Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice

Shah R. Ali,a,1,2 Simon Hippenmeyerb,c,2 Lily V. Saadat,a, Liqun Luob,c, Irving L. Weissmana,1, and Reza Ardehalid,e,1

*Departments of Pathology and Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305; 1Department of Biology and 1Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305; and 2Department of Internal Medicine, Division of Cardiology, and 2Broad Stem Cell Research Center, University of California at Los Angeles School of Medicine, Los Angeles, CA, 90095

Contributed by Irving L. Weissman, May 5, 2014 (sent for review January 17, 2014)

The mammalian heart has long been considered a postmitotic organ, implying that the total number of cardiomyocytes is set at birth. Analysis of cell division in the mammalian heart is complicated by cardiomyocyte binucleation shortly after birth, which makes it challenging to interpret traditional assays of cell turnover [Laflame MA, Murray CE (2011) Nature 473(7347):326–335; Bergmann O, et al. (2009) Science 324(5923):98–102]. An elegant multi-isotope imaging-mass spectrometry technique recently calculated the low, discrete rate of cardiomyocyte generation in mice [Senyo SE, et al. (2013) Nature 493(7432):433–436], yet our cellular-level understanding of postnatal cardiomyogenesis remains limited. Herein, we provide a new line of evidence for the differentiated α-myosin heavy chain-expressing cardiomyocyte as the cell of origin of postnatal cardiomyogenesis using the “mosaic analysis with double markers” mouse model. We show limited, life-long, symmetric division of cardiomyocytes as a rare event that is evident in utero but significantly diminishes after the first month of life in mice; daughter cardiomyocytes divide very seldom, which this study is the first to demonstrate, to our knowledge. Furthermore, ligation of the left anterior descending coronary artery, which causes a myocardial infarction in the mosaic analysis with double-marker mice, did not increase the rate of cardiomyocyte division above the basal level for up to 4 wk after the injury. The clonal analysis described here provides direct evidence of postnatal mammalian cardiomyogenesis.

Significance

The nature of postnatal cardiomyogenesis in mammals remains in dispute. Here, we provide cell-level evidence for the birth of cardiomyocytes in newborn and adult mice. Our clonal analysis, based on the mosaic analysis with double markers mouse model, shows that cardiomyocytes are the parent cell of origin of cardiomyocytes that are generated postnatally. Our findings confirm that limited, symmetric division of cardiomyocytes is a rare phenomenon in the mouse heart after birth.

1To whom correspondence may be addressed. E-mail: shah.ali@gmail.com, irv@stanford.edu, or rardehali@mednet.ucla.edu.
2Present address: Department of Internal Medicine, University of California San Francisco, San Francisco, CA, 94117.
3Present address: Institute of Science and Technology, A-3400 Klosterneuburg, Austria.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1408233111/-/DCSupplemental.

8850–8855 | PNAS | June 17, 2014 | vol. 111 | no. 24
the recombinase (rather than tamoxifen (TM)-inducible CreER) cluster sizes were variable, ranging from 6 to 20 cells. Use of Cre (Fig. S3), as would be expected for proliferation in utero. The double-labeled as GFP embryos demonstrated clusters of RFP cells (a binucleated cell would be double-labeled as GFP*RFP+, and appear yellow; DNA repair would not cause labeling) (17). Because MADM single-labeling can only be achieved by completion of the cell cycle through cytokinesis, it permits analysis of cell division that is directly related to cytokinesis and uncoupled from karyokinesis, unlike many prior reports that have analyzed division after birth. Thus, MADM is an ideal system in which to test the principles of postnatal division, especially in an organ so prone to controversy as the mammalian heart. Furthermore, asymmetric labeling of the daughter cells enables precise determination of precursor-progeny lineages (e.g., self-renewal and multilineage potential) (Fig. S2) (18). When used with an inducible Cre transgene, MADM permits temporal control of recombination and provides direct evidence for cell division. MADM has been used reliably in the past in different organ systems (19, 20), especially the nervous system, and has revealed key lineage relationships during development as well as identified a cancer cell origin of origin.

MADM Labeling Allows Clonal Identification in the Heart, with No Evidence for Allelic Silencing of the MADM Transgenes. To first validate the use of MADM in the heart, we generated HprtCreERT2;MADM-11GG/GT/GT mice and analyzed in the embryonic period. Hprt is expressed from the X chromosome and analysis of males permits maximal recombination (because of random X chromosome inactivation in females). Moreover, Hprt can be expressed by any cell, including progenitor cells during development, which would enable observation of discrete clones. Analysis of the male developing heart in embryonic day (E) 16.5 embryos demonstrated clusters of RFP+ cells and GFP+ cells (Fig. S3), as would be expected for proliferation in utero. The cluster sizes were variable, ranging from 6 to 20 cells. Use of Cre recombinase [rather than tamoxifen (TM)-inducible CreER] prevents temporal control of recombination, so the length of the “chase period,” (i.e., the time from induction of MADM recombination to E16.5) is not clear and conclusions about cardiomyocyte proliferation rates at different time points in utero cannot be ascertained from these data. In addition, because Hprt can be expressed in any cell, the identity of the cell type that forms a cluster of cardiomyocytes cannot be revealed by this system. However, this transgenic model (HprtCre;MADM) helped to validate the utility of MADM in the heart, and prompted us to use an inducible cardiomyocyte-specific Cre transgenic mouse model (described below) to investigate clonal analysis of cardiomyocyte proliferation and to identify the lineage relationship between parent and daughter cells.

To ensure that silencing in a single allele of MADM-labeled cells does not occur in the heart, which could lead to false-positive single-labeled cells if it occurs in a double-labeled cell or false-negatives if it occurs in a bona fide single-labeled cell—and would therefore render analysis of cell division inaccurate—a transgenic mouse was generated in which, in each cell, one Hippi locus contains the reconstituted GFP gene and the other Hippi locus contains the reconstituted RFP gene (MADM-11GG/GT). Tissue sections of the hearts from these mice were analyzed and we observed only GFP+RFP+ double-labeled cells, with no evidence of single-labeled or unlabeled cells, demonstrating that there is no silencing of the Hippi locus at either allele (21) (Fig. S4).

In the Postnatal Period, Cardiomyocytes Generate Nondividing Cardiomyocytes That Separate From Each Other. We created a novel Myh6CreERT2;MADM-11GG/GT/GT mouse, in which MADM recombination (under temporal control by administration of exogenous TM) can only occur in cells that express α-myosin heavy chain (α-MHC or Myh6), a sarcomeric thick filament component commonly used as a marker for differentiated cardiomyocytes (22). We first evaluated the promiscuity of this system by analyzing hearts of 1-mo-old mice without TM exposure and observed no labeling (Fig. S5). Therefore, we next administered a cumulative 2 mg TM dose to newborn pups in the first week of life, and analyzed the hearts at postnatal day (P) 12 (Fig. 1 B–E). We observed...
a labeling efficiency of 0.78%. Approximately 11% of labeled cells were single-labeled, which can be identified as the progeny of Myh6-expressing cardiomyocytes. All single-labeled cells (n = 500) were α-actinin–positive (Fig. 1 F and H) and sarcomeric elements were evident on longitudinal sections by confocal and epifluorescence imaging (Fig. 1 D, d’’’), which suggests that dividing cardiomyocytes only generate cardiomyocytes. We observed single-labeled cardiomyocytes in all chambers, including the atria, at a similar frequency (Fig. 1E).

Of note, the RFP* and GFP* single-labeled cells were equivalent in frequency (5.4%, n = 574 cells, P = 0.8984) (Fig. 1I). This parity suggests that the daughter cells are the result of symmetric divisions, as asymmetric proliferation of one daughter cell would lead to an increase in the frequency of that label (Fig. S2). Furthermore, these data also suggest that the two daughter cells of a parent cardiomyocyte have a similar low mitotic potential, which was strengthened by the absence of large GFP+ or RFP+ clones, with rare two-cell clones (Fig. 1I); daughter cardiomyocytes exhibit a very low proliferative capacity. With aging, there was a decline in the percentage of single-labeled cells, despite higher TM doses: when MADM recombination was induced at 1 mo of life, only 6% of all labeled cells were single-labeled, despite a higher labeling index of 2% (Fig. 1I) compared with 11% single-labeled cells observed during the first week of life. Collectively, these data suggest that the size of the mitotically active subset of cardiomyocytes diminishes during aging, especially after the first week.

Unexpectedly, we noticed that the sibling cells were primarily noncontiguous. This finding could be a result of several factors, including: (i) migration of daughter cells away from one another after division, (ii) dispersion of sibling cells among other dividing cell types, or (iii) apoptosis of one daughter cell. To resolve the differences among the different possible explanations, we induced sparse labeling to generate rare division events and analyzed serial sections; rare or sparse labeling allows precise identification of a clone even if its constituents are noncontiguous because of spatial separation and rarity of individual clones. Upon administration of a single dose of 1 mg TM at P7 and analysis at P9, we observed very sparse and spatially distinct single-labeled cells. We noticed a bimodal distribution of distances between alternate-label sibling cells: in a fraction of the pairs, one daughter cell made intimate contact with its sibling cell, but most of the pairs were within 800 μm of each other (Fig. 1J); clonal distinction of sibling pairs could be made unambiguously because they were separated by more than 3,000 μm from other sibling pairs. These results demonstrate the close proximity of single-labeled cardiomyocytes to their sister counterparts, suggestive of cell dispersion, as recently reported in zebrafish hearts (23). The normal distribution of distances between the two closest siblings makes it less likely that these results are a result of one daughter cell surviving and the other undergoing apoptosis. However, we cannot formally exclude this possibility because sparse MADM labeling and an unclear temporal window for potential apoptosis after division renders it technically difficult to stain for apoptotic markers.

We next sought to detect protein-level expression of the gap junction protein Connexin43 to determine whether newborn cardiomyocytes integrate into the existing myocardial network. We consistently observed connexin43 staining between the unlabeled and labeled cells, indicating that daughter cells can migrate (or be dispersed by migration or division of other cell types) yet still form electrochemical coupling with established cardiomyocytes (Fig. 1G). Such postnatal coupling has previously been shown to occur upon transplantation of fetal cardiomyocytes into a syngeneic adult mouse heart (24). Moreover, in the adult zebrafish heart 10% of daughter cells were found remote from their developmental clones in an elegant clonal analysis study, suggesting that dispersion and migration of cardiomyocytes is an evolutionarily conserved mechanism (23).

During mouse development, the predominant ventricular cardiomyocyte population expresses β-MHC and before birth there is an epigenetic switch to the α-MHC isoform, which has greater ATPase activity (25). Given the rare division of Myh6-cardiomyocytes after birth, we sought to determine whether Myh6-expressing cardiomyocytes undergo division during development as well. We induced recombination at E13.5, and observed rare labeling at birth in the pup hearts; this is largely because of the inefficient diffusion of TM across the placenta in addition to the inherently rare MADM recombination events. Although the labeling efficiency (4 × 10−5%) was much lower than during adulthood, reflecting the small number of Myh6-expressing cells present during development, all labeled cells were single-labeled cells and present in one- to four-cell clusters (Fig. S6). Because single-labeled cells are the result of bona fide cell division, whereas double-labeled cells can arise from random recombination in G0 phase, these data indicate that the majority of the small Myh6-expressing cardiomyocyte pool during development is mitotically active. The lack of large clones of single-labeled cells further confirms the limited proliferative capacity of Myh6-expressing cells. Moreover, after birth the majority of the labeled cells are double-labeled, confirming that the mitotically active fraction of Myh6-expressing cardiomyocytes is sharply reduced in the postnatal period. Intriguingly, this data also suggests that division of cardiomyocytes after birth is independent of the MHC isoform. It was previously shown that reexpression of the embryonic β-MHC isoform in adult cardiomyocytes after pressure-overload injury does not lead to division (25). The data above provide an additional line of evidence for this finding by demonstrating that rare α-MHC cardiomyocytes can divide in utero and after birth.

Limited Cardiomyocyte Division Occurs During Physiological Aging in a MADM Model That Allows Recombination in any Cell Type. To determine if other cell types can also generate cardiomyocytes postnatally, we created the β-actinCreER;MADM-11GT/GT transgenic mouse (Fig. 2A); β-actin is a ubiquitous housekeeping gene and theoretically should permit MADM recombination in any cell (26). We administered TM to these mice in the first week of life, and the results were similar to the Myh6CreERT2;MADM model: 0.9% labeling efficiency, 17.5% single-labeled cardiomyocytes (Fig. 3A). We observed labeling within vasculature (Fig. 2D), confirming that noncardiomyocyte cell types can also undergo MADM labeling in the β-actin model. The pattern of clone sizes was also similar between the two models (e.g., sibling cells were frequently noncontiguous and the majority of single-labeled cells were without a clonal cluster, in accordance with a model of limited, symmetric division). When we induced recombination at P10 and analyzed after a 3-mo and 18-mo chase, we observed parity of GFP* and RFP* single-labeled cells within and between each of the groups, further attesting to the low proliferative capacity of cardiomyocytes born in adulthood (Fig. 3C).

Furthermore, we did not detect expression of MesP1, Isl1, or Tbx5 in single-labeled cells, which characterize multipotent cardiovascular progenitors that exist during development (27). We did not find c-kit expression in any of the single-labeled cells (Fig. 2G), consistent with several previous studies (5, 28). Additionally, we did not observe any multilineage clusters containing cardiomyocytes, vascular smooth muscle and endothelial cells that shared single- or double-labeling, further arguing against the existence of a multipotent progenitor cell in the adult heart akin to canonical stem cells in other tissues (Fig. 2 E and F). As such, our clonal data support the recent MIMS study in which only cardiomyocytes were shown to generate cardiomyocytes after birth (2).
Limited Cardiomyocyte Proliferation Occurs After Ischemic Cardiac Injury, with No Evidence for Contribution from Postnatal Cardiac Progenitors. Recent reports using a dilution of indelible labeling strategy have provided indirect evidence for generation of new cardiomyocytes from a progenitor cell after an infarction injury (29). However, other studies have failed to find evidence of cardiomyocyte renewal from progenitor cells (2). We sought to find clonal evidence for progenitor cells leading to cardiomyocytes in the β-actin CreER;MADM-11GT/TG mice that underwent left anterior descending artery (LAD) ligation (n = 5) or sham (n = 3) operation at 8 wk of age and then given TM for 2 wk starting at the time of the operation (Fig. 4A); no recombination...
clones were observed (Fig. 4). Labeled cells were c-kit+, with rare single-labeled cells but no clonal expansion; single-physiological aging in the sham model. On gross specimens there were few single-labeled cells (white arrowheads) in the left ventricle (LV) after an MI or sham operation. (Scale bars, 120 μm.)

Occurred in the presence of TM administration. In the sham mice, we found sparse single-labeled cells (2.7% single-labeled cells within the 6.9% of all labeled cells), but did not see clones (Fig. 4 C–E). Contrary to expectation, the global frequency of single-labeled cells in the LAD group was equivalent to the sham group (2.9%, P = 0.6300) and no single-labeled cardiomyocyte clones were observed (Fig. 4 F and G), consistent with a pattern of limited, symmetric cardiomyocyte division that occurs during physiological aging in the sham model. On gross specimens there was sparse labeling in the infarct and peri-infarct region (Fig. 4B), with rare single-labeled cells but no clonal expansion; single-labeled cells were c-kit+. Per our results, a myocardial infarction (MI) does not stimulate cardiomyocyte division above the basal level, nor does it appear to activate any putative latent progenitor cells. Interestingly, we did not observe an increase in the pool of labeled fibroblasts, which may be a result of apoptosis of these cells before analysis 1 mo after the operation (30).

Cardiomyocytes Are the Source of Cardiomyocytes Generated After Ischemic Cardiac Injury. To confirm the above findings directly in cardiomyocytes, we similarly administered TM for 2 wk [starting several hours before sham (n = 3) or LAD ligation (n = 5) operation] to 2-mo-old Myh6CreERT2;MADM mice (Fig. 5A); there was no recombination postinjury in mice that were not administered TM. Both sham- and LAD-operated hearts exhibited a slightly decreased labeling index of 4.2–4.5% compared with the β-actin models (likely as a result fewer cells capable of undergoing MADM recombination), but the percentage of labeled cells that were single-labeled was 2.0–2.3%. In both sham and LAD mice, the numbers of RFP+ and GFP+ cells were in parity within each group as well as across both injury models (Fig. 5B). Moreover, we did not observe any clusters—of cardiomyocytes or of multiple cell types—in either operation arm. We also did not observe any robust labeling in the border zone compared with the rest of the heart in the LAD mice.

Discussion

In this study we use several transgenic mouse models that enable clonal analysis of postnatal cardiomyogenesis. Experiments with the MADM system demonstrate at the cellular level that cardiomyocytes generate cardiomyocytes after birth in mice, in the setting of aging and injury, albeit in a very limited way, given the rarity of such division events, as well as limited evidence that the generated daughter cells can further divide. Indeed, we show that most examples of postnatal cardiomyocyte division are single iteration events. We did not observe any clusters of newly formed cardiomyocytes (i.e., a group containing greater than four cells) in our analyses of postnatal development or after injury, whereas during embryonic development using the HprtCre model, we clearly observed clusters of more than 20 cells in the heart. Although it has been reported that Myh6 is expressed in certain postnatal cardiac stem cells (31), we do not find clonal evidence of asymmetric division or multipotentiality among Myh6-expressing cells that undergo division, despite using a model that is optimal for detecting asymmetric self-renewal. Rather, our observations argue against the existence of robust putative stem cells. The capacity to divide postnatally appears to be relegated to a small fraction of cardiomyocytes, and this property diminishes over time and appears insensitive to stimulation by an infarction injury within a 4-wk time period after the infarct.

The concordance between the two MADM models presented here further argues against the contribution to postnatal cardiomyogenesis by a stem or progenitor cell, although we cannot formally exclude their existence. It is possible that cardiac stem/progenitors were, by chance, excluded from a MADM recombination event and therefore no clonal expansion from a single stem/progenitor cell could be observed. However, the rarity of cardiac tumors in mammals, as well as our identification herein of cardiomyocytes as the parent cell of postnatal cardiomyocytes, suggests that precursor cells are, at best, latent. Our data corroborate the findings of the MIMS report at the single-cell level and further reveal that the progeny of postnatally dividing cardiomyocytes mostly do not divide again. Senyo et al. also show that in the 6 mo after an infarction there is increased cardiomyogenesis in the border zone (2), which we did not observe.

Fig. 4. Limited birth of new cardiomyocytes after MI in adult mice. (A) Timeline for injury, TM delivery, and analysis of β-actinCreER;MADM transgenic mouse model. (B) Gross images of the heart after LAD ligation reveals fibrosis (dashed circle) in the infarct region (Top, phase) and limited infarct and peri-infarct labeling (Middle and Bottom: GFP and RFP channel, respectively). (Scale bars, 2 mm.) (C) H&E section of a MI heart demonstrates an area of fibrosis (within dashed lines). (Scale bar, 150 μm.) (D) Frequency of single-labeled cells is similar between the sham (n = 3) and LAD mice (n = 5). (P values calculated with Student t test. Error bars indicate SEM) (E–H) There are few single-labeled cells (white arrowheads) in the left ventricle (LV) after an MI or sham operation. (Scale bars, 120 μm.)

Fig. 5. Limited division of cardiomyocytes after MI in adult mice. (A) Timeline for injury, TM delivery, and analysis of Myh6CreER;MADM transgenic mouse model. (B) Rare single-labeled cells in the sham heart. (Scale bar, 100 μm.) (Inset) Magnified image of dashed box. (Scale bar, 10 μm). (C, Left) Analysis of clone size for each surgery group; (Right) frequency of single-labeled cells is similar between the sham (n = 3) and LAD mice (n = 5). (P values calculated with Student t test. Error bars indicate SEM) (D) There are few single-labeled cells (white arrowheads) in the left ventricle (LV) after an MI. Dashed lines depict the borders of the infarcted area. (Scale bar, 20 μm (Top), 100 μm (Middle), and 10 μm (Bottom).)
in the 4 wk period after injury: the several months longer chase period between injury and analysis in the former study may explain the difference between our findings. It is also possible that recombination inefficiency of the MADM system led to underestimation of cardiomyocyte generation at the infarct border zone.

It has recently been shown that deletion of a single gene, Meis1, can cause cardiomyocytes to divide after birth (32), which further suggests that limited postnatal cardiomyogenesis in mammals is the result of a Meis1-imposed limit on the division of cardiomyocytes, as well as near-absence of cardiac stem cells (as cardiomyocytes were the only source of new cardiomyocytes). It would be interesting to determine whether the rare number of dividing cardiomyocytes in the wild-type mouse heart have intrinsically low or absent levels of Meis1.

Our data provide direct evidence that cardiomyocytes can be born after birth at very low rates and that they appear to form electrochemical contacts with cardiomyocytes already present. Our clonal analysis lends cell-level insights into this controversial topic, and identifies the cell of origin of the postnatal cardiomyogenesis, as well as characterizes the behavior of the postnatally generated daughter cardiomyocytes; our work provides fundamental insight into the postnatal cell growth of the heart. The findings presented herein support the potential utility of cell transplantation therapy in the heart by demonstrating the existence of an innate mechanism that permits the electrochemical coupling of new cardiomyocytes into the existing syncytium (33).

Materials and Methods

See SI Materials and Methods for full materials and methods and Fig. S7 for the genetic breeding strategy to generate experimental MADM mice.

Supporting Information

Ali et al. 10.1073/pnas.1408233111

SI Materials and Methods

Mouse Genotyping. The following primers and PCR conditions were used for genotyping: Cre; 5′-GTCCAATTTACTGACGTACACC-3′ and 5′-GTTATTCGGATCATCAGCTACACC-3′; 94 °C for 5 min, 94 °C for 30 s, 58 °C for 70 s, 72 °C for 60 s, repeat 35 cycles, 4 °C for 20 min.

Tamoxifen Injections. Tamoxifen (TM) (Sigma) was prepared by dissolving in corn oil (Sigma) to a concentration of 20 mg/mL. TM was injected intraperitoneally using a tuberculin syringe and a 25-gauge needle. Pups younger than postnatal day (P) 10 were given 0.5 mg per injection (typically on an alternating day regimen), and older mice were given 2 mg per injection (daily injections were tolerated). For the clonal analysis described in Fig. 1J, 1 mg TM was given at P4 and analyzed at P5.

Histology and Tissue Analysis. For fixation, tissues, and organs were placed in 4% (vol/vol) paraformaldehyde for 18–24 h at 4 °C. Samples were prepared for embedding by soaking in 30% (wt/vol) sucrose in PBS at 4 °C for 24 h. The samples were removed from the sucrose solution and tissue blocks were prepared by embedding in Tissue Tek OCT (Sakura Finetek) under dry ice to freeze the samples within the compound. Frozen blocks were mounted on a MicroM HM550 cryostat (MICROM International) and 7- to 20-μm-thick sections were transferred to Superfrost/Plus adhesive slides (Fisher brand). Slides were incubated at 37 °C in the dark for 20 min before storage or immunostaining.

Antibodies. Immunostaining was performed using the following primary antibodies: PECAM-1/CD31 (Abcam ab28364; 1:50), α-smooth muscle actin (Sigma A2547; 1:500), α-actinin (Sigma A7811; 1:200), c-kit (Santa Cruz sc-5535; 1:200), c-kit (R&D Systems AF1356; 1:100), troponin I (Millipore mab1691; 1:250), Gata4 (Santa Cruz sc-5535; 1:100), Mesp1 (Aviva Systems Biology ARP39374; 1:100), Connexin43 (Millipore mab3068; 1:50), Isl1 (Abcam ab20670; 1:100), wheat germ agglutinin-Alexa Fluor 647 conjugate (Invitrogen W32466; 1:500).

Immunohistochemistry. Sections were washed in PBS and incubated with primary antibodies diluted in blocking solution (5% goat serum, 0.5% Triton X-100 in PBS) at room temperature for 1–3 h or overnight at 4 °C. Sections were then washed in PBS and incubated with fluorescent-conjugated secondary antibodies for 1 h at room temperature. Fluorescent and bright-field images were taken with a Leica DM5500B microscope and Leica CTR5500 camera (Leica Microsystems) using Metamorph 7.7.3.0 software, on a Leica M205FA dissection microscope and Leica DFC310FX camera (Leica Microsystems) using Leica Application Suite 4.1.0 software, and on a Leica Sp2 confocal microscope using LCS software. Adobe Photoshop was used to adjust image levels and process image overlays.

Myocardial Infarction. Animal protocols were approved by the Stanford University Animal Care and Use Committee guidelines. All surgical procedures were performed on 8- to 10-wk-old male and female experimental mosaic analysis with double markers (MADM) mice (as described above) by a single, experienced microsurgeon. After induction with inhaled 2–3% isoflurane, mice were intubated and ventilated, and anesthesia was maintained with inhaled 1–2.5% isoflurane. After a left thoracotomy was performed, the middle portion of the left anterior descending (LAD) artery was ligated for 30 min, followed by reperfusion. Infarction was visually confirmed by blanching of the anterolateral region of the left ventricle along with dyskinesis. For sham-operated animals, the left thoracotomy was performed only, without ligation of the LAD artery.

Statistical Analysis. Statistical testing was performed with Microsoft Excel v12.2.8 (Microsoft). Results are presented as mean ± SEM and these values were compared using the unpaired Student t test (significance was assigned for P < 0.05).
Fig. S1. Model for MADM recombination. Before S phase, G₀/G₁ recombination leads to double-labeled cells; G₀/G₁ recombination could also occur in binucleated cells, which would also yield double-labeled cells (not shown). After S phase, a G₂-Z segregation event would lead to two mononucleated daughter cells or a single binucleate daughter cell, depending on whether or not cytokinesis occurs. If there is cytokinesis, one daughter cell would be double-labeled and its sibling cell would be unlabeled. A binucleated daughter cell resulting from G₂-Z segregation without cytokinesis would be double-labeled. After S phase, a G₂-X segregation event would lead to a double-labeled daughter cell if cytokinesis does not occur (although the nuclei would be “single-labeled”; that is, either GFP⁺ or RFP⁺ at the DNA level) or to two uniquely labeled daughter cells (“single-labeled”) if there is abscission. Note that these single-labeled cells are the only cells that are a result of division that occurred during the presence of Cre (and any subsequent chase period), and hence are the only labeled cells that are used to study clonal cell division giving rise to cardiomyocytes; although G₂-Z segregation can also result in daughter cells, because double-labeled cells can arise through binucleation or by G₀/G₁ recombination, the inability to discriminate among these various origins of double-labeled cells we only refer to single-labeled cells (arising from G₂-X recombination) as definitively the result of mitosis. Single-labeled cardiomyocytes from the Myh6CreERT2;MADM-11^{CreERT2} model as an example of G₂-X–derived single-labeled newborn daughter cell clones.

Fig. S2. Possible outcomes of MADM clonal analysis. MADM G₂-X recombination results in asymmetric labeling of the two daughter cells and, thus, is an ideal platform to study the parity of a precursor/parent cell and dissect the precursor–progeny relationship and evaluate for self-renewal, multipotentiality, and so forth. [In this figure, the GFP⁺ and RFP⁺ cell are interchangeable (only one possibility is shown for the sake of clarity)]. (A) Asymmetric division would lead to self-renewal of the precursor cell and the generation of a daughter transit-amplifying cell that would further proliferate, leading to a single RFP⁺ cell and multiple GFP⁺ cells (depending on the proliferative capacity of the TA cell). (B) Symmetric division could lead to two progenitor cells, which could subsequently undergo asymmetric division to yield two alternate-single-label clones. (C) Symmetric division could also occur in existing cardiomyocytes and form two alternate-label sister cardiomyocytes. (D) A multipotent progenitor could also lead to alternate-labeled blood vessel cells (endothelial cells and smooth muscle cells) and cardiomyocytes.

Ali et al. www.pnas.org/cgi/content/short/1408233111
Fig. S3. Proliferation in the embryonic heart. (A) HprtCre;MADM model and time line for analysis. (B) Section of developing left ventricle (LV) demonstrates a RFP⁺ cluster. (Scale bar, 20 μm.) (Inset scale bar, 5 μm.). (C) Section of LV demonstrates a GFP⁺ and RFP⁺ clones (n = 3 embryos). (Scale bar, 5 μm.)

Fig. S4. Lack of silencing at the Hipp11 locus. In a MADM-11GG/TT mouse, only double-labeled cells are present. (A and B) Section from the LV. (Scale bars, 10 μm.)

Fig. S5. MADM recombination does not occur in the absence of TM administration. (A) A 1-mo-old mouse heart 7-μm section stained with Hoechst, and the merged image of the GFP, tdTomato, and Hoechst channels is displayed. (Scale bar, 100 μm.) (A') Boxed region in A zoomed to further demonstrate absence of MADM recombination labeling without TM injection. (Scale bar, 30 μm.) These sections are representative of all sections of the heart analyzed for n = 4 mice each for both the Myh6CreERT2;MADM and β-actinCreER;MADM models.
Fig. S6. Myh6-expressing cardiomyocytes undergo division during embryonic development. (A) Myh6CreERT2; MADM^{GT/GT} model and timeline for TM delivery and analysis. (B) A single-label clone of RFP⁺ cardiomyocytes born from a cardiomyocyte during development. (Scale bars, 20 μm and 5 μm in the zoomed-in region, Right.) (C) A single-labeled GFP⁺ cardiomyocyte indicates cardiomyocyte division during development using the Myh6CreERT2; MADM^{GT/GT} model. (Scale bars, 20 μm and 5 μm in the zoomed-in region, Right.) (D) Percent of single-labeled cells born between embryonic day (E)13.5 and P0. (E) Clone size analysis of cardiomyocyte division between E13.5 and P0 (n = total number of single-labeled cells, based on n = 3 mice; P values calculated with Student t test. Error bars indicate SEM).

Fig. S7. Genetic breeding strategy to generate experimental MADM mice. In the first cross, the Cre transgenic mouse is crossed with the GT/GT mouse (or the TG/TG mouse), and its progeny back-crossed with the GT/GT strain (or TG/TG strain). The progeny of this second cross are homozygous for the GT/GT (or TG/TG) transgenes and thus can be used to generate the experimental MADM mice, which are formed when second-progeny mice are crossed with TG/TG mice (or GT/GT mice). The MADM-homozygous and the Myh6CreERT2 mouse strains are available at Jackson Laboratories. The β-actinCreER strain has been published previously (1).