SECTION 14 24 00
HYDRAULIC ELEVATOR

PART 1 - GENERAL

1.01 SUMMARY

A. GENERAL
 1. All labor, materials, plant appliances, equipment incidental to fabrication, furnishing, delivery and installation of elevator shall be provided.
 2. Full maintenance service shall be provided for 12 months following acceptance by Stanford.
 3. During the Full maintenance portion of contract the Elevator Contractor is to submit a monthly report to Stanford Contract Services Manager.

B. Requirements of the GENERAL CONDITIONS, SUPPLEMENTARY CONDITIONS and Division 1 apply to work of this Section.

1.02 RELATED WORK - SPECIFIED ELSEWHERE

A. Hoistway shall be provided framed and enclosed, including pit, overhead height, support for rail brackets, and pit ladder. Ventilate hoistway in accordance with applicable code requirements.

B. Bevel cants not less than 75° from the horizontal on any rear or side wall ledges and beams that project or recess 2" or more into the hoistway. Not required on hoistway divider beams.

C. Machine room, properly enclosed and ventilated, shall be provided.

D. Divider beams and pit screens between elevators for multiple car groups.

E. Sill support angles shall be provided. Door sill and entrance frames shall be grouted.

F. All cutting and patching of surfaces constituting final finish shall be provided.

G. Smoke detectors in elevator lobbies, machine or controller rooms, and at the top of the elevator hoistway where sprinkler are installed shall be provided per CCR Title 8.

H. Division 16 - Electrical: provision of electrical items as follows:
 1. Light and a convenience outlet in Elevator Pit
 2. 3-phase power supply to machine room controller.
 3. Separate GFCI 20 amp 120 VAC fused disconnect with ground connected to controller.
 4. Fire alarm and smoke detector systems.
 5. Communications and raceway systems.
6. Feeders, including fused mainline disconnect switch in pit and machine room.
7. Outlets in hoistway and at controller for car lights and fan.
8. Telephone circuits to studs on controller.

I. Adequate support for guide rails.

J. A sump pit and a protective grating level with the pit floor shall be provided.

1.03 REFERENCES

A. Applicable Codes (Latest Edition):
 (ASME A17.1)

B. California Coded of Regulations (CCR)
 1. Title 8
 2. Title 24

C. National Electric Code (NEC)

D. California Building Code (CBC)

E. Americans with Disabilities Act (ADA)

F. Palo Alto Title 15

G. Arrange and pay for inspections by governing authorities and obtain operating permits

1.04 SUBMITTALS

A. Shop Drawings:
 1. Scaled and Fully Dimensioned layouts: Plan of pit, hoistway and machine room indicating equipment arrangement, elevator section of hoistway, details of car enclosures and entrances, etc.
 2. Space requirements, general arrangement of elevator equipment, and material being supplied shall be clearly indicated. Connections, attachments, reinforcing, anchorage and location of exposed fastenings, and locations and amount of loads and reaction to be carried on the building structure shall be shown.
 3. Power confirmation sheets; Include motor horse power, code letter, starting current, full load running current, and demand factor for applicable motors.
 4. Finish material: Submit samples.
 5. Fixtures: Submit elevations and detail drawings.

B. Contract Closeout Submittal
 1. Operations and Maintenance: After completion of work, three copies of final control wiring diagrams, parts list, description of operating data and other
information required for proper maintenance, repairs and adjustment of the
equipment installed shall be submitted. At the conclusion of the job, mount a
complete set of wiring diagrams including a definition of all nomenclature and
symbols on the machine room wall in a suitable frame or laminated in clear
plastic. The mounting method must be reviewed by Facilities Operations.
Submit three copies of all applicable keys for normal operation.

C. Respond to drawing mark-up within 21 days of return; promptly incorporate
required changes due to inaccurate data or incomplete definition so that delivery and
installation schedules are not affected. Revision response is not justification for
delivery or installation delay.

1.05 WARRANTY

A. Provide a special project warranty, signed by Contractor, Installer and
Manufacturer, agreeing to replace/repair/restore defective materials and
workmanship of elevator work which may develop within one (1) year from final
date of completion and acceptance of the entire elevator installation. “Defective” is
hereby defined to include, but not by way of limitation, operation of control, system
failures, performance below required minimums, excessive wear, unusual
deterioration or aging of materials or finishes, unsafe conditions, the need for
excessive maintenance, abnormal noise or vibration and similar unusual, unexpected
and unsatisfactory conditions.

1.06 MAINTENANCE SERVICE

A. Initial Full Service Maintenance: Provide 12 months of semi-monthly maintenance
service during the warranty period, by trained mechanics. Maintenance shall
commence upon completion and acceptance of all elevator work and shall include
examination, adjustment, greasing, oiling, parts replacement due to normal use.
Provide 24 hour call back complete maintenance for all installed equipment.

B. Provide a monthly report to Facilities Zone Management showing date and time of
semi-monthly service, services done and parts replaced.

PART 2 - PRODUCTS

2.01 ACCEPTABLE MANUFACTURES

A. Manufacturers and Products: ThyssenKrupp Elevator Corp.; KONE Inc.; Otis
Elevator Co.; Schindler Elevator Corp.; Mitsubishi Electric.

B. Passenger elevator car and/or entrances shall be manufactured by elevator
manufacturer or Hauenstein and Burmeister, or the Tyler Elevator Products or
approved equal.
C. The entire elevator installation shall be manufactured, installed and maintained by the acceptable manufactures listed.

2.02 SUMMARY

A. Passenger Elevator

1. Rated Capacity: 3500 Pounds
2. Rated Speed: 125 Feet per minute
3. Total Travel: Refer to drawings
4. Floors Served: Refer to drawings
5. Number of Openings: Refer to drawings
6. Platform Size: 7'-0" wide X 6'-2" deep
7. Inside Clear Size: 6'-8" wide X 5'-5" deep
8. Clear Height of Car: 8'-0" to underside of canopy
9. Door Size: 3'-6" wide X 7'-0" tall
10. Operation: Selective Collective – single car groups
 Duplex – two car groups

B. Operating and Signal Fixtures:

1. Car operating panel, flush telephone device and service cabinet
2. In car direction lanterns - for single car group: mount in each car entrance jamb, total of two per car entrance.
3. Hall position indicator: Provide where in car direction lanterns are provided
4. Hall direction lanterns - for multiple car groups: wall mounted, one per hoistway entrance,
5. Combination hall direction lantern/position indicator at main floor lobby where hall lanterns are provided.
6. One riser of hall buttons per group of elevators per landing
7. Fire key panel at ground floor
8. Digital position indicators inside car and at main floor lobby
9. Independent service in car
10. Emergency Battery Lowering device

C. Provisions for Handicapped

1. The uppermost button necessary for operation of the elevator shall be located no higher than forty-eight inches (48") from the floor. An emergency stop switch and alarm bell button shall be not less that thirty-five inches (35") from floor. Hall buttons shall be forty-two inches (42") from finished floor to center line.

1Palo Alto Title 15 states that all buildings constructed after 1/4/1990 must have at least one elevator that will accommodate a gurney (24" x 82") and two (2) emergency response personal. This is either a custom 2500 lb car or an industry standard 3500 lb car.

2 See Product Design Criteria Sheet for specific size requirements.
2. Flush mounted Telephone shall be located below operating buttons, service cabinet above. For warranty and service needs, phones must be obtained from Stanford Communication Services (not negotiable).

3. Flush mounted braille symbols and raised Arabic numerals shall be provided on car stations and door frames.

4. Lanterns shall sound a gong once for up travel and twice for down travel.

D. Earthquake Protection:
 1. Rail assemble shall be designed so that it will resist a vertical and horizontal acceleration of 0.5 G.
 2. Steel retainer plates 1/4" minimum thickness shall be provided under roller guides. The retainer shall clear the rail by 3/16" under normal operation.
 3. All components shall be properly anchored in accordance with applicable code requirements.

2.03 MATERIALS

A. Steel:

B. Stainless Steel: Type 302 304 or 430 (when SmokeGuards are used) to comply with ASTM A167, with standard tempers and harness required for fabrication, strength and durability. Apply mechanical finish on fabricated work in the locations shown or specified. Texture and reflectivity required to match Architects’s sample. Protect with adhesive paper covering.
 1. No. 4: stainless steel directional polish (satin finish) Graining direction is longest dimension.\(^3\)
 2. Patterned: Rigidized Metal’s No. 5 WL or accepted equal.

C. Aluminum: Extrusions per ASTM B221; sheet plate per ASTM B209

D. Paint: Clean exposed metal of oil, grease, scale and other foreign matter and factory paint one shop coat of Manufacturer’s standard rust-resistant primer. After erection, provide one finish coat of industrial enamel paint. Galvanized metal need not be painted.

E. Prime finish: Clean all surfaces receiving a baked enamel finish of oil, grease, scale, etc. Apply one coat of rust-resistant mineral paint followed by filler coat over uneven surfaces. Sand smooth and apply a final coat of mineral paint.

F. Baked Enamel: Primer per “E” above. Apply and bake 2 additional coats of enamel in the selected solid color.

\(^3\) This spec. point will change depending on finish selection. #4 satin stainless steel is standard. #8 polish stainless steel is an option as well as bronze finishes.
2.04 PERFORMANCE

A. Speed: +/- 10% of contract speed under any loading condition.

B. Capacity: Safely lower, stop and hold up to 125% of rated load.

C. Stopping Accuracy: +/- 1/4" under any loading condition.

D. Door Opening Time: Seconds from start of opening to fully open.
 1. Side opening 42": 3.1 seconds
 2. Center opening 48": 2.5 seconds
 3. Average Speed 2.5 feet per second

E. Floor-to-Floor performance Time: Seconds from start of doors closing until doors are 3/4 open and car level and stopped at next successive floor under any loading condition or travel direction. (Based upon 12'-0" of travel).
 1. Single Slide Doors up to 42" wide: 15.5 seconds
 2. Center Opening Doors up to 48" wide: 13.5 seconds

F. Pressure: Design and factory test fluid system components for 400 p.s.i. Do not exceed operating pressure of 360 p.s.i.

G. Operating Qualities: Architect and Stanford will judge riding quality of cars and enforce the following requirements. Make all necessary adjustments.
 1. Transition: Starting and stopping shall be smooth and comfortable. Slowdown, stopping and leveling shall be without jars or bumps.
 2. Full Speed: Riding shall be free from vibration and sway.
 3. Car Enclosure: Squeaks and rattles are unacceptable. All joints shall be light proof.
 4. Airborne Noise: Measured noise level of elevator equipment and its operation shall not exceed 60 dBA inside car under any condition including door operation and car ventilation exhaust blower on its highest speed. Limit noise level in the machine room relating to elevator equipment and its operation to no more than 80 dBA. All dBA readings to be taken 3'-0" off the floor and 3'-0" from the equipment using the “A” weighted scale.

2.05 OPERATION

A. General: Provide a microprocessor based control system including maintenance tools and supporting software documentation required for the complete maintenance of the entire system including diagnostics and adjusting. Maintenance tool may be hand held or built into control system and shall be of the type not requiring recharging or reprogramming nor of the automatic destruct type. The tool and supporting software may be programmed to operate only with this project's identification serial numbering.

B. Approved microprocessor-based, single car or group dispatch, car and motion control systems as follows:
1. Otis: Elevonic 211
2. Schindler: Miconic HX
3. ThyssenKrupp: TAC-20
4. MCE: 2000
5. Elevator Controls: H900

C. Selective Collective Operation – Single Car Groups;
1. Pressure upon one or more Car Buttons will send the car to the designated landings in the order in which the landings are reached by the car, irrespective of the sequence in which the buttons are pressed, provided the hoistway door interlock and car door switch circuits are completed. During this operation, the car will also answer calls from the landings which are in the prevailing direction of travel. Each landing call will be canceled when answered.
2. Pressure upon a Hall Button at a floor above the car location will cause the car to start Up and answer any Up calls as they are reached by the car irrespective of the sequence in which the buttons had been pressed. The car will not stop at floors where Down buttons only had been pressed. If no further Car or Up Hall calls are registered, the car will reverse its direction preference for response to Car Calls or Down Hall calls.
3. The car will start Down to answer calls below the car and will not stop where Up calls only are registered. When traveling Up, the car will reverse at the highest call and proceed to answer calls below it. When traveling Down, the car will reverse at the lowest call and answer calls above it.
4. Should both an Up and a Down call be registered at an intermediate landing, only the call corresponding to the direction in which the car is traveling will be canceled upon the stopping of the car at the landing. Terminal limit switches will be provided in the hoistway designed to automatically stop the car at or near the closest terminal landing.

D. Duplex Selective Collective Operation – Two Car Groups:
1. Operate cars without attendants from pushbuttons in cars and located at each floor. When cars are available, park one car at main floor (“home” car). Park other car where last used (“free” car).
2. Respond to car calls and hall calls above main floor using the “free” car. Once a car has started, respond to registered calls in the direction of travel and in the order the floors are reached.
3. Do not reverse car direction until all car calls have been answered, or until all hall calls ahead of the car and corresponding to the direction of car travel have been answered.
4. Slow cars and stop automatically at floors corresponding to registered calls in the order in which they are approached in either direction of travel. As slowdown is initiated for a hall call, automatically cancel hall call. Cancel car calls in the same manner. Hold car at arrival floor an adjustable time interval to allow passenger transfer.
5. Answer calls corresponding to direction in which car is traveling unless call in the opposite direction is the highest (or lowest) call registered.
6. When the free car is clearing calls, start home car to respond to:
a. A call registered on home car pushbuttons.
b. An up hall call registered below free car.
c. An up or a down call registered above free car while free car is traveling down.
d. A hall call when free car is delayed in its normal operation for a predetermined period.

7. When both cars are clearing calls, stop only one car in response to any registered hall call. Return the first car to clear its calls to main floor. Should last service required bring both cars to main floor, the first arriving car becomes the free car.

8. Illuminate appropriate pushbutton to indicate call registration. Extinguish light when call is answered.

E. Independent Service:
1. A switch will be provided for selecting Independent Service Operation. When this switch is turned to the "ON" position, all previously registered car and hall calls for that car will be canceled and the car will be transferred automatically to Independent Service for operation by an attendant.
2. The car will park with its doors open. Closing of the doors and starting of the car will be subject to constant pressure on a car button until the car starts in motion. After the car is in motion, the button may be released and the car will automatically proceed to and stop at the landing for which the closest car call has been registered. Upon arrival at the floor, all registered car calls will be canceled and the doors will automatically open (assuming power operated doors have been proposed). During this operation, the control system will not accept Hall calls.

F. Multiple Door Timing: Circuitry will be provided to independently adjust the door times when the car is stopping in response to a Car Call versus a Hall Call. Door open times will further be reduced upon interruption of the Electronic Door Protection.

G. Door Obstruction Signal: An audible signal will be furnished which will sound after a predetermined, adjustable time if the door is held open. This audible signal will operate in conjunction with electronic door protection and will sound continually until the obstruction is removed.

H. Reduced Speed Closing: If, after a predetermined and adjustable time, and the car door is held open an audible signal will sound and the door will close at a reduced speed as long as the obstruction is present. If the obstruction is not removed, the door will continue to try and close until the obstruction is either removed or until the expiration of a preset time, at which the door will stop. After the obstruction is removed, the door will either reopen or continue to close after a Car/Hall call button or Door Open/Close button is pressed.

I. Low-Oil Control: In the event oil level is insufficient for travel to the floor, provide controls to return elevator to first level and park until oil is added.
J. Motion control: AC type with a unit valve suitable for operation specified and capable of providing smooth comfortable acceleration, retardation and dynamic braking. Limit the difference in speed between full load and no load to not more than +/- 10% of contract speed.

K. Standby Lighting and Alarm: Car-mounted, battery unit with solid-state charger to operate alarm bell and lighting, per Code. Battery to be rechargeable. Provide a test switch in service cabinet of car station which causes illumination of standby lighting bulbs. Design to operate normal car lighting fixtures. Light units mounted in car front returns or operating panels are not acceptable.

L. Battery Lowering Device (BLD) – provide where emergency generator power is not available:
 1. Provide emergency AC power source to the hydraulic elevator when standard power is lost. Under normal power conditions, the BLD monitors the voltage for indications of a power loss. When a power outage is detected, the BLD shall automatically lower the elevator in a pre-determined manner to a lower floor. The elevator may stop at any landing while descending, open the car and landing doors and then after a predetermined interval close the doors. The BLD shall be made inoperative when the machine room main power supply disconnecting means is in the open position. The incoming AC power and the BLD shall have a disconnecting means lockable in the open position to remove power from the device and elevator controller. The BLD shall remain inoperative if the shunt trip device activates. BLD devices to be manufactures by Reynolds & Reynolds Electronics or an approved equal approved by the Project Manager.

M. Standby Power Source – provide where emergency generator power is available:
 1. In the event normal power fails, provide controls to automatically lower the car nonstop to the lowest landing using DC battery power source installed in machine room. Include solid-state charger and testing means mounted in a common metal container. Provide rechargeable lead acid or nickel cadmium battery. Contractor to provide dry contact(s) at disconnect for connection of this unit.
 2. Upon failure of normal power, lower elevators to landing, open doors automatically, hold open until regular door time has expired, then close doors and shut elevator down.

N. Operation of Car Under Fire Emergency Conditions:
 1. Provide Phase I fire Recall Switch at Main Floor Elevator Lobby. Switch at Main Floor shall be integrated into hall push button station with engraved instructions.
 2. Provide Phase II Fire Recall Switch in Main Car Operating Panel. Switch and jewel to be located at the top row of buttons with engraved instructions adjacent.
 3. All key locks shall be manufacturer’s standard.
O. Automatic shut down of car light and ventilation: Car interior lights and exhaust fans shall be provided with the necessary control to automatically turn these devices off if the elevator has no calls for a predetermined period of time. Lights and fans shall automatically turn on again when a call is registered. Provide a switch located in the service cabinet to allow for automatic or manual control of this feature.

2.06 MACHINE ROOM EQUIPMENT

A. Arrange equipment in spaces shown in drawings. Provide identifying number on pump unit, and controller.

B. Motor Control: The motor control system on all elevators shall be capable of limiting the difference in speed between full load and no load to not more than ten percent (10%) of contract speed.

C. Controller:
 1. The Controller will control starting, stopping and prevent damage to the motor from an overload or from excess current. It will automatically cut off the power supply and bring the car to rest in the event of operation of any of the safety devices.
 2. The controller will be enclosed in a vented cabinet within the Machine Room.
 3. The type of starting furnished will be solid state.
 4. IEC method of line starter application is unacceptable. Provide three (3) manual reset overload relays, one in each line and reverse phase relay.
 5. Provide externally mounted permanently identified junction boxes on controller cabinets for termination of communication circuits.

D. Pumping Unit: Pumping plant shall be a self-contained cabinet unit with sound-reducing enclosure.
 1. Maximum pump speed 2600 rpm. Maximum operating pressure at full load shall not be more than 400 psi.
 2. Motor shall be continuous rated, 50 C temperature rise Class A insulation, or 70 C rise Class B insulation. Provide premium efficiency motors if available.
 3. Valve shall be manufactured by elevator manufacturers or Maxton Company. Manual lowering valve shall be provided in accessible location without removing pumping plant enclosure panels.
 4. Strainer and oil level gauge shall be provided.
 5. Device shall be provided to maintain uniform oil temperature without cycling or running the pump motor.

E. Muffler: Provide in discharge oil line near pump unit. Design to dampen and absorb pulsation and noise in flow of hydraulic fluid.

F. Piping:
 1. No hoses, screwed, or flanged type shall be used.
 2. Steel pipe suitable for a minimum working pressure of 500 psi shall be provided.
3. Victaulic method of piping shall be used throughout system for above grade piping, with victaulic type 77 fittings.
4. Piping support shall be provided per requirements of OSHA
5. If pipe is to be run below ground it shall be protected as specified for the cylinder. Before pipe is buried, pipe will be tested to see if a pressure of 500 psi can be maintained for a 24-hour period without a drop in pressure.

G. Oil: Provide Chevron OC turbine oil, 150 SSU at 100 degrees F.

H. Shut-Off Valves: A manual shut-off valve in line adjacent to pump unit. Provide a Safety Valve in the oil line at the pit designed to shut off the flow of oil from the cylinder and bring the car to rest in case the car attains excessive down speed.

I. An electric oil return system consisting of a pump with oil line and necessary fittings will be provided to automatically return oil from the cylinder head collector ring to the power unit oil reservoir tank. This return pump will be designed to protect against flooding.

2.07 WIRING

A. General: Provide all necessary wiring between car, machine room s and control stations with 15% spares throughout, minimum of four. Furnish shielded wires in cables for all communication. Included two additional pairs of shielded for each car.

B. Permanently mark components (relays, fuses, PC board, etc.) with symbols AS shown on drawings.

C. All wiring shall have a flame-retardant, moisture-resistant outer cover and shall be run in metal conduit, flexible metallic tubing or wire ducts.

D. Terminal blocks in machine rooms, hoistways, and on cars shall be tag coded to identify the circuits.

E. Alarm Gong: Six-inch size; provide on top of each car to be activated by corresponding alarm button or emergency stop switch.

2.08 HOISTWAY EQUIPMENT

A. Guide Rails:
 1. Planed steel T-sections suitable for elevator travel, car weight and seismic reactions, with brackets for attachment to building structure. Minimum weight fifteen pounds (15#) per foot.
 2. Designed to span a minimum of 14'-0" and withstand a 0.5 G acceleration.

B. Roller Guides: Adjustable spring loaded type, mounted at the top and the bottom of the car frame. Each roller guide assembly will consist of wheels arranged to maintain constant contact on dry, non lubricated rail surfaces.
C. Buffers: Buffers of adequate number and size to fit within shown dimensions.

D. The elevator contractor shall dig the well hole of adequate size to install a steel casing and a PVC liner.
 1. Outer steel casing will be 10 gage steel with 2% copper content
 2. Provide a plug at the bottom of outer steel casing
 3. Provide a continuous steel sealing ring around outer casing
 4. Sealing of casing at pit floor will be by general contractor
 5. Backfill with clean, dry sand between casing and PVC liner
 6. Provide a schedule 100 psi PVC liner with sealed bottom
 7. PVC liner will be 8" larger than cylinder diameter
 8. All drilling will comply with the regulations as set forth by the County of Santa Clara Water District

E. Cylinder: Shall be designed and factory tested to withstand a minimum working pressure of 500 psi, and shall comply with all applicable codes.
 1. Manufactured from seamless steel pipe.
 2. Protect with Trantrex VID-20 or Fiberglass wrapping sealed with an epoxy resin. Second coat of epoxy or mastic shall be applied along with a second 20-mil wrapping.
 3. Design head to receive unit type packing and provide means to collect oil at cylinder head and return to oil reservoir via electric scavenger pump and strainer

F. Cylinder shall be set in the well casing and be back filled with clean, dry sand. Jack alignment within the hoistway shall be within 1/16" vertical.

G. Plunger: Polished seamless steel tubing or pipe, minimum Schedule 80. Joining section by internal threaded couplings. Couplings shall be welded together. Isolate plunger from car sling.

H. Packing which inhibits leaking of oils shall be provided.

I. Jack Support: Provide steel channels to support jack and transmit loads to building structure.

2.09 CAR EQUIPMENT

A. Platform:
 1. All steel welded or steel frame with stringers and double wood floor, with fireproofing as required. Each floor 1" exterior grade plywood
 2. Platen plate isolation between platen plate and plunger
 3. Provide Extruded nickel silver threshold full width of entrance column
 4. Finished flooring by Stanford

B. Car Frame: Welded or bolted, rolled or formed steel channel construction. Isolate from jack unit.
C. Car Sill: Extruded nickel silver (with extruded extension between entrance columns to face of cab front return)

D. Toe Guard: Per code

E. Car doors, hangers and tracks: Provide as specified for hoistway entrance doors, hangers and tracks.

F. Header: Constructed of steel, shape to provide stiffening flanges.

G. Car Door Clutches: heavy-duty clutches, linkage arms, drive blocks, and pickup rollers or cams to provide positive, smooth, quiet door operation. Design clutches so car doors can be closed for maintenance purposes, while hoistway doors remain open.

H. Door Operator and Operation: A high-speed, heavy-duty DC master door operator capable of opening doors at no less than 2-1/2 f.p.s. and accomplishing reversal in no more than 2-1/2" of door movement. Open doors automatically when car arrives at floor to permit egress of passengers. Close doors automatically after a timed interval.

I. Infrared Detector Device: Provide an infra red scanning type car door protective device projecting across entire entrance opening. Arrange controls to prevent elevator operation if device is not operative. If detector is obstructed for a predetermined, adjustable interval (20-30 seconds), sound buzzer and attempt to close doors with a maximum of 2-1/2 foot pounds kinetic energy. Proximity type devices not acceptable.

J. Car Interiors
 1. Cab shell and canopy: 14 gage furniture steel, continuous from floor to ceiling.
 2. Front return panels and integral entrance columns: 16 gage furniture steel. #4 stainless steel finish.
 3. Car Door panels: Same construction as hoistway door panels. #4 stainless steel finish.
 5. Base: 4" high finish with #4 stainless steel.
 6. Handrail: Provide handrail on rear wall of enclosure at 32" to top of rail above finish floor. Fabricate from 1½” diameter stainless steel tube with brackets securely attached to walls with concealed fasteners. Design rail supports to withstand a 200 lb. load.
 7. Ceiling: Provide manufacturer’s standard suspended frame ceiling with plastic diffusers. Provide a minimum of two, 2-lamp Stanford standard T-8 fluorescent lighting fixtures.
 8. Two speed fan power ventilation.
9. Car doors shall be #4 stainless steel, mounted on structural header, not on car enclosure. Two guides per panel shall be provided. Sight guards to match.
10. Car shall be sound isolated from car frame.
11. Outside of car shall be painted with 3/16-inch thick sound insulating material
12. Stainless steel pad hooks provided on side and rear walls along with heavy quilted protection pads.

K. Car Operating Panel
1. One operating panel with applied faceplate containing the operating fixtures, mounted in a fixed front return panel.
2. Suitably identify floor buttons, alarm button, door open button and emergency stop button by letters or symbols per California Administrative Code, Title 24, the Americans with Disabilities Act (ADA) and ANSI A117.1. Locate operating controls no higher than 48" above the car floor and stop switch and alarm button at 35" above car floor.
3. Provide 1/8" raised floor pushbuttons which illuminate to indicate call registration. Call buttons to be 3/4 inch in the smallest dimension (minimum). Buttons to be raised (projected) and shall be of the illuminating type to indicate the registration of a Hall Call. Include designation of the floors served in face of button and on code compliant braille. Floor designation characters to be a minimum of 2 inch high, raised 1/32 inch, upper case and accompanied by corresponding Braille indications.
4. Provide an alarm button at bottom of station to ring bell located on elevator.
5. Provide an emergency stop key switch at bottom of station to interrupt power supply independently of regular operating devices. Maintain registered calls, if emergency features actuated, and continue normal service after power restored. Mark device to indicate "run" and "stop" positions.
6. Provide door open button to stop and reopen closing doors. Make button operable while car is stopped at landing.
7. Provide a lockable service panel with recessed, flush cover plate matching return panel. Cabinet door shall be provided with a flush glazed window of required size to hold elevator operating permit. Include the following controls:
 a. Inspection switch, per Code, for disconnecting automatic operation, limiting the car speed and activating hoistway access switch when car is at terminal landing.
 b. Light Switch.
 c. Two position fan switch.
 d. Independent service switch to permit selection of independent or automatic operation.
 e. Duplex 120 volt, AC, electrical convenience outlet.
 f. Emergency light test switch
 g. Selection switch for automatic or manual fan and light shut down.
 h. One spare toggles

L. Car direction sign: include directional indications and an audible signal. The appropriate arrow will illuminate corresponding to the direction which the car is set
to travel. The audible signal will alert passengers in the car and at the landing to signal illumination, sounding once for UP and twice for DOWN. Mounted in each entrance column.

2.10 SIGNALS

A. Hall Push-button fixture: Provide 1/8" raised stainless steel vandal resistant pushbuttons.
 1. Main lobby landing will have direction of travel buttons, Firemen’s Key Switch and Bezel with engraved instructions.
 2. Typical Floors will have direction of travel buttons with “In Case Of Fire...” instructions engraved (Per Title 8 and 24).
 3. There will be only one (1) riser at each elevator landing per group of elevators.

B. Hall position indicator: Provide digital type position indicator at main floor where in car direction lanterns are provided.

C. Hall lantern: Provide a combination digital hall position indicator and hall lantern indicating travel direction and location of arriving elevator at the main lobby only and hall lantern only at typical floors. Illuminate indicators and sound an electronic-tone mechanism mounted in a metal box fastened in the wall. Illuminate up or down lights and sound tone (twice for down direction travel) at least 4 seconds prior to car arrival at floor. Illuminate light until the elevator doors start to close. Provide arrow type lens with faceplate.

D. All signal fixtures are to be attached with vandal resistant screws and have a #4 stainless steel finish.

E. Provide black paint filled engraving to meet applicable Code as follows:
 1. Elevator capacity in pounds on main car station
 2. Provide building location on near telephone.
 3. Provide instructions for Firemen’s key operation on faceplate of service cabinet.

F. Stanford Elevator number is to be posted at each floor and posted in each elevator. This is to be provided by Stanford Sign shop and installed by Elevator Contractor.

G. Car top control station: Per code.

H. Emergency Exits: Per code with electrical shutdown contact.

I. Work Light and a duplex plug receptacle: Top and bottom of elevator car. Provide lights with on-off switch and bulb guard.

J. Where required for applicable code compliance, provide a Fire Key Control panel with a digital direction indicator, a controller shut off key switch and a fireman’s
key switch and jewel. Panel to be located as directed by Architect. Conduit and wire to remote location is by others.

2.11 HOISTWAY ENTRANCES

A. Complete side or center opening entrances bearing UL fire labels.

B. Frames: Hollow metal, fabricated and bolted from not less than 14 gage material to form a one-piece unit. Show jamb and head depth and profiles on approval drawings. Permanently attach handicapped floor destinations per Code. Stick-on or riveted plates are unacceptable.

C. Door panels: No 16 gage steel, sandwich construction without binder angles. Provide a minimum of 2 gibs per door panel, one at the leading and one at the trailing edge with gibs in sill groove their entire length of travel.

D. Sight Guards: 14 gage material, same material and finish as hoistway entrances door panels.

E. Sills: Extruded Aluminum

F. Fascia, Toe Guard and Hanger covers: No. 14 gage furniture steel with Manufacturer’s standard paint finish.

G. Struts and Headers: Provide for support of entrances related material. Provide door open bumpers on entrances equipped with vertical struts.

H. Locate Access Switches in entrance jambs at terminal landings. Only the bezel of this switch shall be showing.

I. Finish of Frames and Doors: #4 Stainless Steel.

PART 3 - EXECUTION

3.01 MAINTENANCE

A. General

 1. Maintenance service shall be provided on entire elevator equipment package described herein for one (1) year after the date of acceptance by Stanford. Maintenance shall include semi-monthly, emergency twenty-four (24) hour call-back service, and regular time service calls for examination, adjustment, and lubrication to keep elevator in safe operation and at top performance.

4 Sills could be extruded Nickel Silver as well. The benefit is longer wear, heavier loads however there is a cost associated.
2. Monthly service reports submitted to facilities zone management office which shows Date and time semi-monthly service was done, what parts/materials were installed, and what services were performed.

B. Performance Standards:
 2. Maintain smooth starting and stopping, smooth riding qualities and accurate leveling at all times.
 3. During the maintenance period the Elevator Contractor shall perform work without removing cars during peak traffic periods.

C. Elevator Shutdowns
 1. Should any elevator become inoperative, repair within 24 hours of notification of such failure. Breakdown of major components shall be complete and service restored within 72 hours.
 2. Failure to comply with above, Stanford may order the work done by other contractors at the Contractor's expense.

D. Maintenance Data: After completion and prior to acceptance, submit three (3) sets of complete and accurate maintenance data specific for each elevator. Final payment will not be made until received.

E. Final Service and Inspection: Two weeks before expiration of the year’s maintenance, the equipment shall be lubricated, fully serviced, adjusted to the standard designated and emergency service operation devices shall be checked. A complete inspection will be made and the elevator units accepted by Stanford Facilities Project Management, and Stanford Facilities Operations, and the Elevator Service Contractor.

3.02 FIELD QUALITY CONTROL:

A. Regulatory Agencies Inspection: Upon completion of elevators, Contractor shall provide instruments, weights and personnel to conduct test required by regulatory agencies. The Contractor shall submit a complete report describing the results of the tests.

B. Examination and Testing: When installation is ready for final acceptance, notify and assist Stanford in making a walk-through review of entire installation to assure workmanship and equipment complies with contract documents. Provide equipment to perform the following tests:
 1. One hour heat and run test with full load in car. Perform for one car of each duty.
 a. Stop car at each floor in each direction.
 b. Provide well-shielded thermometers for motor and verify that temperatures do not exceed 50 degrees Centigrade above ambient.
 c. Performance and leveling tests shall be made before and after heat and run test.
2. Check and verify operation of all safety features and special operations.

C. Correction: Make corrections to defects or discrepancies at no cost to Stanford. Should discrepancies be such that re-examination and retesting is required, all costs including those of Stanford's representative fees shall be paid for by the Elevator Contractor.

D. Final Acceptance: Final acceptance of the installation will be made only after all corrections are complete, final submittals and certificates received and the Stanford is satisfied and the installation is complete in all respects. Final payment will not be made until the above is completed.

3.03 COMMISSIONING OF ELEVATORS

A. Final Cleaning
 1. Elevator hoistways and all equipment therein shall be cleaned and left free of rust, filings, welding slag, rubbish, loose plaster, mortar drippings, extraneous construction materials, dirt, and dust. Include walls, building beams, sill ledges, and hoistway divider beams.
 2. Care shall be taken by workers not to mark, soil, or otherwise deface existing or new surfaces. Clean and restore such surfaces to their original condition.
 3. Clean down surfaces and areas which require final painting and finishing work. Cleaning includes removal of rubbish, broom cleaning of floors, removal of any loose plaster or mortar, dust, and other extraneous materials from finish surfaces, and surfaces that will remain visible after the work is complete.

B. Stanford’s review requirements
 1. Contractor shall perform review and evaluation of all aspects of its work prior to requesting Stanford’s final review. Work shall be considered ready for Stanford’s final contract compliance review when all Contractor’s tests are complete and all elements of work or a designated portion thereof are in place and elevator or group of elevators are deemed ready for service as intended.
 2. Furnish labor, materials, and equipment necessary for Stanford’s review. Notify Stanford five (5) working days in advance when ready for final review of elevator or group of elevators.
 3. Stanford’s written list of observed deficiencies of materials, equipment, and operating systems will be submitted to Contractor for corrective action. Stanford’s review shall include as a minimum:
 a. Workmanship and equipment compliance with Contract Documents.
 c. Performance of following is satisfactory:
 1) Starting, accelerating, running
 2) Decelerating and stopping accuracy
3) Door operation and closing force
4) Equipment noise levels
5) Signal fixture utility
6) Overall ride quality
7) Performance of door control devices
8) Operations of emergency two-way communication device
9) Operations of firefighters’ service
10) Operations of seismic devices
11) Operations of special security features and floor lock-off provisions

4. Test Results:
 a. In all test conditions, obtain specified contract speed, performance times, stopping accuracy without re-leveling, and ride quality to satisfaction of Stanford. Tests shall be conducted under both no load and full load condition.
 b. Temperature rise in motor windings limited to 50° Celsius above ambient. A full-capacity one (1) hour running test, stopping at each floor for ten (10) seconds in up and down directions, may be required.

C. Performance Guarantee: Should Stanford’s review identify defects, poor workmanship, variance or noncompliance with requirements of specified codes and/or ordinances, or variance or noncompliance with the requirements of Contract Documents, Contractor shall complete corrective work in an expedient manner to satisfaction of Stanford at no cost as follows:
 1. Replace equipment that does not meet code or Contract Document requirements.
 2. Perform work and furnish labor, materials, and equipment necessary to meet specified operation and performance.
 3. Perform retesting required by Governing Code Authority or Stanford.

D. A follow-up final contract compliance review shall be performed by Stanford after notification by Contractor that all deficiencies have been corrected. Provide Stanford with copies of the initial deficiency report marked to indicate items which Contractor considers complete. If additional reviews are required due to Contractor’s gross non-compliance with initial and follow-up deficiency reports, Stanford shall bill Contractor at normal billing rates plus expenses, and Contractor acknowledges it will pay for additional compliance reviews.

END OF SECTION