IV. LABORATORIES

Non-emergency once-through cooling water from systems using potable water as a coolant shall not be discharged to the sanitary sewer system. The oil/water separator shall be cleaned at a frequency of at least once every twelve months or upon the determination that the use is for a research activity for which another source of cooling is not easily available.

The laboratory area in the plan will need to file a work order with the Road Maintenance Shop, Ed Gutierrez (edg@bonair.stanford.edu).

V. LABORATORIES

The laboratory area in the plan will need to file a work order with the Road Maintenance Shop, Ed Gutierrez (edg@bonair.stanford.edu).

VI. BOILER AND CONDENSATE LINES

Condensate lines shall not be connected or allowed to drain to the storm drain system. Interior floor drains shall not be connected to the storm drain system.

If a standby pump is installed, the discharge effluent exceeds the maximum limits.

VII. RISK MANAGEMENT PLAN

All building projects that include water treatment need to ensure the water treatment systems meet treatment standards. The following items are required:

- A storm water pollution prevention plan before site disturbance.
- General Use Permit Requirements, which all projects must provide information about estimated water consumption and water conservation; see section below.

If you have questions, please contact the Environmental Quality Group at 725-7688 or 726-9485.

Updated 1/17/2013

ADDITIONAL INFORMATION

Stanford University discharges its wastewater to the City of Palo Alto wastewater treatment plant, therefore the Palo Alto Sewer Ordinance requirements apply. Although not all plans go up to the City of Palo Alto for plan check the following items are requested. Due to General Use Permit Requirements, all the projects must provide information about estimated water consumption and water conservation; see section below. If you have questions, please contact the Environmental Quality Group at 725-7688 or 726-9485.
When directed by the superintendent, establishments from which industrial wastes are discharged to the sanitary sewer system shall provide and maintain one or more sampling locations or metering devices or volume and flow measuring methodologies or other sampling and measuring points approved by the superintendent which will allow the separate measuring and sampling of industrial and domestic wastes. Unless otherwise approved by the superintendent, domestic and industrial wastes shall not be discharged into the same sampling location and/or waste conveyance system. Establishments that fail to bill for sewer service on sewage effluent volumes shall provide a suitable means for the superintendent to determine billing determinants in accordance with the utility's billing policies and requirements. Sampling locations shall be so located that they are safe and accessible to the superintendent at reasonable times during which discharge is occurring. [P.A. Ordinance, 16.09.105] Please provide the lab waste sampling port detail, including access, depth to view, location of sampling port (should be ≥2".) Instead of lab wastewater, all photo labs, autoclaves, and dishwashing shall be connected to the lab waste pipes. Please provide isometric diagram, if available, showing all lab waste connections, room numbers, sampling locations, for all building floors and basements.

VI. WATER CONSERVATION

A. WATER CONSERVATION FOR LANDSCAPING DESIGN

Establishment of a landscape design that maximizes water efficiency and minimizes water consumed.

B. WATER CONSERVATION FOR BUILDING DESIGN

Sta. Clara County Landscape Ordinance applies to a) new single-family or two-family dwellings, including projects in which landscaping is to be added after construction; b) new multifamily, commercial, and institutional projects; c) conversion of existing buildings, locations, or spaces to new multifamily, commercial, and institutional use; d) modifications of existing buildings, locations, or spaces that increase the size or use of existing buildings, including new or extended parking areas; or e) additions to existing buildings, locations, or spaces only where the addition to the building increases the size or use of the existing building.

C. WATER CONSERVATION FOR FOOD SERVICE

Please provide a water use information table for water-consuming equipment and bathroom fixtures, and include maximum daily and total annual water use for building.

D. WATER CONSERVATION FOR OFFICE BUILDINGS

Please provide a water use information table for water-consuming equipment and bathroom fixtures, and include maximum daily and total annual water use for building.

E. WATER CONSERVATION FOR LABORATORY BUILDINGS

Please provide detail indicating location of chemical storage, sinks, procession equipment, and location of all lab waste discharge connections.

F. WATER CONSERVATION FOR KITCHENS

All ornamental grease control devices larger than 1/2 inch shall be minimum 3 inches in diameter to allow easy access for inspection, cleaning and removal of all contents.

G. WATER CONSERVATION FOR HEALTH CARE FACILITIES

Please review new photo-processing equipment to ensure discharges are compliant (no spent fixer discharged, sewer limit for chemical storage, sinks, photoprocessing equipment, and location of all lab waste drain connections.

H. WATER CONSERVATION FOR INDUSTRIAL USES

Food service establishments shall install grease control devices in a suitable location to allow easy access for inspection, cleaning and maintenance.

I. WATER CONSERVATION FOR COMMERCIAL USES

Food service establishments shall maintain an approved type and adequately sized grease control device (GCD) sufficient to maintain compliance. [P.A. Ordinance, 16.09.075(6)]. See section 16.07.05(J) for GCD sizing tables as outlined in the 2001 Plumbing Code.

J. WATER CONSERVATION FOR OTHER USES

When the drain is installed with a temporary plug which remains closed except when the shower is in use, or when the drain is installed with a non-reusable strainer or filter, a covered floor drain, a drain with a integral baffle, or a drain with a closed top on the discharge pipe, the drain shall have a 0.25 inch berm to prevent inadvertent discharges of chemicals to the lab waste lines and sanitary sewer. Stanford Project Managers need to review new photo-processing equipment to ensure discharges are compliant (no spent fixer discharged, sewer limit for chemical storage, sinks, photoprocessing equipment, and location of all lab waste drain connections.

K. WATER CONSERVATION FOR LABORATORY USES

Please provide a water use information table for water-consuming equipment and bathroom fixtures, and include maximum daily and total annual water use for building.

L. WATER CONSERVATION FOR MULTIFAMILY USES

Please review new photo-processing equipment to ensure discharges are compliant (no spent fixer discharged, sewer limit for chemical storage, sinks, photoprocessing equipment, and location of all lab waste drain connections.

M. WATER CONSERVATION FOR SINGLE FAMILY USES

Please review new photo-processing equipment to ensure discharges are compliant (no spent fixer discharged, sewer limit for chemical storage, sinks, photoprocessing equipment, and location of all lab waste drain connections.

N. WATER CONSERVATION FOR INDIVIDUAL USES

Please review new photo-processing equipment to ensure discharges are compliant (no spent fixer discharged, sewer limit for chemical storage, sinks, photoprocessing equipment, and location of all lab waste drain connections.

O. WATER CONSERVATION FOR SPECIAL USES

Please review new photo-processing equipment to ensure discharges are compliant (no spent fixer discharged, sewer limit for chemical storage, sinks, photoprocessing equipment, and location of all lab waste drain connections.

P. WATER CONSERVATION FOR BUILDING USES

Please review new photo-processing equipment to ensure discharges are compliant (no spent fixer discharged, sewer limit for chemical storage, sinks, photoprocessing equipment, and location of all lab waste drain connections.

Q. WATER CONSERVATION FOR COMMERCIAL USES

Please review new photo-processing equipment to ensure discharges are compliant (no spent fixer discharged, sewer limit for chemical storage, sinks, photoprocessing equipment, and location of all lab waste drain connections.

R. WATER CONSERVATION FOR INDUSTRIAL USES

Please review new photo-processing equipment to ensure discharges are compliant (no spent fixer discharged, sewer limit for chemical storage, sinks, photoprocessing equipment, and location of all lab waste drain connections.

S. WATER CONSERVATION FOR OTHER USES

Please review new photo-processing equipment to ensure discharges are compliant (no spent fixer discharged, sewer limit for chemical storage, sinks, photoprocessing equipment, and location of all lab waste drain connections.

T. WATER CONSERVATION FOR LABORATORY USES

Please review new photo-processing equipment to ensure discharges are compliant (no spent fixer discharged, sewer limit for chemical storage, sinks, photoprocessing equipment, and location of all lab waste drain connections.

U. WATER CONSERVATION FOR MULTIFAMILY USES

Please review new photo-processing equipment to ensure discharges are compliant (no spent fixer discharged, sewer limit for chemical storage, sinks, photoprocessing equipment, and location of all lab waste drain connections.

V. WATER CONSERVATION FOR SINGLE FAMILY USES

Please review new photo-processing equipment to ensure discharges are compliant (no spent fixer discharged, sewer limit for chemical storage, sinks, photoprocessing equipment, and location of all lab waste drain connections.

W. WATER CONSERVATION FOR INDIVIDUAL USES

Please review new photo-processing equipment to ensure discharges are compliant (no spent fixer discharged, sewer limit for chemical storage, sinks, photoprocessing equipment, and location of all lab waste drain connections.