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It is difficult to filter a signal with high-amplitude in-band noise if an
independent noise reference cannot be obtained. If the signal is periodic
relative to a known sequence of temporal markers, Ensemble Averaging
can be used to reduce the noise by averaging the signal over several
periods in the same way that artificial neural networks average many
modest experts to achieve a higher overall accuracy. Although this method
effectively reduces in-band noise for this type of signal, it costs several
time periods of waiting and is subject to corruption by high-amplitude
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achieve faster convergence of the ensemble average in a
ballistocardiography dataset recorded on NASA’s Zero-G aircraft. By using
a single clean training example from each subject to select the least noisy
cluster, ensemble averaging is accelerated for all ten subjects in the
dataset within the first 4 cycles.

larger than the BCG component. The vertical red bars indicate ECG R peaks used to synchronize the ensemble.
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Figures 5 and 6. Discriminative EA increases the convergence rate compared to
naive EA for typical Subject 2 (top, left) and 3 (top, right). Mean percentage of data
used at each point in the corresponding discriminative EA (Bottom).
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measuring small signals with high- amplitude in-band noise. The

appropriate dataset of ballistocardiogram data recorded in a very noisy

motivating example is measuring the c(BCG) of astronauts onboard a
crowded space capsule. The signal can be ensembled by synchronizing
with the simultaneously obtained electrocardiogram (ECG), in which the
ECG R peaks proceed each BCG waveform complex. Although each BCG
beat can be effectively referenced to an ECG timing marker, the congested
setting induces frequent high-amplitude motion noise spikes from
collisions with weightless objects and other astronauts, each of which
increases the convergence time of the average. In order to solve this issue,
the convergence is accelerated by discriminating against corrupted beats.
This is done by clustering each sample of the ensemble at each step in
order to filter out abnormal samples that negatively affect the average and
increase the convergence time. Unlike naive EA, which blindly averages
each beat together at each sample, the algorithm described here
constructs the average from a subset of of the recorded beats determined
at each sample by clustering.

Algorithm 1 Discriminative Ensemble Averaging
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Figure 4. Graphical
Ensemble Averaging for k = 3 clusters. In the left figure, a
single training example is added to the dataset. In the
center figure, all of the points are clustered into k clusters.
In the right figure, the training example is removed and
the mean of its cluster is taken as the discriminative EA.

environment. The algorithm, currently based on k-means clustering
effectively increases the EA convergence rate in all subjects within 4
cycles.

Future work should include comparing this method to other non-
frequency-based filtering techniques such as PCA dimensionality

reduction before seeking peer-reviewed publication. It would also be
valuable to test the algorithm on a dataset of simulated irregular noise for
guantitative SNR analysis.
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