wander, and EMG traces for one 
subject. BCG noise and baseline wander increase substantially around t = 30 seconds, and EMG 
power increases simultaneously, indicating that the subject is correcting his balance. 
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Figure 5.5 Moving RMS EMG power and moving RMS BCG noise power, both with a 10 second moving 
average length, plotted versus time for six subjects from the trial. Visually, the RMS EMG 
power tracks the BCG noise power closely in time, indicating that it could be used for 
automatically detecting segments of the BCG signal with elevated noise. 

The resulting correlation plot is shown in Figure 5.3. To visually illustrate the difference in 

signal quality between subjects with lower EMG variance and those with higher EMG 

variance, two example time traces are shown in Figure 5.2. 

5.1.3. Intra-Recording Analysis 

In addition to the comparison among subjects, the correlation between EMG power and 

BCG noise within a recording was investigated. For this intra-recording analysis, the moving 

RMS power of the BCG noise - computed as described in Chapter 4 - and the moving RMS 

power of the lower-leg EMG were found using a 10 second moving average window. Both 

moving RMS traces were then normalized to zero mean and unity standard deviation. 

Figure 5.4 shows the ECG, BCG, moving RMS of BCG noise, baseline wander, and EMG 

traces for one subject. The noise and baseline wander of the BCG signal were both 

significantly elevated approximately 30 seconds into the recording. The EMG power increased 

as well at this event, as shown in the bottom trace, suggesting that it could be used to flag 

regions of high motion artifact. 

Figure 5.5 shows the moving RMS of BCG noise and lower-leg EMG for six subjects. In 

some instances, the RMS EMG power tracked the BCG noise power closely in time, 

indicating that it could readily be used in an automatic motion noise detection algorithm in 

89 



20 

a o u 
-20 

Noisy BCG •* 
u 10 

S;«s. 5 

S o 
0J 

1 i l 4 
i £ l 2 
Js«2 o 
^< Q2 * * n 

*"* O -J, 

1 i 

1 , 

i 

t 

• r —"• i • " t - • — t 

i i i i 

u 1 Noise Index Threshold 

1 , i ( i i i i 

50 100 150 200 250 
Time (s) 

300 350 400 

Figure 5.6 Exercise recovery used as an example of an application where EMG gating could improve BCG 
analysis. As discussed in Chapter 7, changes in the RMS power of the BCG measured on the 
bathroom scale were shown to be highly correlated with changes in cardiac output measured by 
Doppler echocardiography. However, for the first 20-30 seconds of recording immediately 
following exercise, the BCG trace is usually corrupted by artifacts due to motion of the subject 
on the scale. The RMS power of the lower-body EMG effectively tracks this elevated noise at 
the start of the trace, and can be used to gate the signal accordingly. 

future work. In other instances, there was a delay in time between the onset of BCG noise and 

the increase in EMG power; this is likely a result of the reaction time of the body in response 

to movement on the scale. The delay complicates the analysis of the temporal correlation 

between the two measurements since it can vary significantly among subjects and even among 

different movements for the same subject, ranging from one to almost ten seconds. For 

example, if the body begins to slowly drift off-balance in one direction, the stabilizing action 

from the leg muscles may not immediately take effect until the body senses that it is off-

balance. Additionally, it is likely that normal postural shifting is responsible for some of these 

movements. In the case as well, the body would need several seconds before realizing that the 

posture has changed, and recovering to the original position. 

While in this study this information presents an obstacle for analyzing and interpreting the 

data, in some applications - such as rehabilitation or physical therapy - it could be useful for 

understanding the neuromuscular control system of the body. For example, in monitoring the 

recovery of stroke patients, this neuromuscular information could be coupled with the 
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cardiovascular parameters measured from the BCG; this data, representing the rehabilitation 

progress of the patient, could be obtained simply by using a modified bathroom scale equipped 

for BCG and EMG recording. Future work should include investigating applications where the 

fusion of these parameters could provide clinically relevant information. 

For simple BCG noise detection algorithms, this delay can be circumvented using the 

following approach: a fixed window can be taken around the region with elevated EMG 

power, and considered an area of high motion-related noise in the BCG. These regions of high 

motion noise can then be further analyzed by other algorithms to determine if they should be 

discarded from the overall dataset. 

5.1.4. Noise Detection Example: Exercise Recovery 

One subject was asked to exercise for 30 minutes on a treadmill then stand on the scale 

during recovery. While exercising, he was wearing surface electrodes on the feet and, 

immediately following exercise, snap-on leads were connected to these electrodes to begin 

recording lower-body EMG signals. The subject then stood on the scale for the duration of the 

recovery period; during this period, certain segments of the BCG signal were corrupted by 

motion noise. 

By using the RMS power of the lower-body EMG signal as a reference, the corrupted 

segments of the BCG signal were automatically gated as follows: first, the RMS power of the 

lower-body EMG was normalized to zero mean and unity standard deviation, then, the 

segments of the trace where this normalized RMS power exceeded unity were considered time 

periods of elevated motion. 

The results are illustrated in Figure 5.6. Since it is more difficult than normal to stand still 

immediately following exercise, there were significant motion artifacts in the first 20-30 

seconds of the BCG recording. These artifacts corrupted the RMS power measurement from 

the BCG signal, which, as discussed below in Chapter 7, was shown to be correlated to 

changes in cardiac output [11]. Considering these corrupted regions in the analysis would 

result in an inaccurate prediction of cardiac output changes induced by exercise. Using the 

EMG, these segments were gated, and the resulting gating signal - named "Noise Index" in 

Figure 5.6 - is shown overlaying the RMS power of the BCG. Note that for real time 

applications, other approaches would be used that do not require the normalization of the 

EMG power; one such approach could take EMG recordings from the feet over several 

measurements and use the statistics from these recordings as the baseline value. 
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Figure 5.7 Simultaneously acquired EMG signals from the top (gel electrodes) and bottom (footpad 
electrodes of scale) of the feet for two subjects. For both recordings, the upper plot shows the 
high-pass filtered (fc = 20 Hz) EMG signals for a subject swaying on the scale. Note that the 
signals are artificially offset (but not scaled) for convenience. The lower plots show moving 
RMS power (5 second window) of both EMG signals, demonstrating that the relative changes in 
the two track closely in time. This preliminary data suggests that in future implementations, the 
footpad electrodes built into the scale could be used for providing an index of motion. 

5.1.5. Preliminary Evaluation of Body-Fat-Measurement Electrodes on Scale 

Some modern bathroom scales use large electrodes contacting the soles of the feet for 

impedance-based body-fat measurements. These scales generally have at least four electrodes 
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to facilitate a four-point-probe impedance measurement. By connecting the two opposing heel 

electrodes to the positive and negative input terminals of the amplifier, and one toe electrode 

to the ground terminal, EMG measurements can be acquired without the need for gel-based 

surface electrodes on top of the feet. 

With this setup, a preliminary study was conducted to evaluate these electrodes for lower-

leg EMG measurements. Two subjects of significantly different body types were chosen for 

this study: a large subject (Height: 201 cm, Weight: 143 kg) and a smaller subject (Height: 

165 cm, Weight: 61 kg). Each subject stood barefoot on the scale, with the electrode footpads 

connected to one channel of the EMG amplifier, and surface electrodes on top of the feet 

connected to the second channel; accordingly, the lower-leg EMG was recorded 

simultaneously from the top (gel electrodes) and bottom (footpad electrodes) of the feet. The 

purpose was to provide a preliminary assessment of whether these electrodes could be used in 

a future implementation in place of the gel-electrodes, thus further reducing the obtrusiveness 

of the method. 

The recordings from these subjects are shown in Figure 5.7. Note that both signals were 

filtered using the same high-pass filter (fc = 20 Hz) used in the other data analysis steps of this 

chapter. Additionally, the signals were artificially offset (but not scaled) in this figure for 

convenience. The signals taken from the top and bottom of the feet are very comparable for 

both subjects - the variance of the residual is less than 10% of the variance of the gel electrode 

trace. There is no apparent delay in time or significant difference in amplitude between the 

two. Most importantly, as shown in the lower plots of this figure, the moving RMS power for 

both signals also tracks closely in time, and the relative magnitudes of the maxima and 

minima are consistent between the two. The qualitative comparisons were verified 

quantitatively: the correlation coefficient, calculated on a point-by-point basis, was found to 

be 0.996 for the first subject, and 0.922 for the second. This preliminary data suggests that, in 

future implementations, the footpad electrodes built into the scale for body-fat analysis could 

be modified for providing an index of motion for BCG recordings. 

5.2. Adaptive Floor Vibration Cancellation Using a Seismic Sensor 

To eliminate the effects of floor vibrations from the BCG signals, a seismic sensor was 

placed next to the scale on the floor and used as a noise reference for an adaptive noise 

canceller [134]. While in this work a geophone was used as the seismic sensor, a low-noise 

accelerometer could also be used with the same algorithm, provided that the accelerometer 

was firmly coupled to the floor next to the scale. The system with adaptive vibration 

93 



Primary r 
input 

Adaptive noise canceller 

Figure 5.8 Adaptive noise canceller, adapted from Widrow, et al. 
[8] 

cancellation could increase the 

robustness of BCG recording in 

the home, as well as enable 

measurements on transport 

vehicles, such as ambulatory 

settings. This section discusses 

the theory of adaptive noise 

cancellation, the procedures used 

for tuning the algorithm, and the 

results obtained in two settings: 

one where floor vibrations were 

simulated, and a second on board 

a parked bus with the engine running. 

5.2.1. Theory of Adaptive Noise Cancellation 

The basic adaptive noise cancellation architecture is shown in Figure 5.8, after Widrow, et 

al. [8] The noise canceller has two inputs, the primary and the reference inputs, and one 

output, the system output. One sensor at the primary input receives some signal of interest, s, 

combined with an uncorrected noise, n0. A second sensor at the reference input receives a 

noise, nh which is correlated to n0 by some unknown transfer function. The noise at the 

reference input is then filtered adaptively to match the noise component of the primary input, 

as shown below. For a more detailed treatment of the theory of adaptive noise cancellation, the 

reader is referred to the literature [8, 135]. 

Assume that s, n0, n,, and y are statistically stationary and have zero means; s is 

uncorrected with n0 and n,; and n0 is correlated with n,. Using an adaptive algorithm, as 

discussed below, the filter will adjust its weights, at each iteration, to minimize the mean-

square error. The error signal, s, is also the system output, and can be written as: 

£ = s + n0-y (5.1) 

The square of the error is then: 

e2 =s2 + (n0 - yY + 2s(n0 - y) (5.2) 
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The expected value of both sides of this equation can then be computed to find the mean-

square error: 

E[e2] = E[s2} + E[(n0 - y)2] + 2E[s(n0 - y)] 

= E[s2] + E[(n0-y)2] 

The E[s(nQ — y)] term goes to zero since s is uncorrelated with n0 and nh andy is a filtered 

version of «/. Since the filter cannot affect the signal power, £"[s2], the minimum mean-square 

error will be achieved when E[(n0 — y)2] is minimized. The filter output, y, is thus the best 

least-squares estimate of the primary noise, n0. Finally, when E[(n0 — y)2] is minimized, 

E[(e — s)2] is also minimized since 

(e-s) = (n0-y) (5.4) 

As a result, the system output, s, is the best least-squares estimate of the primary signal. 

In this work, the LMS algorithm [135] was used to update the weights of the adaptive 

filter: 

Wk+1 = Wk + 2fi£kXk (5.5) 

where Wk is a 1 x L vector of weights at a given iteration, k; ju is the learning rate of the filter 

that controls speed and stability of the adaptation; e is the error signal fed back to the filter; Xk 

is the vector of input samples to the filter; and Wk+i is the vector of weights to be used in the 

next iteration. With this algorithm, the misadjustment - or the normalized excess mean-square 

error - will be given by: 

M = n tr[R] (5.6) 

where M is the misadjustment, and tr[R] is the trace of the autocorrelation matrix, R, for the 

input vector, X. The general expression for the time constant of the learning curve, TMSE, 

assuming equal eigenvalues of the R matrix, is given by: 
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Figure 5.9 Block diagram of measurement setup used for floor vibration cancellation. The subject stands on 
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Simultaneously, the floor vibrations are sensed by the geophone. The scale and geophone 
signals are inputted to an adaptive noise canceller, and the system output is the best least-
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(5.7) 

In many cases, this is also a good approximation when the eigenvalues of R are unequal [135]. 

The process used for selecting the optimum parameters for the filter is described below. 

5.2.2. Measurement Setup 

The measurement setup is shown in Figure 5.9. During the BCG measurement, the subject 

stands on the BCG measurement scale. With each heartbeat, a contractile force, Fh, is exerted 

by the heart on the blood and an equal but opposite force is experienced by the body. This 

causes vertical body motion synchronized with the beating heart. 

In addition to the forces due to cardiac ejection, forces due to floor vibrations, Fv, are also 

coupled to the scale through this same transfer function, hsc. These vibrations can corrupt the 

signal quality of the BCG, reducing the robustness of the recording. To attenuate the artifacts 

caused by these vibrations in the BCG signal, an adaptive noise canceller was implemented 

with a seismic sensor (MD-81 Geophone, Geosource Inc., Houston, TX) placed on the floor 
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filter (Length = 250 taps, Misadjustment = 1%, Delay 
in desired response = 62 samples). The noise reduction 
was 12 dB. (b) Frequency response of the adaptive 
filter after convergence. The response dips at the 
resonant frequency of the geophone (10 Hz) and peaks 
at the resonant frequency of the scale with a 40 kg load 
(27 Hz). 

next to the scale as the noise 

reference. This geophone sensed 

the same floor vibrations, Fv, 

through a different transfer 

function, hgeo. The circuit used 

for amplifying and filtering the 

geophone signal was a simple 

non-inverting amplifier stage 

ac-coupled to a Sallen-and-Key 

low-pass filter - the overall gain 

was 101 and the bandwidth was 

0.1-24 Hz. Both the BCG and 

geophone signals were sampled 

at 1 kHz using a data acquisition 

card (6024E, National 

Instruments, Austin, TX) and 

stored on a laptop computer 

using software (Matlab®, 

Version 2007b, The Mathworks, 

Natick, MA). The signals were 

downsampled to 200 Hz prior to 

the filtering operations. 

If the transfer function of the 

scale, hsc, and of the geophone, 

lgeoi were time invariant, and 

could be measured prior to the 

BCG recording, the noise could 

be cancelled using a 

straightforward approach: the geophone signal could be passed through an optimum filter 

composed of the inverse of the geophone transfer function cascaded with the transfer function 

of the scale. The resulting output would, in theory, be exactly equal to hsc * Fv, where * is the 

convolution operator. 
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Unfortunately, the transfer function of the scale, hsc, can vary significantly based on the 

properties of the scale and the mass and other physical characteristics of the subject, and can 

be quite different from person to person. As a result, an adaptive noise cancelling architecture 

was implemented, with the raw BCG signal as the primary input and the geophone signal as 

the reference input. With this approach, the adaptive filter automatically, and continually, 

adjusted its impulse response to best map the geophone signal to the floor vibrations 

component of the measured BCG to achieve cancellation of these vibrations. 

5.2.3. System Performance: Optimizing the Adaptive Filter Parameters 

The setup shown in Figure 5.9, where the person on the scale was replaced by iron 

weights, was used to tune the parameters of the adaptive filter: length (L), misadjustment (M), 

and delay (A) in the desired response path. The delay in the desired response is necessary in 

practice to allow the adaptive filter response to approximate a two-sided impulse response 

[135]. The iron weights on the scale were of mass, m = 40 kg, and the scale output and 

geophone output were recorded while a person stomped around the scale to create significant 

floor vibrations. With this setup, the BCG signal source was set to zero since no subject was 

standing on the scale. 

The adaptive filter weights were initialized at zero and the parameters were varied to 

maximize the noise reduction, AN, defined as the ratio of the variances of the scale output and 

the system output, expressed in dB: 

(var(hsc * F„)\ 
AN=10log10(

 sc. 5.8 

A maximum noise reduction of 12 dB was achieved with a filter length, L, of 250 taps, a 

misadjustment of 1%, and a desired response delay of 62 samples (L/4). Using equation (5.7), 

these parameters correspond to a convergence time constant, TMSE, of 6,275 samples, or 

approximately 31 seconds. For real-time implementations, this convergence time constant 

could be reduced by increasing the misadjustment with a slight decrease in noise reduction. 

The recorded signal and the system output of the canceller using these parameters are 

shown in Figure 5.10 (a). Figure 5.10 (b) shows the frequency response of the adaptive filter 

after convergence. Interestingly, the response of this filter has a dip at the resonant frequency 

of the geophone (10 Hz) and a peak at the resonant frequency of the scale (27 Hz), calculated 

based on the spring constant of the scale measured in Chapter 3 (1.19 N urn"1). 
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Figure 5.11 Top trace: geophone signal output of amplifier. Middle trace: measured BCG signal with 
vibration induced artifacts. Bottom trace: filtered BCG output of noise canceller. The vibration 
artifacts are substantially eliminated in the filtered signal, without distorting the morphology of 
the BCG. 

This frequency response is consistent with the expected response of the optimum filter 

discussed above: the adaptive filter response is the inverse transfer function of the geophone 

cascaded with the transfer function of the scale. With loads on the scale other than 40 kg, the 

same results are obtained by the noise canceller, as soon as the adaptive filter converges. With 

a filter length of 250 taps and a delay of 62 samples, a 1% misadjustment was achieved with a 

31 second convergence time constant. 

5.2.4. Results for Simulated Vibrations 

The BCG and geophone signals were recorded from a healthy subject standing on the scale 

while another person (140 kg in weight) stomped around the scale to cause significant floor 

vibrations. The subject on the scale was 1.65m in height, 54kg in weight, and 22 years of age. 

The adaptive filter parameters determined in Section 5.2.3 were used, and a filtered BCG 

signal was obtained by using the noise canceller. The results are shown in Figure 5.11. The top 

trace is the geophone signal from the amplifier. The middle trace is the measured BCG 

waveform, with vibration artifacts. The bottom trace is the filtered BCG output of the adaptive 

noise canceller, where these artifacts have been removed by the adaptive filter. 

In some instances, the artifacts appear as distortions in the morphology of the signal, such 

as the first artifact at the time t = 0.5s into the recording. These types of artifacts could lead to 
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Figure 5.12 BCG recordings taken from a subject standing in a parked bus. Top trace: geophone output of 
the amplifier. Middle trace: raw BCG signal output of amplifier with significant vibration 
induced artifacts. These artifacts were caused by the engine of the bus as well as other vehicles 
driving on the road. Bottom trace: filtered BCG output of the noise canceller. The artifacts due 
to vibrations have been significantly reduced from the recording. 

a misinterpretation of the signal, resulting in a misdiagnosis of the cardiovascular health of the 

subject. In other instances, the artifacts appear as extra peaks in the signal, such as the artifact 

at the time / = 2.6s into the recording. These types of artifacts could lead to errors in heartbeat 

and arrhythmia detection. 

To ensure that the output of the noise canceller did not distort the average signal 

morphology of the BCG, the ensemble average of both the raw signal and the filtered signal 

were computed and compared. A residual was computed by subtracting the average filtered 

signal from the average raw signal. The variance of this residual was 0.09% of the variance of 

the original signal average, demonstrating that the signal morphology was adequately 

preserved in the filtering. 

5.2.5. Results from Recordings on a Parked (Idling) Bus 

The signals were acquired from another healthy subject while standing inside of a bus. The 

subject was 1.75m in height, 63.6kg in weight, and 25 years of age. When the bus was in 

motion, the BCG and geophone amplifier outputs railed, preventing the use of adaptive noise 

cancelling for removing the vibrations. However, when the bus was parked, the signals were 

acquired successfully without railing the amplifier. In these recordings, the vibrations due to 

the engine and the other vehicles driving on the road corrupted the signal quality of the BCG 

significantly. The noise cancellation algorithm was used to eliminate the vibrations from the 

measured BCG. The results are shown in Figure 5.12. 
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Figure 5.13 (a) Residual computed from the raw and filtered BCG 
signals, recorded on the bus, from Figure 5.12. (b) 
Power spectral density estimate of this residual. The 
frequency content of the noise has higher frequency 
peaks which could be reduced by linear filtering, but 
also contains significant low frequency content that 
overlaps with the bandwidth of the BCG (1-10 Hz). 
The adaptive noise canceller effectively eliminates 
these artifacts from the signal. 

The top trace shows the 

geophone amplifier output. The 

middle trace shows the measured 

BCG waveform. Many of the 

BCG beats are completely 

obscured by the vibration noise 

from the bus - in fact, with the 

exception of a few beats at the 

end, the signal is relatively 

unusable. The bottom trace 

shows the filtered BCG 

waveform, where the vibration 

artifacts have been effectively 

eliminated. 

The residual of the raw and 

filtered BCG signals of Figure 

5.12 was computed to analyze the 

nature of the vibration noise, and 

is shown in Figure 5.13 (a). 

Figure 5.13 (b) shows the power 

spectral density (PSD) estimate 

for this residual. The PSD was 

estimated by taking the fast Fourier transform (FFT) of the autocorrelation sequence of the 

residual. While some of the noise power appears to be outside of the useful bandwidth of the 

BCG (1-10 Hz), a majority of the power overlaps in frequency with the BCG and, thus, 

could not be removed by simple linear filtering operations; all components were, however, 

removed quite effectively by the adaptive noise cancellation algorithm. Nevertheless, future 

work should focus on developing other algorithms for cancelling these vibration artifacts from 

the BCG as well, including possibly using parametric spectral estimation techniques for 

determining the optimum filter described in Section 5.2.2. 

5.3. Conclusions 

The methods presented in this chapter would increase the robustness of BCG 

measurements in real settings, where the subject compliance and environmental conditions 
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may be non-ideal. For motion artifacts, the lower-body EMG was shown to be a viable 

estimate of BCG noise - this includes both motion due to high frequency involuntary twitches 

and slower swaying on the scale. In future implementations, as suggested by the preliminary 

results provided in Section 5.1.5, the lower-body EMG can be acquired directly from the 

footpad electrodes of some bathroom scales, resulting in an unobtrusive, self-contained BCG 

acquisition system capable of automatic motion artifact detection. Note that the performance 

of these electrodes for a variety of foot sizes and types would first need to be verified 

experimentally. 

For floor vibrations, the seismic sensor provides substantial improvement in terms of signal 

quality with the use of an adaptive noise canceller. As a result, high fidelity BCG recording is 

possible in nearly all settings, including ambulances or other transport vehicles, provided that 

the vibrations are not so significant as to saturate the amplifier or cause a distorted version of 

the BCG forces to be coupled to the scale. Additionally, while in this work a geophone was 

used as the seismic sensor, in future work other sensors - such as accelerometers - could also 

be used with the same approach. The methods could also be applied to other BCG 

measurement modalities such as chair- or bed-based systems, where the seismic sensor could 

even be implanted into the structure of the measurement system itself. 
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6 
\ J Normal Standards for Resting BCG Recordings: 

Human Subjects Trials 

The best of all medicines is resting and fasting. 
- Benjamin Franklin 

This chapter describes two human subjects trials of a large healthy population and a few 

subjects with cardiovascular diseases. For the first trial, multiple subjects were enrolled, and a 

single measurement was taken from each subject. The purposes of this first trial were as 

follows: 

1. To compare features of the BCG measured on a weighing scale to features (from 
the existing literature) measured on bed- and table-based systems. 

2. To determine whether the L-N waves of the BCG were diastolic or post-systolic 
components. 

3. To correlate features of the BCG to subject demographics and echocardiogram 
parameters. 

For the second trial, multiple measurements were taken serially from the same subject. The 

main purpose of this trial was to evaluate the repeatability of the measurements. In addition to 

these two trials, some preliminary data were recorded from subjects with various 

cardiovascular conditions, including heart failure. 

6.1. Materials and Methods 

6.1.1. Subject Population and Measurement Protocols 

For the inter-subject analysis trial, the data were collected from 92 healthy subjects - all 

provided informed consent for participating in the Stanford IRB approved trial (Protocol No. 

6503). The HBF-500 scale (Omron Healthcare Inc., Bannockburn, IL) was used such that both 

ECG and BCG signals could be obtained without the need for surface electrodes. Each subject 

was instructed to hold the handlebar electrodes firmly while standing still on the scale for one 

minute. The length of the recording was chosen to be high enough to be able to average a large 

number of beats, but not so high that the subject would have difficulty remaining still on the 
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104 



6.1.2. Time Domain Features 

For all trials where simultaneous ECGs were recorded, the BCG and ECG signals from 

each subject were processed and ensemble averaged using the methods described in Section 

4.3. Figure 6.1 shows an example modified ensemble averaged BCG pulse response for one 

subject, with labeled features. The pulse response represents the mechanical response of the 

vessels and body to a pulse of blood being ejected from the heart into the aorta, and was 

calculated using the methods described in Chapter 4. The J-wave was located as the maximum 

peak of the BCG response within a window of 150-400 ms following the ECG R-wave. The 

other waves were located by finding the successive local minima (or maxima) of the pulse 

response within 200 ms of the preceding wave. For example, if the K-wave was located at 

t = 600 ms, the L-wave was considered to be the local maximum of all points from t = 600 to 

800 ms. Using this information, the wave amplitudes were then computed as shown in the 

figure (for the IJ amplitude). The RMS power of the BCG, computed over the pulse response, 

was included in the analysis. The rectified integral of the BCG pulse response, corresponding 

to the change in momentum, was also computed, and is shown in Figure 6.2. The maximum 

value of this BCG integral was another feature examined in the analysis. Finally, combined 

ECG-BCG features, such as the R-J interval, were also extracted and analyzed. 

The PPG signal, used in the multi-day intra-subject variability trial, was digitally band-pass 

filtered (1.5-10 Hz) to reduce noise. A simple peak detection algorithm with a constant 

threshold - half the maximum amplitude of the PPG - was used to find the fiduciary points 

w^/^iA^y^^ 
-y r -l 1 1 r 

-j i i i i_ 

ECG 

PPG 

BCG 

4 5 6 
Time (s) 

10 

Figure 6.3 ECG, PPG, and BCG signals from a subject at rest. The PPG was used as the trigger for 
ensemble averaging the BCG in the multi-day intra-subject variability trial. 
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Figure 6.4 Top: BCG pulse response (computed as described in Chapter 4). Bottom: PSD estimates for the 
BCG signal computed using the periodogram method from the pulse response (solid black line) 
and the modified covariance method from the signal itself (dashed black line). The model order 
for the modified covariance estimate was set at 17 based on the Akaike information criterion 
(AIC) [5]. 

necessary for ensemble averaging the BCG signal. A sample recording of ECG, PPG and 

BCG signals from one subject at rest is shown in Figure 6.3. Using the peaks of the PPG, one 

ensemble averaged BCG waveform (n = 30 beats) for each of the 50 recordings was computed 

and used for feature extraction. Since an ECG waveform was not available, combined ECG-

BCG features were not analyzed for the multi-day intra-subject variability trial. In the single-

day intra-subject variability trial, the ECG signal was available, and blood pressure was also 

measured before each BCG recording. 

6.1.3. Frequency Domain Feature Extraction 

The power spectral densities (PSDs) of the BCG signals were computed using the modified 

covariance method, with a model order selected based on the Akaike information criterion 

(AIC) [5]. An example BCG PSD is shown in Figure 6.4 (bottom) alongside the PSD 

computed using the periodogram of the estimated pulse response. The maximum normalized 

cross-correlation between the two PSDs was found to be 0.98, and, in terms of practicality, the 

modified covariance estimate is faster to implement. Accordingly, it was used for calculating 

the frequency domain features of the BCG for all subjects. The two largest peaks in the BCG 
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PSD were found for each subject, as shown in Figure 6.4. The relative amplitudes of these 

peaks were also examined. 

6.1.4. The L-N Waves of the BCG - Dispelling the Afterwaves Ambiguity 

For the past 70 years, researchers have ambiguously referred to the L-N (or L-O) waves of 

the signal as 'diastolic deflections' [136, 137], 'diastolic waves' [62, 97, 138-141], the 

'diastolic part' [142] or the 'diastolic phase' [4] of the BCG. In this work, a simple study was 

conducted showing that these 'diastolic' waves of the BCG are not associated with diastole. 

The approach was to show statistically that these waves do not cause the systolic waves of the 

BCG; they are caused by the systolic waves. Thus rather than naming them the 'diastolic' 

waves, a new nomenclature is suggested: 'post-systolic' waves. 

In a healthy heart, the time interval between diastole and systole is relatively constant in 

resting conditions. On the other hand, the interval between successive heartbeats is known to 

fluctuate due to respiration (respiratory sinus arrhythmia) [57]. Accordingly, the time interval 

between one beat's systole and the next beat's diastole will also fluctuate due to respiration. 

These simple relationships were used to determine if parts of a signal are diastolic or post-

systolic. 

6.1.5. Data Analysis 

Normal standards were established for the time and frequency domain features. The time 

domain features were compared to values from the existing literature (for table- and bed-based 

systems). Since the frequency domain analysis of the BCG in the literature is very limited, 

these findings could not be compared to table- and bed-based systems. 

The L-N (or L-O) waves of the BCG were analyzed in depth to understand their 

relationship, if any, to diastole. First, for one subject, some visual comparisons were made to 

the ECG P- and T-waves, to determine if the BCG L-N waves were associated with diastole, 

or were post-systolic features. Then, for all subjects, the time intervals were statistically 

analyzed to quantitatively validate these visual observations. 

Correlations between BCG, and combined ECG-BCG features, and subject demographics 

were established. For the subset of subjects with echocardiogram data, parameters extracted 

from the echocardiogram were also correlated to these features. Specifically, correlations to 

stroke volume (SV), left ventricular mass (LVM), and ejection fraction were investigated. 
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Table 6-1 Normal standards for subject demographics, time and frequency domain BCG features and 
combined ECG-BCG features (healthy subjects, n = 92). 

Feature Mean 
Standard 

Dev. 
Min Max 

Subject 
mographics 

Height (cm) 

Weight (kg) 

Age (years) 

Syst. Blood Pressure (mmHg) 

Diast. Blood Pressure (mmHg) 

Heart Rate (bpm) 

174.0 

69.6 

18 

122 

73 

67 

9.14 

13.2 

-
12 

10 

13 

157.5 

45.9 

18 

95 

54 

45 

200.7 

107.3 

21 

164 

94 

98 

Echocardiogram 
Parameters 

(n = 26 subjects) 

Stroke Volume (mL) 

Ejection Fraction (%) 

Left Ventricular Mass (g) 

55 

60.1 

131.7 

16 

6.0 

32.7 

30 

50.0 

88.3 

87 

76.5 

200.8 

Time Domain BCG 
Features 

RMS BCG (NRMS) 

IJ Amp. (N) 

JK Amp. (N) 

Max Value BCG Integral (g m/s) 

IJ Int. (ms) 

JK Int. (ms) 

UK Width (ms) 

1.31 

4.06 

5.09 

92.2 

94.7 

98.4 

252.4 

0.48 

1.53 

1.90 

33.0 

21.2 

14.5 

23.2 

0.55 

0.63 

1.27 

22.8 

42.0 

55.0 

205.0 

3.59 

10.95 

13.25 

240.1 

174.0 

175.0 

339.0 

Frequency Domain 
BCG Features 

Low Freq. Peak (Hz) 

High Freq. Peak (Hz) 

4.08 

5.99 

0.79 

1.23 

2.1 

3.9 

6.3 

13.1 

Combined ECG-
BCG Feature 

R-J Int. (ms) 244.9 U 203.0 290.0 

For the multi-day intra-subject variability trial, the features taken over the multiple 

recordings were compared. The correlations between various BCG time intervals and heart 

rate were investigated. For the single-day intra-subject variability trial, the features were 

compared and the correlations between blood pressure and BCG features were investigated. 

For both intra-subject variability trials, all ensemble averages were plotted for visual 

comparison. 

6.2. Results and Discussion 

6.2.1. Normal Standards and Comparison to Previous Works 

The normal standards for subject demographics, BCG time and frequency domain features, 

and combined ECG-BCG features are summarized in Table 6-1. 
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For BCG amplitude, Starr, et al, provides data that can be used for comparison. With the 

calibration factor (28 g static force per mm) given for converting millimeters on the readout to 

force in Newtons, the mean (±o) BCG IJ-amplitude found by Starr, et al, was 3.7 N (±0.53 

N), for seven subjects [9]. In this work, using the modified weighing scale, the BCG IJ-

amplitude was found to be 4.06 N (±1.53 N), well within the expected range based on the 

Starr, et al. study. 

For timing information, Deuchar, et al, provides Q-I and Q-J interval data, which can be 

used to find the average I-J interval for healthy subjects: 70 ms (no standard deviation given) 

[143]. In this work, the corresponding interval was 94.7 ms (±21.2 ms), slightly higher than 

0 0.2 0.4 
Time Relative to ECG R-wave (s) 

Figure 6.5 Relationship of the ECG P-waves to the R-wave for an array of beats taken from one recording of 
a healthy subject at rest. The segmented P-waves are overlaid onto the ensemble averaged ECG 
beat for the recording (shown in gray). The P-waves on the left side are well-correlated to the R-
wave in time, but the waves on the right side are not. This demonstrates that the P-waves are a 
diastolic event, which is well-known. 

-0.4 -0.2 0 0.2 
Time Relative to ECG R-wave (s) 

Figure 6.6 Relationship of the ECG T-waves to the R-wave for an array of beats taken from one recording of 
a healthy subject at rest. The segmented T-waves are overlaid onto the ensemble averaged ECG 
beat for the recording (shown in gray). The T-waves on the right side are well-correlated to the R-
wave in time, but the waves on the left side are not. This demonstrates that the T-waves are a 
post-systolic event, which is well-known. 
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Time Relative to BCG J-wave (s) 

Figure 6.7 Illustrative results for one subject, demonstrating that the L-0 waves of the BCG, similarly to the 
T-waves of the ECG, are well correlated to the right of the main systolic peak (J-wave) and 
uncorrelated to the left. The beats, which were aligned using the J-wave peak, are overlaid on the 
ensemble averaged BCG. This suggests that the waves are not related to diastole; rather, they are 
post-systolic events. 

Deuchar's values. Tannenbaum, et al, provides J-K interval data [144]: 90 ms (±15 ms); in 

this work, this interval was 98.4 ms (±14.5 ms), well within the expected range. The mean 

(±<T) R-J interval reported by Deuchar, et al., for the Q-J interval was 210 ms (no standard 

deviation given) [143]. In this work, the interval was found to be 244.9 ms (±18.8 ms). 

6.2.2. The L-N Waves of the BCG 

For the ECG, it is well known that the P-wave is associated with diastole and the T-wave is 

post-systolic. If several ECG beats from a recording are aligned using the R-wave peaks, with 

a window large enough to view more than one beat, the P-waves would be well correlated 

temporally on the left side of the R-wave, but uncorrelated on the right. Each R-wave is 

preceded by a P-wave, with a relatively consistent time interval in between. However, 

although each P-wave is preceded by the previous beat's R-wave, the timing interval in 

between varies with respiration. This is illustrated visually in Figure 6.5. On the other hand, 

the T-waves would be well correlated temporally on the right side of the R-wave, but not on 

the left side, since they always follow the R-wave, as shown in Figure 6.6. 

This same basic analysis was performed on the BCG signal to determine visually if the 

L-O waves are diastolic, or post-systolic, components of the waveform. The BCG beats were 

segmented from the recording and aligned to the J-wave, which denotes peak systole. If the L-

O waves were diastolic components, they would be aligned on the left side of the following J-

wave; if aligned on the right, then they would be post-systolic. 

The results are shown in Figure 6.7. Clearly, the L-0 waves of the BCG are aligned to the 

right of the J-wave peak, indicating that they are post-systolic events unrelated to diastole. To 
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Table 6-2 Summary of correlation coefficients for all statistically significant (p < 0.05) correlations between 
BCG features and subject demographics. 

MaxBCG „ . „ . » o , ^ ^ ^ LowFreq „ , , w „ , 
IJAmp RMS BCG „ , , JKAmp KL Amp 

Integral Peak Amp 
Weight 046 034 037 - - -
Height 0.41 - 0.38 0.30 
IJ Amplitude 0.86 - 0.41 - 0.88 0.58 

Table 6-3 Summary of correlation coefficients for all statistically significant (p < 0.05) correlations between 
BCG features, combined ECG-BCG features, subject demographics, and echocardiogram 
parameters. 

Max BCG Low Frea 
iiaxo^K, ^""\KH SVest* LVMest* 
Integral Peak Amp 

Stroke Volume - - O60 -
Left Ventricular Mass 0.46 0.43 - 0.61 

* Estimates using multiple linear regression, incorporating BCG features and subject demographics. 

test this theory on a larger number of subjects (N = 92), the time interval between a J-wave 

and the preceding and following L-wave was computed for each beat from each subject in the 

trial (n = 7949 beats). The mean (±o) were computed for both sets of time intervals and the 

results were as follows: the time interval from the J-wave to the preceding L-wave was 653 ms 

(±204 ms), and the interval from the J-wave to the following L-wave was 181 (±26 ms). The 

standard deviation expressed as a percentage of the mean was nearly 33% for the preceding 

intervals, and less than 15% for the following intervals. This data demonstrates that these 

waves could not be related to diastole, but are most likely post-systolic events - possibly 

mechanical resonances of the body-scale system or vasculature within the thorax. 

6.2.3. Correlation Analysis (Subject Demographics) 

The statistically significant correlations between BCG features and subject demographics 

are summarized in Table 6-2. The IJ amplitude and RMS power were also found to be 

significantly higher for men compared to women (p « 0.001). For female subjects, the mean 

(±CT) BCG IJ amplitude was 3.56 N (±1.06 N), and for male subjects was 5.56 N (±1.74 N); 

the corresponding values for RMS power were 1.17 NRMS (±0.33 NRMS) for females and 1.74 

NRMS (±0.60 NRMS) for males. 

6.2.4. Correlation Analysis (Echocardiogram Parameters) 

The significant correlations between BCG, and combined ECG-BCG, features and 

echocardiogram parameters are summarized in Table 6-3. For stroke volume, no linear 
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Table 6-4 Summary of results from multi-day intra-subject variability trial (n = 50 recordings, one subject). 

Mean 

a 

Min 

Max 

SE (%) 

HR 
(bpm) 

88.1 

9.0 

68.9 

107.0 

10.3 

RMS 
BCG 

(NRMS) 

0.72 

0.09 

0.57 

0.95 

12.6 

IJ Amp 
(N) 

2.70 

0.35 

2.06 

3.50 

13.0 

JK Amp 
(N) 

3.00 

0.40 

2.17 

4.03 

13.4 

Max 
BCG 

Integral 
(gm/s) 
108.2 

15.3 

82.3 

140.2 

14.2 

IJInt 
(ms) 

102.7 

10.6 

89.0 

125.0 

10.3 

JKInt 
(ms) 

88.6 

2.2 

84.0 

94.0 

2.4 

UK 
Width 
(ms) 

273.9 

19.3 

239.0 

312.0 

7.1 

correlation was found. However, a multiple linear regression analysis showed that a linear 

combination of height, weight, and BCG features (IJ amplitude, IJK width, and R-J interval), 

was correlated to stroke volume (R2 = 0.60, F-statistic p-value < 0.01). For LVM, similar 

results were obtained using a linear combination of height, weight, maximum value of the 

BCG integral, and R-J interval (R2 = 0.60, F-statistic p-value < 0.01). 

The latter finding could be extremely significant for large screening applications of athletes 

for cardiac hypertrophy - enlarged cardiac muscle. Currently, the primary argument against 

screening every athlete before allowing participation is cost. Echocardiography is certainly too 

expensive; the cost-effectiveness of the ECG is a subject of debate in the literature. ECG 

screening requires a professional to attach electrodes to the subject and record a full 12-lead 

reading. However, a combination ECG and BCG scale, such as the one described here, would 

certainly be cost-effective, if it were capable of correlating parameters of the signals to 

hypertrophy. Future work should investigate the possibilities of using this system for 

estimating left ventricular mass - the preliminary data is encouraging. 

6.2.5. Multi-Day Intra-Subject Variability 

The extracted features are summarized in Table 6-4. Standard error (SE) is also shown, 

defined here as the ratio of the standard deviation to the mean for each parameter. The only 

parameters with a significant (p < 0.05) correlation to heart rate were the I-J interval (R2 = 

0.30) and the maximum value of the BCG integral (R2 = 0.36). After normalizing the I-J 

intervals for heart rate using the slope of the correlation line (0.64 ms bpm'1), the standard 

deviation decreased from 10.6 ms (SE = 10.3%) to 8.9 ms (SE = 8.7%); similarly, by 

normalizing the maximum integral of the BCG for heart rate using the slope of the correlation 

line (1.02 9 m/s bpm)), the standard deviation decreased from 15.3 g m/s (SE = 14.2%) to 12.3 

gm/s(SE=11.3%). 
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The ensemble averages for 

all 50 recordings are shown in 

Figure 6.8 for visual 

comparison. These averages 

have not been normalized in 

amplitude, but were aligned in 

time using the peak of the 

BCG J-wave. Note that the 

variability from t = 700 ms to 

the end of the window is due 

to changes in heart rate - for 

some of the ensemble 

averages, the start of the next 

beat interferes with the 

average. If the ECG R-waves 

were available, these 

interfering beats could be 

cancelled using the methods described in Chapter 4. However, for the PPG, the timing 

reference is not precise enough to allow this modified ensemble averaging to be successfully 

implemented. 

6.2.6. Single-Day Intra-Subject Variability 

The extracted features are summarized in Table 6-5. (Note that PP represents pulse 

pressure, the difference between systolic and diastolic blood pressure, in mrriHg.) None of the 

200 400 600 
Time (ms) 

800 

Figure 6.8 Ensemble averages for fifty recordings from the same 
subject taken at random times during the day for a three-
week period. Amplitudes are not normalized, though the 
signals are aligned in time using the J-wave. 

Table 6-5 Summary of results from single-day intra-subject variability trial (n = 8 recordings, one subject). 

HR 

(bpm) 

PP 

(mmHg) 

RMS 

BCG 

(NRMS) 

IJ 

Amp 
(N) 

J K 

Amp 
(N) 

Max 

BCG 

Integral 
(gm/s) 

M i n t 

(ms) 

J K 

Int 
(ms) 

U K 

Width 
(ms) 

RJ 

Int 
(ms) 

Mean 

a 

Min 

Max 

SE (%) 

73.9 

2.4 

70.0 

76.5 

3.2 

42.3 

4.6 

34.0 

48.0 

10.8 

0.82 

0.054 

0.75 

0.90 

6.6 

4.01 

0.58 

3.24 

4.76 

14.4 

4.78 

0.48 

4.14 

5.31 

10.1 

135.7 

14.9 

115.8 

156.9 

11.0 

88.1 

2.8 

84.0 

92.0 

3.2 

87.6 

1.6 

85.0 

90.0 

1.8 

175.8 

3.5 

170.0 

182.0 

2.0 

240.3 

10.9 

226.0 

256.0 

4.5 
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Figure 6.9 BCG pulse responses, estimated using methods 
described in Chapter 4, for eight recordings taken 
throughout the same day for one subject. The timing 
intervals and RMS power of the BCG signals showed 
minimal variability among the measurements. 

0 100 200 300 400 500 600 700 
Time (ms) 

Figure 6.10 Ensemble averaged BCG from a subject with heart 
failure. The amplitude and RMS power of the BCG 
were significantly lower and the R-J interval was longer 
than for the normal population. Additionally, the beat 
has two I-waves, marked as / and / ' in the figure. 

BCG parameters were found to 

be correlated to blood pressure 

(systolic, diastolic, or pulse 

pressure). The standard errors 

for all parameters were 

relatively low, with IJ 

amplitude having the highest 

error: 14%. This was 

comparable to the variability in 

pulse pressure: 10.8%. The 

time intervals showed minimal 

variability among recordings, 

with the R-J interval having a 

standard error of less than 5%. 

The RMS power of the BCG 

was also shown to have 

minimal standard error over all 

recordings: 6.6%. The 

modified ensemble averages 

for all eight recordings are 

shown in Figure 6.9. Here, 

since the ECG was available, 

the full BCG pulse responses 

were estimated, and the 

variability apparent in Figure 

6.8 from 700-800 ms into the 

averages is substantially 

reduced. Again, the averages 

were not normalized in 

amplitude, but were aligned 

using the J-wave peak of the 

BCG. 
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6.3. Preliminary 

Data from 

Subjects with 

Cardiovascular 

Conditions 

BCG recordings were taken at 

rest from three subjects with 

cardiovascular conditions, 

including heart failure, to provide 

some preliminary anecdotal data 

supporting the basic trends 

observed in the healthy population. 

Data from three subjects are 

analyzed and presented here. 

Figure 6.10 shows the ensemble 

averaged BCG from a subject 

(Male, Age: 53, Height: 165.1 cm, Weight: 96 kg, Heart Rate: 77 bpm, normal blood pressure) 

with heart failure. Morphologically, the ensemble averaged signal looks abnormal - the I-

wave is much wider than normal, and split into two valleys, and the J-wave peak is rounder. 

Quantitatively, the features related to BCG amplitude were much lower than normal. The IJ 

amplitude, 1.05 N, and the maximum value of the BCG integral, 41 g m/s, were both 

significantly lower than the average values for the normal population (4.06 N and 92.2 g m/s, 

respectively). The RMS power of the BCG, 0.31 NRMS, was nearly half of the minimum value 

(0.55 NRMS) measured for all healthy subjects in the trial. The R-J interval, 281 ms, was much 

higher than the average value for the normal population, 244.9 ms. These results suggest that 

this subject had significantly reduced contractility compared to the normal population. 

Figure 6.11 shows the ensemble averaged BCG from another subject (Female, Age: 58, 

Height: 166.1 cm, Weight: 95 kg, Heart Rate: 98 bpm, Blood Pressure: 130/80 mmHg) with 

cardiomyopathy (deteriorated heart muscle), heart block and an implanted pacemaker. The IJ 

amplitude, 0.94 N, and maximum value of the BCG integral, 31.1 g m/s, were much lower 

than the average values for healthy subjects. The RMS power of the BCG, 0.26 NRMS, was less 

than half of the minimum value measured for all healthy subjects. Surprisingly, the R-J 

interval (200 ms) was much lower than for the average population; however, the true 
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Figure 6.11 Ensemble averaged BCG beat from a subject with 
cardiomyopathy, heart block, and an implanted 
pacemaker. The amplitude and RMS power of the 
BCG were significantly lower than for the normal 
population, and the morphology of the beat was 
unusual. 
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400 
Time (ms) 

Figure 6.12 Ensemble averaged BCG taken from a subject with a 
4.8 cm abdominal aortic aneurysm. The R-J interval and 
the UK width are much shorter than the minimum 
values for all healthy subjects in the trials. Visually, the 
response seems to be much more resonant than the 
typical traces, suggesting that the mechanical properties 
of the vasculature may be related to the afterwaves of 
the signal. 

definition of the R-J interval 

for paced beats may be quite 

different than for normal beats. 

The pacing pulse peak to J-

wave peak interval was 308 

ms, which is much longer than 

the R-J interval for normal 

subjects, consistent with a 

decreased contractile state of 

the heart. 

Figure 6.12 shows an 

ensemble averaged BCG from 

a subject (Male, Age: 71, 

Height: 178 cm, Weight: 75 

kg, Heart Rate: 64 bpm, Blood 

Pressure: 154/84 mmHg) with 

a 4.8 cm abdominal aortic 

aneurysm. The amplitude features of the signal were normal for this subject. However, the 

timing features were not: the R-J interval, 152 ms, and the UK width, 151 ms, were much 

lower than the minimum values for all subjects. Additionally, the BCG response seemed to be 

much more resonant than the typical traces, suggesting that the physical properties of the aorta 

may be related to the morphology of the BCG signal. 

6.4. Conclusions 

Normal standards were established at rest for healthy subjects for various time and 

frequency domain features of the BCG. For some of these features, results were available in 

the existing literature for comparison. The values found in this work were comparable to these 

previously reported results, demonstrating that, with an inexpensive and compact apparatus, 

high-fidelity BCG recordings can be obtained. Furthermore, since measuring the longitudinal 

signal from a standing or prone subject yields similar BCG results, this suggests that the 

effects of gravity on the BCG signal may be minimal. The intra-subject variability trials both 

confirmed that the measurements are repeatable, and that RMS power of the BCG and R-J 

interval are both features of the signal with minimal measurement error. 
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From the correlation analysis, the features of the BCG that are most relevant to absolute 

measurements were determined: IJ amplitude, UK width, R-J interval, and the maximum value 

of the BCG integral. With these parameters, some relatively strong correlations were 

established to both stroke volume and LVM. The estimation of LVM from BCG parameters, 

in particular, is an exciting area for future investigation. The BCG is a measurement of 

contractile force, and it is not surprising that features of the signal would be correlated to the 

mass of ventricular muscle responsible for producing this force. One current and important 

medical problem is differentiating between physiological and pathological hypertrophy: it is 

possible that by supplementing the 12-lead ECG with a BCG measurement, a more specific 

diagnosis could be attained. Currently, the ECG measurements are used to estimate the LVM 

based on amplitude, since more muscle mass leads to a larger electrical signal measured at the 

surface. If the amplitude of the ECG was larger than the normal limit, but the integral of the 

BCG was smaller, this could indicate that the larger muscle mass was inefficient in its 

contractions due to the disarray of the myofibrils - this is the case for pathological 

hypertrophy. 

Additionally, ensemble averaged BCGs were shown for three subjects with cardiovascular 

abnormalities. These preliminary data further suggested that the IJ amplitude, RMS power, 

maximum value of the integral, R-J interval and UK width of the BCG contain useful 

hemodynamic information. Nevertheless, the strongest impact of the BCG on home 

monitoring will likely be in trending. The next chapter describes human subjects trials 

demonstrating that the BCG can accurately trend important cardiovascular parameters such as 

cardiac output. 
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Effects of Hemodynamic Changes on the BCG 

When the music changes, so does the dance. 
- African proverb 

A central aim of this work is to provide an easy and effective home monitoring solution to 

patients with chronic cardiovascular diseases. For this goal, in addition to simple and robust 

instrumentation solutions, the ability of the system to automatically detect changes in the 

cardiovascular system is crucial - in particular, changes indicating worsening condition. In 

terms of hemodynamics, this translates to accurate estimation of changes in cardiac output or 

contractility. 

To determine which features of the BCG signal would be most useful for tracking these 

cardiovascular parameters, the hemodynamics were modulated from rest using a variety of 

techniques, and the effects on the BCG were studied. The five most common drivers for 

hemodynamic changes are: 

1. Pharmaceutical agents 
2. Injury or shock 
3. Arrhythmias 
4. Maneuvers designed to test the cardiovascular system (e.g., Valsalva) 
5. Exercise 

Pharmaceutical interventions and the effects of injury or shock on the BCG were not 

investigated in this thesis due to the risks involved for healthy subjects; on the other hand, the 

effects of preexisting arrhythmias [92], the Valsalva maneuver [145], and exercise [11] were 

observed. The effects of arrhythmias, observed in only two subjects, provided preliminary data 

used to form hypotheses for two larger trials: one for testing the effects of the Valsalva 

maneuver, and a second for exercise recovery. For this second trial, the results were correlated 

to a gold standard clinical measurement (Doppler echocardiography), as discussed below. 
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Figure 7.1 ECG recording showing normal ('N') and 
premature ventricular contraction ('V') beats. 
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Figure 7.2 ECG recording showing normal ('N') and 
premature atrial contraction ('A') beats. 

7.1. Effects of Arrhythmias 

on the BCG: Ectopic Beats 

The effects of the two most 

common arrhythmias, premature 

ventricular contractions (PVCs) and 

premature atrial contractions (PACs), 

on the BCG are discussed in this 

section. These are two types of 

premature beats originating from 

ectopic foci in the ventricular or atrial 

chambers of the heart, respectively. 

To place these results in context, first 

the pathophysiology of these two 

arrhythmias, and their associated 

ECG waveforms, is discussed briefly 

below. 

7.1.1. Pathophysiology of PVCs and PACs and the Associated ECG Waveforms 

A group of myocytes that beats independently of the rhythm set by the sinoatrial (SA) node 

of the heart is referred to as an ectopic focus. The chamber of the heart housing this focus 

determines the type of ectopic beats exhibited by the heart: PVCs for ventricular foci and 

PACs for atrial foci [146]. 

In the ECG, PVCs manifest as wide QRS complexes occurring prematurely relative to the 

mean R-R interval for the trace, and without an associated P-wave. In addition, the amplitudes 

of the QRS complexes are usually larger than the surrounding normal beats. Frequently, a 

PVC beat is followed by a compensatory pause, although in some instances, where the PVC is 

'interpolated,' it simply appears as an extra heartbeat in between two normal beats [146]. 

Figure 7.1 shows an example ECG trace with normal ('N') and PVC ('V') heartbeats. Note 

that these PVCs are not followed by a compensatory pause since they are interpolated. 

PACs have prematurely occurring narrow QRS complexes and unusual P-wave 

morphology. The P-wave is distorted since the source of the atrial depolarization wave is the 
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Figure 7.3 ECG and BCG recordings from a subject with PVCs. 
For both the ECG and BCG, the normal beats are 
annotated 'N* and the PVC beats ' V . The BCG IJ 
amplitude of the PVC beats is lower than for the normal 
beats. 

ectopic focus rather than the 

SA node. Usually, the SA node 

is depolarized by this 

premature beat, thus the PAC 

is followed by a compensatory 

pause. Figure 7.2 shows an 

example ECG recording, with 

normal ('N') and PAC ('A') 

beats. The SA node was 

depolarized in both of these 

PACs, thus both are followed 

by a compensatory pause. 

The width of the QRS 

complex is indicative of the 

depolarization mechanism of the ventricles: a healthy, effective, contraction results from the 

depolarization wave travelling rapidly down the Purkinje fibers, allowing a synchronized, 

powerful contraction of the ventricular myocytes. An ineffective contraction results when the 

depolarization is initiated independent of the Purkinje fibers, such as from an ectopic focus 

within the ventricle - the contractile efficiency of the ventricle is then compromised. 

The volume of blood ejected by the ventricles in a PVC is significantly lower than for a 

normal beat for two reasons: first, since the contraction is premature, the ventricles will have 

less time to fill than normal (decreased preload); second, since the depolarization originates 

from an ectopic focus rather than the Purkinje fibers the strength of contraction will be 

relatively weak (transiently reduced contractility). For a PAC beat, the stroke volume can also 

be lower than normal, but depends only on the degree of prematurity since the ventricular 

muscles still contract in unison [10, 147]. 

7.1.2. BCG Recordings from Subjects with Ectopic Beats 

Two subjects in the trials had premature beats: one (Age: 36) had PVCs and another (Age: 

46) had PACs (Stanford IRB Protocol No. 6503). Figure 7.3 shows BCG and ECG traces for 

the subject with PVCs. As discussed earlier, the PVCs were diagnosed based on an early 

occurrence of a wide QRS complex without an associated P-wave. The BCG IJ-amplitude was 

much lower for these beats compared to the surrounding normal beats. Since this decreased 

amplitude was an incidental finding, with only two PVCs detected for all of the subjects 
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Figure 7.4 ECG and BC65G recordings from a subject with PACs. For both the ECG and BCG, the normal 
beats are annotated 'N', the PAC beats 'A', and the compensatory beat ' C . The BCG J-
amplitude of the PAC beats is lower than for the normal beats, and the amplitudes of the 
compensatory beats are higher. 

studied, statistical significance was not determined. However, this preliminary data was used 

to form the hypothesis that BCG amplitude, or RMS power, could be related to cardiac output. 

Note that the beats following the premature events in this figure are not compensatory beats, 

since the PVCs did not depolarize the SA node. 

Figure 7.4 shows ECG and BCG traces for the subject with PACs, diagnosed based on the 

early occurrence of morphologically unusual P-waves. For this analysis, 86 normal beats, 15 

PAC beats, and 15 compensatory beats were used. These premature atrial impulses 

depolarized the SA node, resulting in a compensatory pause following the premature beat. 

Accordingly, the heartbeats in this figure are labeled normal ('N'), PAC ('A'), and 

compensatory ('C'). 

In Figure 7.5, the correlation between BCG amplitude (J-wave) and the preceding R-R 

interval for PAC beats is shown (R2 = 0.73). This correlation is a direct result of the degree of 

prematurity affecting the diastolic time interval and preload. Similarly, it has been shown in 

the literature that, for ectopic beats, both stroke volume and pulse pressure are correlated to 

the R-R interval preceding the premature beat [10, 147]. 

It has also been shown that premature atrial beats of reduced output are followed by a 

compensatory pause, resulting in a heartbeat with increased output [148]. On the same plot 
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Figure 7.5 Correlation of BCG J-amplitude to the R-R interval preceding 

the premature beat, consistent with the literature: stroke 
volume was shown to be correlated with the preceding R-R 
interval due to the modulation of the diastolic time interval 
[10]. The bars show mean (±<r) normal and compensatory J-
amplitudes; the x-location and width of the bars correspond to 
the mean (±o) R-R intervals for these beats. 

(Figure 7.5), the mean 

(±o) BCG amplitudes (J-

wave) for normal and 

compensatory beats are 

also given. The location 

and width of the bars for 

normal and compensatory 

beats indicate the mean 

(±o) R-R intervals. The 

PAC amplitudes were 

significantly lower than 

for normal beats (p « 

0.001) and the amplitudes 

of the compensatory beats 

following the PACs were 

significantly higher than 

for normal beats (p « 

0.001). 

7.2. Effects of the Valsalva Maneuver 

7.2.1. Physiological Effects of the Valsalva Maneuver 

The Valsalva maneuver involves a subject forcedly exhaling against a fixed pressure, or 

keeping the mouth and nose closed, for a period of time to transiently increase intrathoracic 

pressure [1]. This increase in pressure leads to a series of changes in heart rate, blood pressure, 

stroke volume, and cardiac contractility that have been studied extensively and are well 

documented in the existing literature [149-152]. 

It should be noted that there is no infallible method for standardizing the execution of the 

Valsalva maneuver. However, in this work, two parameters were used to establish some level 

of standardization: the duration of the strained period was set between 15 and 20 seconds, and 

each recording was inspected to ensure that the criterion for a normal Valsalva ratio was met. 

The Valsalva ratio is defined as the ratio of the longest to shortest R-R interval during the 

maneuver. Normally, this ratio should be greater than 1.5 [153]. The expected physiological 

effects for healthy subjects performing the maneuver are summarized below. 
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During the period of strain, venous return decreases as does cardiac output, resulting in a 

reflex increase in heart rate due to reduced parasympathetic drive. A simultaneous increase in 

sympathetic tone causes peripheral vasoconstriction and increased cardiac contractility to 

compensate for reduced output. When the strain is released by the subject, venous return 

suddenly increases, causing a transient overshoot in stroke volume and blood pressure. This 

overshoot is sensed by the baroreceptors, resulting in increased parasympathetic drive and 

reflex bradycardia for a few beats. The sympathetic tone is also reduced following release. 

However, since sympathetic changes are slower than parasympathetic, cardiac contractility 

remains elevated compared to rest for tens of seconds following release. Several researchers 

have studied hemodynamic changes induced by Valsalva using the echocardiogram, 

electrocardiogram (ECG), and impedance cardiogram. 

For stroke volume, the results spanned a range of 24-52% increase after release compared 

to rest [149, 151]. The effects on contractility are more difficult to study directly. 

Consequently, the pre-ejection period (PEP) was proposed as an indirect measure of 

contractility since increased contractile state leads to a shortened isovolumetric contraction 

interval [154]. The PEP is defined as the time interval between electrical depolarization (ECG 

R-wave peak) and the opening of the aortic valve, which can be measured by 

echocardiography or impedance cardiography. For PEP, the reported results spanned a range 

of 20-30 ms decrease after Valsalva release compared to rest [150, 152]. 

7.2.2. Expected Changes in the BCG Following Strain Release 

Previous work suggests that relative changes in BCG amplitude may be correlated to 

changes in stroke volume [80]. Additionally, since the peak of the BCG (J-wave) represents 

the greatest vertical force resulting from cardiac ejection, the time interval between the ECG 

R-wave and the BCG J-wave (R-J interval) will modulate with PEP changes. Subsequently, it 

is expected that following Valsalva release, (1) the BCG amplitude will increase significantly 

compared to rest, and (2) the R-J interval will decrease. The relative changes in these values 

should be consistent with the changes reported in literature for stroke volume and PEP. 

7.2.3. Study Details: Population and Procedure 

Fifteen healthy adults participated in this study (Stanford IRB Protocol 6503). The 

participants ranged from 55 to 143 kg in weight, 157 to 201 cm in height, and 20 to 35 years 

in age. After affixing ECG electrodes to each subject in a Lead II configuration, subjects were 

asked to stand still on the scale for 30 seconds for ECG and BCG recording. This was the 

averaging period for the resting segment. Next, subjects were instructed to perform a Valsalva 
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Figure 7.6 ECG and BCG time traces showing the response of one subject to the Valsalva maneuver. The 
BCG amplitude is reduced during the period of intrathoracic strain and then overshoots above the 
resting value after release. The time-series R-J interval plot is also shown and the response is 
remarkably similar to the expected pre-ejection period (PEP) responses reported in the literature. 
The Valsalva response suggests that changes in BCG amplitude are correlated to changes in 
stroke volume and that the R-J interval is modulated by changes in ventricular contractility. 

maneuver for 15-20 seconds. Upon release, the subject remained still, and 15 seconds of data 

were averaged for post-release feature extraction. 

7.2.4. Digital Signal Processing and Feature Extraction 

The BCG and ECG signals were digitally band-pass filtered with passbands of 0.1 to 15 Hz 

and 2.5 to 40 Hz, respectively. A simple peak detection algorithm was used to find the R-wave 

and J-wave peaks, and the time elapsed between these peaks was computed as the R-J interval. 

For frequency analysis, the power spectra (estimated from the FFT) of the ensemble averaged 

BCG waveforms were computed. The area under the low frequency (0-5Hz) and high 

frequency (5-20 Hz) bands were calculated and the ratio of high to low frequency power 

before and after intrathoracic strain was compared. 

7.2.5. Example Results from One Subject: Time Traces and Ensemble Averages 

Example ECG and BCG traces for one subject are shown in Figure 7.6 to demonstrate the 

general trends observed from the subject population (N = 15 subjects). The time-series plot of 

the computed R-J interval is also provided. For this subject, a consistent BCG signal could be 

captured during the strain. The BCG amplitude increased and R-J interval decreased following 
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Figure 7.7 Ensemble averaged BCG waveforms from the 
resting, strained (Valsalva), and post-release periods 
of the traces shown in Figure 7.6. R-J interval 
increased during the strained segment and decreased 
after release when the sympathetic tone was elevated. 

the release. The R-J interval time 

series was consistent with PEP 

results reported in a recent article. 

The ensemble averaged BCG 

waveforms for three segments 

(resting, strained (Valsalva), and 

post-release) of traces from this 

subject are shown in Figure 7.7. 

The increase in R-J interval 

during strain and subsequent 

decrease following release are 

shown, consistent with an 

increased inotropic state of the 

ventricles. 

Figure 7.8 shows the frequency response magnitude of the same three ensemble averages, 

also normalized to unity. The frequency content of the ensemble averaged BCG is shifted to 

higher frequencies for post-release than for the resting condition since the ventricular ejection 

force impulse is narrower. The ratio of high (> 5 Hz) to low (< 5 Hz) frequency power 

increase after release for this subject. 

0 

-10 
CO 

£-20 
B 
it 

it •30 i 

1 -40 

-50 

Figure 7.8 

f 
\ 
if if if 

n 

Strained Period 

i 

\ / / 

5 10 
Frequency (Hz) 

15 

Periodogram-based power spectral density estimates for 
the ensemble averages shown in Figure 7.7. The high 
frequency content decreased during the period of strain 
when blood pressure decreased, and increased 
transiently following release when blood pressure was 
elevated. 

7.2.6. Statistical Analysis for 

All Subjects 

As expected, for many 

subjects the motion artifact in 

the strained period prevented 

reliable feature extraction. 

Consequently, the statistical 

analysis was limited to resting 

and post-release periods. The 

changes in the BCG amplitude, 

R-J interval, high frequency to 

low frequency power ratio, and 

heart rate for all subjects are 
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Figure 7.9 Ratio of post-release to resting values for all subjects 
(mean ± standard deviation). A paired t-test was used to 
determine p-values (* indicates p < 0.01 and **, 
p< 0.001). 

shown in Figure 7.9. Each 

parameter is normalized to the 

corresponding resting value, as 

indicated visually by the unity 

amplitude rest bar. 

A paired t-test was used to 

determine statistical 

significance, and all parameters 

changed significantly after 

release compared to the resting 

values (p < 0.01) except heart 

rate. Note that heart rate did 

transiently decrease after 

release for a few beats but, 

when averaged over 15 

seconds, there was no significant change from rest. Consequently, the other results (amplitude, 

R-J interval, and frequency response) were not simply a result of changing cardiac cycle 

length. For example, R-J interval changes did not correlate to R-R interval changes 

(R2 = 0.005). 

The BCG amplitude increased by an average (±er) of 37% (±19%) for all subjects 

following release of strain. This range was consistent with the existing literature for Valsalva-

induced stroke volume changes [149, 151]. The R-J interval decreased by 34 ms (±17 ms), 

consistent with the ranges reported for PEP [150, 152]. The high frequency to low frequency 

power ratio increased by 29% (±37%). The R-J interval was the parameter with the least 

variance and most significant change for the paired tests (p « 0.001). To evaluate the beat-

by-beat significance of this parameter, a Student's t-test was implemented comparing R-J 

intervals from all post-release BCG beats (n = 236 beats) to the intervals from resting beat 

(n = 409 beats): this difference was also highly significant (p « 0.001). 

7.3. BCG Measurements during Exercise Recovery 

The idea of estimating cardiac output from the BCG signal dates back to Starr, et al. in 

1939 [9], and was further developed by several other researchers in the 1930s and 1940s [155, 

156]. While the results of these studies were encouraging, the correlations were only 
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established at rest. Additionally, the systems used for BCG measurement were cumbersome, 

elaborate tables or beds requiring regular mechanical maintenance and an expert operator. 

This section addresses the question, "Can cardiac output be accurately trended on a 

modified weighing scale using the BCG?" Specifically, the hypothesis was that changes in the 

root-mean-square (RMS) power of the BCG were correlated to changes in cardiac output. This 

hypothesis was tested by modulating cardiac output and using Doppler echocardiography 

measurements as the gold standard for comparison. 

Exercise was chosen as the means for modulating cardiac output for three main reasons. 

First, exercise causes dramatic variations in cardiac output (up to 400% increases for healthy 

adults), allowing for a wide range of measurements using the new technique to be compared 

against the gold standard. Second, the risks of exercise are minimal compared to 

pharmaceutical options for cardiac output modulation. Finally, several studies have used 

exercise for modulating cardiac output in testing the performance of a new measurement 

method against a gold standard, allowing for fair comparisons to be made between this work 

and others from the literature. Such a comparison is provided in Table 7-1, which is limited to 

studies using healthy subjects only. 

The method proposed in this work is less obtrusive and expensive than all of the other 

methods shown in Table 7-1, and is the only method that does not require a medical 

professional to perform the measurement. Nonetheless, three limitations of the BCG approach 

that are not captured by this table should be noted: first, the measurements cannot be taken 

during exercise; second, during longer recordings, postural shifting by the subject on the scale 

may lead to errors; and, third, the cardiac output measurements are relative rather than 

absolute. The first limitation is not shared by any of the other methods in Table 7-1. However, 

the second limitation can lead to significant errors in impedance cardiogram measurements, 

and must be controlled for optimal results. The latter limitation is also suffered by continuous 

blood pressure measurements since a calibration step is needed to acquire accurate absolute 

cardiac output measurements from the recordings. 

In many instances, this third limitation is not a major obstacle - the absolute value of 

cardiac output may be less important than relative changes over time after a baseline 

measurement has been taken. For example, in monitoring heart failure patients at home, 

changes in cardiac output over time could direct therapeutic decisions, such as diuretic dosage, 

and signal the need for a follow-up clinical visit. Note that this particular application would 
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Table 7-1 Comparison of several studies on non-invasive cardiac output measurement for exercise and 
exercise recovery (healthy subjects) 

Author (Year) 
Number Number Correlation 

Method "Gold" Standard of of Data Coefficient 
Subjects Points (R2) 

This Work [11] 

Houtman(1999)[17] 

Sugawara(2003)[18] 

Antonutto(1995)[19] 

Christie (1987) [20] 

Wilmore(1982)[21] 

Liu (1997) [22] 

Johnson (2000) [23] 

Zhang (1986) [24] 

Miyamoto (1981) [25] 

Moore (1992) [26] 

Hatcher (1986) [27] 

Tordi (2004) [28] 

Richard (2001) [29] 

Ballistocardiography 

Continuous Blood Pressure 

Continuous Blood Pressure 

Continuous Blood Pressure 

Doppler Echocardiography 

Gas Rebreathing 

Gas Rebreathing 

Gas Rebreathing 

Impedance Cardiography 

Impedance Cardiography 

Impedance Cardiography 

Impedance Cardiography 

Impedance Cardiography 

Impedance Cardiography 

Doppler 
Echocardiography 

Gas Rebreathing 

Doppler 
Echocardiography 

Doppler 
Echocardiography 

Fick (direct) 

Thermodilution 

Fick (direct) 

Fick (direct) 

Gas Rebreathing 

Gas Rebreathing 

Gas Rebreathing 

Gas Rebreathing 

Gas Rebreathing 

Fick (direct) 

9 

12 

16 

9 

10 

6 

9 

6 

10 

6 

11 

60 

8 

12 

275 

24 

640 

27 

42 

12 

37 

96 

78 

19 

44 

230 

40 

50 

0.85 

0.46 

0.76 

0.77 

0.66 

0.76 

0.77 

0.90 

0.91 

0.83 

0.76 

0.56 

0.82 

0.88 

require an inexpensive and unobtrusive measurement method to be truly effective, further 

justifying the use of the BCG. 

Of the previously reported methods shown in Table 7-1, the transthoracic impedance 

cardiogram (ICG) measurements have achieved the best statistical results based on number of 

subjects, data points, and correlation coefficients [24-29]. Notably, Zhang, et al. reported a 

correlation coefficient of 0.91 for 78 data points from 10 subjects exercising [24]. 

Unfortunately, Zhang, et al. do not address the agreement between the methods which is 

arguably more important than correlation itself [157]. The agreement between bathroom-scale-

BCG and Doppler echocardiogram based cardiac output trending is computed in this section 

and compared to other works in the literature. 

The statistical results of this work are superior to the two studies shown in Table 7-1 where 

Doppler echocardiography was used as the "gold" standard. It should be noted that all non-
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Table 7-2 Characteristics and hemodynamic parameters for all subjects 

Subject 

1-Fem 

2-Fem 

3-Fem 

4-Male 

5-Male 

6-Male 

7-Male 

8-Male 

9-Male 

5-Malef 

Mean 

Stdev 

Age 

25 

46 

23 

24 

46 

31 

49 

21 

26 

46 

34 

12 

Ht 
(cm) 

167 

173 

157 

163 

177 

179 

186 

165 

201 

177 

175 

13 

Wt 

(kg) 

53.5 

63.5 

65.5 

63.5 

71 

95 

100 

54.5 

143 

71 

78 

28 

SBP 
(mmHg) 

113 

110 

112 

120 

134 

146 

125 

121 

140 

139 

126 

13 

DBP 
(mmHg) 

69 

82 

77 

77 

89 

95 

85 

76 

85 

81 

82 

7 

HRre,t 
(bpm) 

68 

82 

65 

85 

71 

84 

78 

63 

122 

71 

79 

17 

svre8 , 
(mL) 

47 

33 

40 

46 

41 

47 

60 

44 

28 

54 

44 

9 

COrest 
(L/min) 

3.2 

2.7 

2.6 

3.9 

2.9 

4 

4.7 

2.8 

3.4 

3.8 

3.4 

0.7 

f 2"d trial for same subject as "5-Male," performed on a separate day. 

invasive cardiac output measurements, including Doppler echocardiography, are susceptible to 

errors compared to invasive measurements such as thermodilution or Fick's method. Doppler 

echocardiography was chosen in this work since it is used widely in clinical settings and it has 

been shown to have good agreement and correlation with thermodilution for both healthy and 

critically ill subjects [158-161]. Nevertheless, the errors inherent to the measurement should 

certainly be considered when interpreting the results of this work. 

The results of this paper are comparable in terms of correlation and statistical power to all 

of the other studies to date in non-invasively trending cardiac output changes from subjects 

after exercise. Additionally, the proposed method has distinct practical advantages over any of 

the non-invasive alternatives: the measurement procedure is simple and unobtrusive, with 

nothing attached to the body or face, and the apparatus is compact and inexpensive. 

7.3.1. Study Details: Subject Population 

Nine healthy adults (six males, three females) participated in the study approved by the 

Stanford IRB (Protocol No. 6503). Their physical characteristics, age, height (Ht), and weight 

(Wt), as well as resting hemodynamic parameters, systolic (SBP) and diastolic (DBP) blood 

pressure, heart rate (HRrest), stroke volume (SVresl), and cardiac output (COrest) are shown in 

Table 7-2. The stroke volume and cardiac output were measured using Doppler 

echocardiography, as described below. Participants spanning a large range of ages (21-49 
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Data 
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Figure 7.10 Block diagram depiction of measurement setup. The iE-33® 
Ultrasound System (Philips Healthcare, Andover, MA) was used 
to acquire Dopper ultrasound, and the CASE® Exercise ECG 
Testing System (GE Healthcare, Chalfont St. Giles, United 
Kingdom) was used to acquire the ECG. 

LVOT 
Doppler 
Velocity 

0.5 I 
Time (seconds) 

Figure 7.11 Image of sample ECG, BCG and Doppler ultrasound 
recordings taken from a subject at rest. Note that the 
ECG and BCG signals have been digitally band-pass 
filtered for this image, as described in the text. The P-T 
waves of the ECG and the I-L waves of the BCG are 
annotated. The velocity time integral (VTI) of the 
Doppler trace is used to calculate stroke volume. 

years), weights (53.5-

143 kg), and heights 

(157-201 cm) were 

selected. One subject, 5-

Male in Table 7-2, had 

some premature atrial 

contractions (PACs) 

during the first trial and, 

as a result, volunteered 

to participate in a 

follow-up test. Other 

than these benign 

arrhythmias, the subject 

was in excellent 

cardiovascular health 

and, as a result, was not 

excluded from the 

study. The arrhythmic beats, 

however, were excluded from 

the analysis. 

7.3.2. Materials and 

Methods 

All tests were conducted at 

the Stanford 

Echocardiography Lab, part of 

Stanford Hospitals and 

Clinics. A standard patient 

room was used, equipped with 

a CASE® ECG Exercise 

Testing System (GE 

Healthcare, Chalfont St. Giles, 

United Kingdom), an iE-33® 

Ultrasound System (Philips 

131 



Healthcare, Andover, MA), and the modified InnerScan BC-534 bathroom scale (Tanita 

Corporation, Tokyo, Japan) and associated amplifier. 

Figure 7.10 shows the measurement setup in block diagram form. The ECG was recorded 

in a Lead II configuration and the Doppler transducer was aimed at the left ventricular outflow 

tract (LVOT) of the heart. The iE-33® was configured in a Pulsed-wave mode at 1.6 MHz, 

with 70% of maximum power. The ECG and BCG signals were sampled at 1 kHz using a 12-

bit data acquisition card (6024E, National Instruments, Austin, TX), then stored on a laptop 

computer using software (Matlab® Version 2007b, The Mathworks, Natick, MA). In addition, 

the sonographer stored the Doppler data on the iE-33® system. A time stamp was used to later 

synchronize the recorded BCG and ECG with the Doppler data. The three signals acquired 

simultaneously from one subject at rest are shown in Figure 7.11. 

Two recordings were taken for each subject: one "rest recording" before exercise, and one 

"recovery recording" which started immediately after the subject completed exercise and was 

able to stand on the scale. The rest recording lasted thirty seconds. Then, each subject was 

asked to exercise on the treadmill using the Bruce protocol for 15 minutes [162]. Immediately 

after exercise, the subject stood still on the bathroom scale for 10 minutes while all signals 

were again simultaneously acquired. 

Changes in cardiac output due to exercise, compared to rest, were obtained from the 

Doppler recordings. Changes in BCG RMS power were extracted from the BCG recordings. 

These changes were compared in terms of the correlation coefficient and agreement (Bland-

Altman) for all subjects individually, and the group as a whole. 

7.3.3. Measuring Changes in Cardiac Output from Doppler Recordings 

For the Doppler echocardiogram measurements, the transducer was aimed by a 

professional sonographer (A. Paloma) at the left ventricular outflow tract (LVOT) of the heart. 

The sonographer was careful when positioning the probe to avoid applying force to the body 

and interfering with the BCG measurement. 

To estimate cardiac output from the Doppler echocardiogram, first the diameter of the 

LVOT, DIVOT, in centimeters, was estimated from the ultrasound image, and the LVOT area, 

ALVOT, in square centimeters, was calculated: 

ALVOT = n(DLVOT/2) ™ 
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The Doppler velocity curve for one beat was then traced and the velocity-time-integral, VTI, in 

centimeters, was calculated using the Xcelera software (Philips Healthcare, Andover, MA). 

The stroke volume, SV, in milliliters, was then computed using the following equation: 

SV = VTIxALV0T (7.2) 

Finally, the cardiac output, CO, in L min'1, was computed using the average R-R intervals 

from the ECG recordings, expressed in seconds, for the five beats surrounding the beat: 

60 
C°=SVXrn-2RRn(seconds) ( 7 3 ) 

where n is the index of the beat, with n = 0 indicating the beat of interest, and RR„ is the R-R 

interval between the «,h and the (n-lf* beats. 

For the resting recording, an average beat was located within the ECG recording and used 

for the cardiac output measurement. For the recovery recordings, since many of the beats were 

corrupted by motion and respiration noise, only the beats determined to be usable by the 

professional sonographer were considered. This resulted in a total of 275 beats considered for 

all of the subjects. Percent changes in cardiac output compared to rest, ACO,(%), for each /'* 

beat, were calculated as follows: 

, „ / CO; - COrest\ 
ACOt (%) = ( l

CQ
 restj x 100% (7.4) 

where COres, was the cardiac output calculated at rest, and CO, was the cardiac output 

calculated for each ith beat. 

7.3.4. Measuring Changes in RMS Power from BCG Recordings 

The BCG signal was digitally low-pass filtered (FIR filter, Kaiser window, N = 1000, with 

a cutoff frequency of 15 Hz). After filtering, the BCG signal was downsampled by a factor of 

10 to a sample rate of 100 Hz. For the resting measurements, the RMS power of the BCG was 

calculated using the entire recording, and is denoted BCGRMs,rest in the equations below. 
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For the exercise recovery measurements, the moving root-mean-square (RMS) power of 

the signal was calculated for each kth sample using a sliding window of width 10 seconds. This 

window width was not the same as the width used for the resting data (30 seconds) for the 

following reason. For the resting data, the objective was to cancel any time-varying 

components, such that the best estimate of resting cardiac output could be obtained - hence 

the use of the entire 30 second recording. On the other hand, for the exercise recovery data, 

the objective was to precisely quantify time-varying components - hence the use of the shorter 

window of 10 seconds. Nevertheless, the choice of exercise recovery window width was not 

found to significantly influence the results. 

The moving RMS power was calculated as follows: 

BCGrms[k] = 

J 
-^BCGik + iV, k = 1 Nsample -A (7.5) 

£=0 

In this equation, A is the width of the sliding window in samples, and BCG/wsfk] is the 

moving RMS power of the BCG signal calculated at sample k. This moving average filter was 

implemented as follows: the signal was squared, then moving average filtered (FIR filter, 

rectangular window, A = 1000), and, finally, the square root of the moving average filter 

output was computed. 

Percent changes in this moving RMS power, ABCG(%), were calculated at a given point in 

time compared to the baseline value, taken at rest, as follows: 

AflCG(%)[fc] = (BCGrmik}r
 BCG™'est)x 100% (7.6) 

7.3.5. Data Analysis 

The following analysis was done first for each subject individually, then for the aggregate 

data from all subjects. The percent changes in cardiac output were plotted against percent 

changes in RMS power of the BCG, and the correlation coefficient was computed. A 

Student's t-test was applied to the data with a null hypothesis of no linear relationship between 

the two variables. The best least-squares regression line was fitted to the data, and the 
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Figure 7.12 Demonstrative exercise recovery results from one subject. (A) Raw BCG waveform during 
recovery. The spikes in the waveform were caused by sudden movements of the subject on the 
scale. (B) Percentage change in RMS power (moving averaged over a ten second window) of the 
BCG waveform and cardiac output measured using Doppler echocardiography. (C) Correlation 
plot showing percentage change in cardiac output versus RMS power of the BCG. The 
correlation was high (R2 = 0.89) and the null hypothesis of zero slope was rejected (p < 0.01). 
The slope of the regression line was 0.84 and the intercept was 8.1%. The equal value line 
(dashed line with unity slope) is also shown. (D) Bland-Altman plot showing agreement 
between the two methods. The mean difference was 2% with a standard deviation of 17%. 

standardized residuals were computed. A Kolmogorov-Smirnov goodness-of-fit test was used 

to assess the normality of the standardized residuals. The result of this test was used to 

determine whether a linear fit was appropriate. The slope of the regression line was compared 

to unity to determine the agreement. Perfect agreement would result in a unity slope such that 

percent changes in RMS power of the BCG could be used to estimate percent changes in 

cardiac output directly. To further assess the agreement, methods described by Bland and 

Altman were applied to the data before and after calibration of the entire data set using the 

regression line slope [157]. 

As discussed below, the slope of the regression line correlating percent changes in RMS 

BCG to percent changes in cardiac output was not unity for the aggregate analysis, and was 

different from person to person. To determine if the slope of each subject's individually 
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analyzed data was related to subject characteristics, a multiple linear regression analysis was 

performed. The results from this analysis could be used in the future to calibrate each subject's 

data using basic characteristics without the need for a reference measurement such as Doppler 

ultrasound. Height, weight, age, blood pressure (systolic and diastolic), and resting heart rate 

were considered the independent variables and slope of the regression line was the dependent 

variable. The best least-squares linear combination of these independent variables mapping 

them to regression line slope was found, and the coefficient of multiple determination was 

computed. 

7.3.6. Results 

Figure 7.12 shows results from one subject recovering from exercise to illustrate general 

trends observed over the data set. Figure 7.12 (A) shows the raw BCG signal as a function of 

recovery time in minutes. The blank segment at the beginning of the trace represents the time 

during which the subject moved from the treadmill to the bathroom scale. During the 

recovery, there were instances when the subject moved unintentionally or shifted to be more 

comfortable. These instances resulted in the spikes that are apparently higher than the 

envelope of the decaying BCG amplitude. Data taken during these spikes were manually noted 

during the acquisition and removed from the analysis. 

Figure 7.12 (B) shows the percentage change in the RMS power of the BCG signal on the 

same plot as the change in cardiac output measured by Doppler echocardiography. Figure 7.12 

(C) is a correlation plot (R2 = 0.89) showing the percentage change in cardiac output versus 

RMS power of the BCG. The null hypothesis of no linear relationship was rejected (p < 0.01). 

The regression line had a slope of 0.84 and intercept of 8.1%. Figure 7.12 (D) is a Bland-

Altman plot showing the agreement of the two methods. The mean difference was 2% with a 

standard deviation of 17%. 

Table 7-3 shows the correlation coefficient, slope, intercept, and standard deviation 

difference for the individually analyzed data from all subjects. The worst case and best case 

for each column are also noted based on the highest value being best for R2, lowest values best 

for intercept and standard deviation difference, and value closest to unity being best for slope. 

The standard deviation of the difference was calculated using calibrated data (with a scaling 

factor equal to the slope of the aggregate regression line, 0.67). The worst case in terms of 

correlation coefficient was the 201 cm tall, 143 kg male subject, and in terms of slope and 

intercept was the 186 cm tall, 100 kg male subject. 
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Table 7-3 Correlation coefficient, slope, intercept, and standard deviation difference data for individually 
analyzed data from all subjects (sorted by R2) 

Subject 

3-Fem 

6-Male 

8-Male 

2-Fem 

5-Malef 

1-Fem 

7-Male 

4-Male 

5-Male 

9-Male 

Mean 

Stdev 

Age 

23 

31 

21 

46 

46 

25 

49 

24 

46 

26 

34 

12 

Wt (kg) 

65.5 

95 

54.5 

63.5 

71 

53.5 

100 

63.5 

71 

143 

78 

28 

R2 

0.96 

0.94 

0.9 

0.89 

0.89 

0.87 

0.86 

0.85 

0.82 

0.79* 

0.88 

0.05 

Slope 

0.76 

1.35 

0.69 

0.67 

0.84 

0.67 

0.62* 

0.98 

0.93 

0.91 

0.84 

0.22 

Interc. (%) 

-27.2 

-20.5 

-17.5 

23.7 

8.1 

11.5 

52.0* 

16 

-13.9 

-10.7 

1.01 

24.15 

Stdev. Diff.i 

(%) 

22 

26.7* 

15.5 

22.6 

17.7 

14.4 

13.6 

20 

23.4 

20 

19.6 

4.3 

1 2 trial for same subject as "5-Male" 
t Standard deviation of (ARMSBCG*0.67 - ACO) 

* Worst case 
Best case 

Figure 7.13 (A) shows the aggregate correlation for all subjects between percent changes in 

cardiac output measured by Doppler echocardiography and percent changes in the RMS power 

of the BCG signal. The total number of data points was 275 from 10 trials using 9 subjects. 

The line of equal value (dashed black line) is also plotted for comparison. The null hypothesis 

of no linear relationship was rejected (p « 0.001) and the correlation coefficient (R2) for all 

data points was 0.85. The Kolmogorov-Smirnov test was applied to the standardized residuals, 

and normality could not be rejected (p = 0.88). Consequently, a linear fit was considered 

appropriate. The slope of the regression line (solid black line) was 0.67 and the intercept was 

27%. The 95% prediction bands for the data are also shown in grey. 

Figure 7.13 (B) shows the Bland-Altman plot with a mean difference of -0.5% and a 

standard deviation of 37%. To eliminate the effect of non-unity slope on the standard 

deviation difference, the RMS BCG data was calibrated by a single scaling operation (using 

the regression line slope) and the standard deviation difference was recalculated. After 

calibration, the standard deviation was 24%. 
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Figure 7.13 (A) Correlation plot showing percentage changes in cardiac output measured by Doppler 
echocardiography versus percent changes in the RMS power of the BCG (R2 = 0.85, n = 275 data 
points, p « 0.001). The solid black line is the best least squares regression line for the data (y = 
0.67x + 27) and the two parallel grey lines are the 95% prediction bands. The dashed black line 
shows the line of equal value. (B) Bland- Altman plot showing agreement of the methods (Mean 
Difference: -0.5%, Standard Deviation Difference: 37%). The percent changes in RMS BCG 
tended to exceed those of cardiac output measured by Doppler, resulting in an upward trend in 
this difference plot. This skews the data, causing an exaggerated standard deviation difference 
between the methods. When the data is calibrated based on the regression line slope by a single 
scaling operation, the standard deviation difference is 24%. 

The results of the multiple linear regression analysis were that a linear combination of 

height, systolic blood pressure, and heart rate could be used to predict the slope of an 

individual's regression line (R2 = 0.83, p = 0.01). This best fit was found with the following 

coefficients: -0.019, 0.0193, and 0.0087, corresponding to height (cm), systolic blood pressure 

(mmHg), and heart rate (bpm). Slope of the RMS BCG power-cardiac output correlation for 

each individual was thus shown to have a decreasing relationship with height, and increasing 

138 



relationship with systolic blood pressure and heart rate. No linear dependence was found 

between this slope and body weight. 

7.3.7. Discussion 

The correlation coefficients were consistently high (Range: 0.79 to 0.96) when the data 

were correlated for each individual separately. The lowest correlation coefficient for 

individually analyzed data was for the heaviest participant (143 kg), and the slope that 

deviated most from unity was for the second heaviest participant (100 kg). While there was no 

linear dependence found between slope and body weight, this suggests that high body weight 

may still have a confounding effect on the accuracy of the method. 

It is possible that these larger individuals had more difficulty remaining still on the scale 

during recovery. Another possibility is that these individuals had higher respiration rates or 

tidal volumes following exercise, leading to more pronounced respiratory artifacts in the BCG 

signals. Respiration causes amplitude modulation of the BCG signal which cannot be removed 

by linear filtering techniques. 

For the aggregate data, a high correlation was demonstrated between percent changes in the 

RMS power of the BCG signal and cardiac output measured by Doppler echocardiography. 

The correlation coefficient, 0.85, compares favorably to other values reported in the literature 

for alternate methods (Range: 0.46 to 0.91). 

The Bland-Altman plot results indicate that the percent changes in RMS power of the BCG 

signal showed minimal bias (0.5%) in predicting percent changes in cardiac output. The 

standard deviation of the difference between the methods was found to be 24% over a 

measurement range of -3% to 350% changes in cardiac output, corresponding to a 95% 

confidence prediction interval of ±48% change in cardiac output. Using the average resting 

cardiac output for the subjects in the trial (3.4 L min'1) this corresponds to a prediction interval 

of ±1.6 L min'1. Note that in exercising conditions, two factors will always cause this interval 

to be larger than it would be at rest: first, the range of cardiac outputs studied is much larger 

than at rest and, second, the measurement noise is always greater than at rest since the levels 

of motion and respiration are elevated. 

To illustrate how, in an exercise trial, the prediction interval for this study would provide 

accurate results, the following hypothetical case is provided. If a subject's RMS BCG power 

at rest corresponded to a cardiac output of 3.4 L min"1, and the RMS BCG power tripled due to 

exercise, it could be predicted with 95% confidence that the cardiac output increased to 10.2 L 

min'1 ±1.6 L min"1. To the best of the authors' knowledge, the three lowest prediction intervals 
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reported in the literature for non-invasive exercise or exercise recovery cardiac output 

estimation studies were 2.35 L min"1 [28], 3.47 L min"1 [29], and 3.9 L min"1 [17], all of which 

are higher than the corresponding interval found in this work (1.6 L min"1). 

The slope of the regression line was less than unity for the aggregate data, indicating that 

changes in the RMS BCG signal exceeded those in cardiac output measured by Doppler 

echocardiography. This was likely due to high levels of involuntary motion and respiratory 

artifact present during the recovery. While, as mentioned before, excessive artifacts causing 

large spikes in the data were removed manually, more subtle artifacts were still present in the 

data. For example, the motion of the chest while breathing heavily after the exercise was a 

source of interference that was likely much lower in amplitude at rest. Additionally, it is more 

difficult to stand still after exercise than while at rest, with involuntary swaying and leg 

twitching corrupting the measurement. Motion and respiration would both tend to increase the 

measured RMS power of the BCG signal, resulting in a less than unity regression line slope 

(exaggerated RMS BCG change compared to actual cardiac output change). 

The importance of the multiple linear regression analysis in reducing the slope error of the 

individual regression lines is yet to be determined, and will require future studies. However, 

the preliminary results are very encouraging based on the statistics of the model (R2 > 0.8 and 

F-test p-value < 0.01). In future work, each subject's height, systolic blood pressure, resting 

heart rate, and weight will be used to predict the slope of the regression line correlating BCG 

RMS power and cardiac output changes. The predicted slope will be compared against the 

measured slope to quantify the accuracy of the model. 

7.4. Conclusions 

This chapter focuses on demonstrating that robust estimation of hemodynamic changes is 

possible with standing BCG measurements. Furthermore, for estimating cardiac output 

changes, a reference signal, such as the ECG, is not needed for signal averaging, reducing the 

complexity of the apparatus and measurement procedure. Accordingly, the method is 

significantly less obtrusive compared to the competing technologies. While the cardiac output 

measurements are relative rather than absolute, in many instances such relative changes can be 

sufficient for directing therapy decisions. One important example is for monitoring heart 

failure outpatients at home. 

One limitation of the exercise recovery study is that the repeatability of the method has not 

yet been explored. Thus, future work should focus on quantifying the reproducibility of the 

method. Multiple trials with the same subject should be performed to determine the inter-
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measurement variability. In this study, the variability of the results due to measurement errors 

must be statistically differentiated from variability due to physiological differences—one 

subject may recover quite differently from the same level of exercise on two separate days. An 

additional area of future work would be in expanding the trials to include subjects with various 

cardiovascular diseases. 

It should be noted that although the measurements were taken continuously from a 

standing subject for ten minutes of recovery time, in many instances shorter measurements 

would suffice. A tremendous amount of information can be gained by comparing only the 

cardiac output measured immediately after exertion to that taken at rest. For example, patients 

with early signs of heart failure may have normal resting cardiac output, but lower than 

normal cardiac output after exercise. This can be evaluated using the bathroom scale by 

measuring BCG before and immediately after exercise. The simplicity of the method 

combined with the practicality of the device could allow relative cardiac output changes to be 

measured quickly and reliably in the clinic or the home. 
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Conclusions and Future Directions 

Prediction is very difficult, especially of the future. 
- Niels Bohr 

You are young, my son, and, as the years go by, time will change and even 
reverse many of your present opinions. Refrain therefore awhile from setting 
yourself up as a judge of the highest matters. 

- Plato 

8.1. Conclusions 

The work described in this thesis establishes the groundwork for augmenting the care of 

heart failure patients in the home. With the modified scale, bodyweight measurements could 

be supplemented by relative changes in cardiac output - a key parameter used clinically for 

monitoring cardiovascular health. To prove that improved outcomes can be achieved, future 

work would include a longitudinal study of substantial size and duration. To show a 

significant result statistically, this trial would likely require several tens to hundreds of heart 

failure patients monitored over a period of at least one to two years. Due to these practical 

limitations, this was considered to be beyond the scope of this work. Instead, the focus was to 

usher in such a trial by conducting initial studies on healthy subjects and conquering the 

engineering obstacles. 

The most important study, described in Chapter 7, established the correlation between 

changes in RMS power of the BCG and changes in cardiac output. This provides the basis for 

how serial measurements taken at home could be interpreted. An initial calibration of the 

device in the clinic prior to discharge would relate the absolute RMS power of the BCG to 

cardiac output measured via Doppler echocardiography or catheterization. Then, the changes 

in the RMS power over time, measured on the scale at home, could indicate impending 

decompensation and direct therapeutic interventions. Since cardiac output changes reflect 

degraded cardiac function, while increased bodyweight indicates increased fluid in response to 

degraded function, an earlier warning of decompensation may be gained. Furthermore, the 

combination of the two measurements could provide a more specific assessment of the 

hemodynamic profile. 
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The most challenging technical obstacle was preserving accurate measurement of BCG 

features in unsupervised settings; namely, in the home. In such settings, myriad sources of 

interference and noise can affect the fidelity of the measurements. Inventing new methods for 

mitigating or eliminating these sources of interference and noise was of paramount importance 

in this work, and should be instrumental for acquiring robust measurements in the home in 

future clinical trials. 

These methods involved the use of multiple sensors and signal-fusion algorithms to enable 

robust and repeatable physiological measurements. The sensors were fully characterized and 

novel electronic circuits were designed to ensure that the signals could be acquired without 

distortion, and the electronic noise could be minimized. 

For the ECG, the novel two-electrode transimpedance amplifier achieved the best 

co-optimization of power consumption and noise reduction of any ECG amplifier disclosed in 

the literature. With only 11 uW of power consumption, a total input referred noise current of 

23 pApp was achieved. Additionally, integrative current feedback to the electrode enabled 

signal acquisition with only two electrodes contacting the body. As a result, ECGs were 

acquired using the handlebar electrodes of the HBF-500 scale (Omron Healthcare Inc., 

Bannockburn, IL) for nearly 100 subjects with no instances of amplifier saturation. 

Furthermore, the R-waves were sufficiently well-defined such that a simple, automated beat 

detection algorithm implemented in software was successfully used for triggered averaging of 

the simultaneously-acquired BCGs. 

For the BCG, a lock-in amplifier was used to reduce electronic noise. By exciting the strain 

gauges with a square wave and synchronously demodulating the resulting differential bridge 

output, the flicker noise region of the input stage was bypassed. This approach reduced the 

electronic noise floor of the system by 7.7 dB. In future implementations, where the external 

interferences are reduced, this increased headroom could be crucial in measuring subtle 

features of the signal. 

New methods for reducing external interferences - motion artifacts and floor vibrations -

on the BCG signal were conceived and developed. These solutions involved the use of 

auxiliary sensors and signal-fusion algorithms for detecting the presence of motion and 

eliminating the effects of floor vibrations in the measurements. For motion artifact detection, 

EMG signals from the feet were shown to correlate to motion-induced BCG noise. The noise 

was estimated using an improved algorithm for BCG signal estimation, leveraging the timing 

information of a simultaneously acquired ECG. For floor vibrations, a seismic sensor was 
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positioned next to the scale and an adaptive algorithm was used to eliminate the effects of 

these vibrations in the measured BCG signals. The vibrations were reduced by more than 10 

dB, such that robust measurements were demonstrated aboard an idling transit bus. 

The technology described in this dissertation could also be used in a variety of settings 

other than home monitoring of heart failure patients. Some of these potential applications are 

described below, in addition to other possible methods for improving the robustness of the 

measurements, and future studies of correlations between BCG features and diagnostically 

relevant parameters. 

8.2. Future Directions 

As described earlier, perhaps the most logical next step for this research is the execution of 

a clinical trial with heart failure patients to determine whether an earlier warning of 

decompensation can be obtained. Scales could be provided to heart failure patients upon 

discharge from the hospital, and their BCG and ECG signals could be recorded daily in 

addition to body weight for an extended period of time (one to two years). As a portion of 

these patients' condition worsens, and they are re-hospitalized, the BCG/ECG features with 

the strongest predictive value can be determined statistically based on the outcome. 

8.3. Final Remarks 

The technology developed and discussed in this work could significantly improve home 

monitoring of cardiovascular diseases, and advance our understanding of basic physiology by 

providing a platform for easy and unobtrusive measurements of important cardiovascular 

parameters. The rapidly growing need for inexpensive health care solutions in the developed 

world today, coupled with the exploding population of people with cardiovascular disease, 

defined the main objectives of this research: finding a simple novel and low-cost solution for 

unobtrusively monitoring cardiovascular parameters in the home. The hope is that this 

solution can be used by healthy and diseased people to improve the quality of their lives. 
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Glossary of Key Acronyms and Symbols 

Acronym/Symbol Name 

Ac, 

ADC 

AIC 

ALVOT 

A0p 

ASIC 

Av 

BCG 

BNC 

bpm 

CAD 

CMRR 

CO 

CRT 

A 

DBP 

DIP 

DLVOT 

£ 

ECG 

EDV 

EEG 

EMFi 

EMG 

EOG 

ESV 

fc 

FFT 

Description 

Closed-Loop Gain or Transfer Function 

Analog-to-Digital Converter 

Akaike Information Criterion 

AreaoftheLVOT 

Operational Amplifier Open-Loop Transfer Function 

Application Specific Integrated Circuit 

Voltage Gain 

Ballistocardiogram 

Bayonet Neill-Concelman Connector 

Beats per Minute 

Coronary Artery Disease 

Common-Mode-Rejection Ratio 

Cardiac Output 

Cathode Ray Tube 

Delay 

Diastolic Blood Pressure 

Dual in-Line 

Diameter of the LVOT 

Error 

Electrocardiogram 

End Diastolic Volume 

Electroencephalogram 

ElectroMechanical Film 

Electromyogram 

Input-Referred Voltage Noise Density 

Electrooculogram 

End Systolic Volume 

Cutoff (-3 dB) Frequency 

Fast Fourier Transform 
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fhpf 

FIR 

fipf 

Fni 

Jose 

Jres 

GBWP 

HR 

Ht 

IC 

ICG 

IJ Amplitude 

UK Complex 

J-Wave 

K 

KCG 

LMS 

LVM 

LVOT 

m 

M 

M 

ML 

MSE 

NMRI 

NSR 

PAC 

PCB 

PCG 

PCWP 

PEP 

PPG 

PSD 

High-Pass Filter Cutoff (-3 dB) Frequency 

Finite Impulse Response 

Low-Pass Filter Cutoff (-3 dB) Frequency 

Input Referred Force Noise Density 

Oscillator Frequency 

Resonant Frequency 

Gain-Bandwidth Product 

Heart Rate 

Height 

Integrated Circuit 

Impedance Cardiogram 

BCG I-Wave Amplitude Minus BCG J-Wave Amplitude 

Main Complex of BCG - Ventricular Contraction 

Main Ballistocardiogram Peak 

Spring Constant 

Kinetocardiogram 

Least-Mean Squares 

Left Ventricular Mass 

Left Ventricular Outflow Tract 

Mass 

Mean, or Adaptive Filter Learning Rate 

Misadjustment 

Maximum Likelihood 

Mean Square Error 

Nuclear Magnetic Resonance Imaging 

Noise-to-Signal Ratio 

Premature Atrial Contraction 

Printed Circuit Board 

Phonocardiogram 

Pulmonary Capillary Wedge Pressure 

Pre-Ejection Period 

Photoplethysmogram 

Power Spectral Density 
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PV Loop 

PVC 

Q 

Q-I Interval 

Q-J Interval 

QRS Complex 

R 

R2 

RE 

R-J Interval 

R-R Interval 

R-Wave 

RMS 

a 

SANode 

SBP 

SCG 

SCSB 

SNR 

SSE 

SV 

t 

r 

TA-4 

THD 

VDM 

VTI 

Wt 

XLR 

%in,DM 

Pressure-Volume Loop 

Premature Ventricular Contraction 

Quality Factor 

Interval Between ECG Q-Wave and BCG I-Wave 

Interval Between ECG Q-Wave and BCG J-Wave 

Main Complex of ECG - Ventricular Depolarization 

Autocorrelation Matrix 

Correlation Coefficient 

Electrode-to-Skin Interface Resistance 

Interval Between ECG R-Wave and BCG J-Wave 

Interval Between Successive R-Waves 

Main Electrocardiogram Peak 

Root Mean Square 

Standard Deviation 

Sinoatrial Node - Pacemaker of the Heart 

Systolic Blood Pressure 

Seismocardiogram 

Static Charge-Sensitive Bed 

Signal-to-Noise Ratio 

Sum of the Square Errors 

Stroke Volume 

Time 

Time Constant 

Mini-XLR 4-Pin Audio Connector 

Total Harmonic Distortion 

Differential-Mode Voltage 

Ventricular Time Interval 

Weight 

3-Pin Audio Connector 

Differential-Mode Input Impedance 
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