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Abstract—The end of Dennard scaling has made all sys-
tems energy-constrained. For data-intensive applications with
limited temporal locality, the major energy bottleneck is data
movement between processor chips and main memory modules.
For such workloads, the best way to optimize energy is to
place processing near the data in main memory. Advances in
3D integration provide an opportunity to implement near-data
processing (NDP) without the technology problems that similar
efforts had in the past.

This paper develops the hardware and software of an NDP
architecture for in-memory analytics frameworks, including
MapReduce, graph processing, and deep neural networks. We
develop simple but scalable hardware support for coherence,
communication, and synchronization, and a runtime system
that is sufficient to support analytics frameworks with complex
data patterns while hiding all the details of the NDP hardware.
Our NDP architecture provides up to 16x performance and
energy advantage over conventional approaches, and 2.5x over
recently-proposed NDP systems. We also investigate the balance
between processing and memory throughput, as well as the
scalability and physical and logical organization of the memory
system. Finally, we show that it is critical to optimize software
frameworks for spatial locality as it leads to 2.9x efficiency
improvements for NDP.

Keywords-Near-data processing; Processing in memory; En-
ergy efficiency; In-memory analytics;

I. INTRODUCTION

The end of Dennard scaling has made all systems energy-

limited [1], [2]. To continue scaling performance at expo-

nential rates, we must minimize energy overhead for every

operation [3]. The era of “big data” is introducing new

workloads which operate on massive datasets with limited

temporal locality [4]. For such workloads, cache hierarchies

do not work well and most accesses are served by main

memory. Thus, it is particularly important to improve the

memory system since the energy overhead of moving data

across board-level and chip-level interconnects dwarfs the

cost of instruction processing [2].
The best way to reduce the energy overhead of data

movement is to avoid it altogether. There have been several

efforts to integrate processing with main memory [5]–[10].

A major reason for their limited success has been the

cost and performance overheads of integrating processing

and DRAM on the same chip. However, advances in 3D

integration technology allow us to place computation near

memory through TSV-based stacking of logic and memory

chips [11], [12]. As a result, there is again significant interest

in integrating processing and memory [13].

With a practical implementation technology available,

we now need to address the system challenges of near-

data processing (NDP). The biggest issues are in the hard-

ware/software interface. NDP architectures are by nature

highly-distributed systems that deviate from the cache-

coherent, shared-memory models of conventional systems.

Without careful co-design of hardware and software runtime

features, it can be difficult to efficiently execute analytics

applications with non-trivial communication and synchro-

nization patterns. We must also ensure that NDP systems

are energy-optimized, balanced in terms of processing and

memory capabilities, and able to scale with technology.

The goal of this paper is twofold. First, we want to

design an efficient and practical-to-use NDP architecture for

popular analytics frameworks including MapReduce, graph

processing, and deep neural networks. In addition to using

simple cores in the logic layers of 3D memory stacks in a

multi-channel memory system, we add a few simple but key

hardware features to support coherence, communication, and

synchronization between thousands of NDP threads. On top

of these features, we develop an NDP runtime that provides

services such as task launch, thread communication, and data

partitioning, but hides the NDP hardware details. The NDP

runtime greatly simplifies porting analytics frameworks to

this architecture. The end-user application code is unmod-

ified: It is the same as if these analytics frameworks were

running on a conventional system.

Second, we want to explore balance and scalability for

NDP systems. Specifically, we want to quantify trade-offs on

the following issues: what is the right balance of compute-to-

memory throughput for NDP systems; what is the efficient

communication model for the NDP threads; how do NDP

systems scale; what software optimizations matter most for

efficiency; what are the performance implications for the

host processors in the system.

Our study produces the following insights: First, simple

hardware support for coherence and synchronization and

a runtime that hides their implementation from higher-

level software make NDP systems efficient and practical to

use with popular analytics frameworks. Specifically, using

a pull-based communication model for NDP threads that

utilizes the hardware support for communication provides

a 2.5x efficiency improvement over previous NDP systems.

Second, NDP systems can provide up to 16x overall ad-

vantage for both performance and energy efficiency over
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conventional systems. The performance of the NDP sys-

tem scales well to multiple memory stacks and hundreds

of memory-side cores. Third, a few (4-8) in-order, multi-

threaded cores with simple caches per vertical memory

channel provide a balanced system in terms of compute and

memory throughput. While specialized engines can produce

some additional energy savings, most of the improvement is

due to the elimination of data movement. Fourth, to achieve

maximum efficiency in an NDP system, it is important

to optimize software frameworks for spatial locality. For

instance, an edge-centric version of the graph framework

improves performance and energy by more than 2.9x over

the typical vertex-centric approach. Finally, we also identify

additional hardware and software issues and opportunities

for further research on this topic.

II. BACKGROUND AND MOTIVATION

Processing-in-Memory (PIM): Several efforts in the

1990s and early 2000s examined single-chip logic and

DRAM integration. EXECUBE, the first PIM device, in-

tegrated 8 16-bit SIMD/MIMD cores and 4 Mbits of

DRAM [5], [6]. IRAM combined a vector processor with 13

Mbytes of DRAM for multimedia workloads [7]. DIVA [8],

Active Pages [9], and FlexRAM [10] were drop-in PIM

devices that augmented a host processor, but also served as

traditional DRAM. DIVA and FlexRAM used programmable

cores, while Active Pages used reconfigurable logic. Several

custom architectures brought computation closer to data on

memory controllers. The Impulse project added application-

specific scatter and gather logic which coalesced irregularly-

placed data into contiguous cachelines [14], and Active

Memory Operations moved selected operations to the mem-

ory controller [15].

3D integration: Vertical integration with through-silicon

vias (TSV) allows multiple active silicon devices to be

stacked with dense interconnections [16], [17]. 3D stacking

promises significant improvements in power and perfor-

mance over traditional 2D planar devices. Despite ther-

mal and yield challenges, recent advances have made this

technology commercially viable [11], [12]. Two of the

most prominent 3D-stacked memory technologies today are

Micron’s Hybrid Memory Cube (HMC) [18] and JEDEC’s

High Bandwidth Memory (HBM) specification [19], both

of which consist of a logic die stacked with several DRAM

devices. Several studies have explored the use of 3D-stacked

memory for caching [20]–[24]. We focus on applications

with no significant temporal locality and thus will not benefit

from larger caches.

From PIM to NDP: 3D-stacking with TSVs addresses

one of the primary reasons for the limited success on past

PIM projects: the additional cost as well as the performance

or density shortcomings of planar chips that combined

processing and DRAM. Hence, there is now renewed interest

in systems that use 3D integration for near-data process-

ing [13]. Pugsley et al. evaluated a daisy chain of modified

HMC devices with simple cores in the logic layers for

MapReduce workloads [25]. NDA stacked Coarse-Grained

Reconfigurable Arrays on commodity DRAM modules [26].

Both designs showed significant performance and energy

improvements, but they also relied on host processor to co-

ordinate data layout and necessary communication between

NDP threads. Tesseract was a near-data accelerator for large-

scale graph processing that provided efficient communica-

tion using message passing between memory partitions [27].

The Active Memory Cube focused on scientific workloads

and used specialized vectorized processing elements with

no caches [28]. PicoServer [29] and 3D-stacked server [30]

focused on individual stacks for server integration, and

targeted web applications and key-value store which are not

as memory-intensive. Other work has studied 3D integration

with GPGPUs [31], non-volatile memory [32], and other

configurations [33]–[36].

However, implementation technology is not the only

challenge. PIM and NDP systems are highly parallel but

most do not support coherent, shared memory. Programming

often requires specialized models or complex, low-level

approaches. Interactions with features such as virtual mem-

ory, host processor caches, and system-wide synchronization

have also been challenging. Our work attempts to address

these issues and design efficient yet practical NDP systems.

The biggest opportunity for NDP systems is with emerg-

ing “big data” applications. These data-intensive workloads

scan through massive datasets in order to extract compact

knowledge. The lack of temporal locality and abundant

parallelism suggests that NDP should provide significant

improvements over conventional systems that waste energy

on power-hungry processor-to-memory links. Moreover, an-

alytics applications are typically developed using domain-

specific languages for domains such as MapReduce, graphs,

or deep neural networks. A software framework manages

the low-level communication and synchronization needed to

support the domain abstractions at high performance. Such

frameworks are already quite popular and perform very well

in cluster (scale-out) environments, where there is no cluster-

scale cache coherence. By optimizing NDP hardware and

low-level software for such analytics frameworks, we can

achieve significant gains without exposing end programmers

to any details of the NDP system.

III. NDP HARDWARE ARCHITECTURE

NDP systems can be implemented with several technol-

ogy options, including processing on buffer-on-board (BoB)

devices [37], edge-bonding small processor dies on DRAM

chips, and 3D-stacking with TSVs [11], [12]. We use 3D-

stacking with TSVs because of its large bandwidth and

energy advantages. Nevertheless, most insights we draw

on NDP systems, such as the hardware/software interface

114



Host 
Processor

High-Speed 
Serial Link

Memory Stack

Figure 1. The Near Data Processing (NDP) architecture.
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Figure 2. 3D memory stack and NDP components.

and the runtime optimizations for in-memory analytics, are

applicable to NDP systems that use alternative options.

Figure 1 provides an overview of the NDP architecture

we study. We start with a system based on a high-end host

processor chip with out-of-order (OoO) cores, connected to

multiple memory stacks. This is similar to a conventional

system where the host processor uses multiple DDR3 mem-

ory channels to connect to multiple memory modules, but

high-speed serial links are used instead of DDR interface.

The memory stacks integrate NDP cores and memory us-

ing 3D stacking, as shown in Figure 2. The portions of

applications with limited temporal locality execute on the

NDP cores in order to minimize the energy overhead of

data movement. The portions of applications with sufficient

temporal locality execute on the host processor as usual.

The NDP cores and the host processor cores see the same

physical address space (shared memory).

Recently-proposed NDP hardware architectures use a sim-

ilar base design. To achieve significant performance and

energy improvements for complex analytics workloads, we

need to further and carefully design the communication and

memory models of the NDP system. Hence, after a brief

overview of the base design (section III-A), we introduce

the new hardware features (section III-B) that enable the

software runtime discussed in section IV.

A. Base NDP Hardware

The most prominent 3D-stacked memory technologies

today are Micron’s Hybrid Memory Cube (HMC) [18]

and JEDEC’s High Bandwidth Memory (HBM) [19], [38].

Although the physical structures differ, both HMC and HBM

integrate a logic die with multiple DRAM chips in a single

stack, which is divided into multiple independent channels

(typically 8 to 16). HBM exposes each channel as raw

DDR-like interface; HMC implements DRAM controller

in the logic layer as well as SerDes links for off-stack

communication. We use the term vault to describe the

vertical channel in HMC, including the memory banks and

its separate DRAM controller. 3D-stacked memory provides

high bandwidth through low-power TSV-based channels,

while latency is close to normal DDR3 chips due to their

similar DRAM core structures [38]. In this study, we use

an HMC-like 4 Gbyte stack1 with 8 DRAM dies by default,

and investigate different vault organization in section VI.

We use general-purpose, programmable cores for near-

data processing to enable a large and diverse set of analytics

frameworks and applications. While vector processors [7],

reconfigurable logic [9], [26], or specialized engines [39],

[40] may allow additional improvements, our results show

that most of the energy benefits are due to the elimination

of data movement (see section VI). Moreover, since most

of the NDP challenges are related to software, starting with

programmable cores is an advantage.

Specifically, we use simple, in-order cores similar to the

ARM Cortex-A7 [41]. Wide-issue or OoO cores are not

necessary due to the limited locality and instruction-level

parallelism in code that executes near memory, nor are they

practical given the stringent power and area constraints.

However, as in-memory analytics relies heavily on floating-

point operations, we include one FPU per core. Each NDP

core also has private L1 caches for instructions and data,

32 Kbytes each. The latter is used primarily for temporary

results. There is not sufficient locality in the workloads to

justify the area and power overheads of private or even

shared L2 caches.

For several workloads—particularly for graph

processing—the simple cores are underutilized as they

are often stalled waiting for data. We use fine-grained

multithreading (cycle-by-cycle) as a cost-effective way to

increase the utilization of simple cores given the large

amount of memory bandwidth available within each

stack [42]. Only a few threads (2 to 4) are needed to match

the short latency to nearby memory. The number of threads

per core is also limited by the L1 cache size.

B. NDP Communication & Memory Model

The base NDP system is similar to prior NDP designs

that target simple workloads, such as the embarrassingly-

parallel map phase in MapReduce [25]. Many real-world

applications, such as graph processing and deep learning,

require more complex communication between hundreds

to thousands of threads [43], [44]. Relying on the host

processor to manage all the communication will not only

turn it into the performance bottleneck, but will also waste

1Higher capacity stacks will become available as higher capacity DRAM
chips are used in the future.
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energy moving data between the host processor and memory

stacks (see section VI). Moreover, the number of NDP cores

will grow over time along with memory capacity. To fully

utilize the memory and execution parallelism, we need an

NDP architecture with support for efficient communication

that scales to thousands of threads.

Direct communication for NDP cores: Unlike previous

work [25], [26], we support direct communication between

NDP cores within and across stacks because it greatly

simplifies the implementation of communication patterns

for in-memory analytics workloads (see section IV). The

physical interconnect within each stack includes a 2D mesh

network-on-chip (NoC) on the logic die that allows the

cores associated with each vault to directly communicate

with other vaults within the same stack. Sharing a single

router per vault is area-effective and sufficient in terms

of throughput. The 2D mesh also provides access to the

external serial links that connect stacks to each other and to

the host processor.

This interconnect allows all cores in the system, NDP and

host, to access all memory stacks through a unified physical

address space. An NDP core sends read/write accesses

directly to its local vault controller. Remote accesses reach

other vaults or stacks by routing based on physical addresses

(see Figure 2). Data coherence is guaranteed with the help

of virtual memory (discussed later). Remote accesses are

inherently more expensive in terms of latency and energy.

However, analytics workloads operate mostly on local data

and communicate at well-understood points. By carefully

optimizing the data partitioning and work assignment, NDP

cores mostly access memory locations in their own local

vaults (see section IV).

Virtual memory: NDP threads access the virtual address

space of their process through OS-managed paging. Each

NDP core contains a 16-entry TLB to accelerate translation.

Similar to an IOMMU in conventional systems, TLB misses

from NDP cores are served by the OS on the host processor.

The runtime system on the NDP core communicates with

the OS on a host core to retrieve the proper translation or

to terminate the program in the case of an error. We use

large pages (2 Mbyte) for the entire system to minimize

TLB misses [45]. Thus, a small number of TLB entries is

sufficient to serve large datasets for in-memory analytics,

given that most accesses stay within the local vault.

We use virtual memory protection to prevent concurrent

(non-coherent) accesses from the host processor and NDP

cores to the same page. For example, while NDP threads are

working on their datasets, the host processor has no access or

read-only access for those pages. We also leverage virtual

memory to implement coherence in a coarse-grained per-

page manner (see below).

Software-assisted coherence: We use a simple and

coarse-grained coherence model that is sufficient to sup-

port the communication patterns for in-memory analytics,

namely limited sharing with moderate communication at

well-specified synchronization points. Individual pages can

be cached in only one cache in the system (the host

processor’s cache hierarchy or an NDP core’s cache), which

is called the owner cache. When a memory request is issued,

the TLB identifies the owner cache, which may be local or

remote to the issuing core, and the request is forwarded

there. If there is a cache miss, the request is sent to the

proper memory vault based on the physical address. The

data is placed in the cache of the requesting core only if this

is the owner cache. This model scales well as it allows each

NDP core to hold its own working set in its cache without

any communication. Compared to conventional directory-

based coherence at cacheline granularity using models like

MOESI [46], [47], our model eliminates the storage over-

head and the lookup latency of directories.

To achieve high performance with our coherence model,

it is critical to carefully assign the owner cache. A naive

static assignment which evenly partitions the vault physical

address space to each cache will not work well because two

threads may have different working set sizes. We provide

full flexibility to software by using an additional field (using

available bits in PTEs) in each TLB entry to encode and

track this page’s owner cache. The NDP runtime provides

an API to let the analytics framework configure this field

when the host thread partitions the dataset or NDP threads

allocate their local data (see section IV). In this way, even if

an NDP core’s dataset spills to non-local vault(s), the data

can still be cached.

By treating the cache hierarchy in the host processor as

a special owner cache, the same coherence model can also

manage interactions between host and NDP cores. Note that

the page-level access permission bits (R/W/X) can play an

important role as well. For example, host cores may be given

read-only access to input data for NDP threads but no access

to data that are being actively modified by NDP cores. When

an NDP or host core attempts to access a page for which

it does not have permission, it is up to the runtime and the

OS to handle it properly: signal an error, force it to wait, or

transfer permissions.

Remote load buffers: While the coherence model allows

NDP cores to cache their own working sets, NDP cores will

suffer from latency penalties while accessing remote data

during communication phases. As communication between

NDP cores often involves streaming read-only accesses (see

section IV), we provide a per-core remote load buffer (RLB),

that allows sequential prefetching and buffering of a few

cachelines of read-only data. Specifically, 4 to 8 blocks with

64 bytes per block are sufficient to accommodate a few

threads. Remote stores will bypass RLBs and go to owner

caches directly. RLBs are not kept coherent with remote

memories or caches, thus they require explicit flushing

through software. This is manageable because flushes are

only necessary at synchronization points such as at barriers,
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Figure 3. The NDP software stack.

and no writeback is needed. Note that caches do not have

to be flushed unless there is a change in the assigned owner

cache. Hence, synchronization overhead is low.

Remote atomic operations and synchronization: We

support several remote atomic operations, including remote

fetch-and-add and remote compare-and-swap, implemented

at the vault controllers similarly to [48]. All NDP commu-

nication support is the same whether communication occurs

within or across stacks. These remote atomic operations

can be used to build higher-level synchronization primitives,

specifically user-level locks and barriers. We use a hierar-

chical, tree-style barrier implementation: all threads running

inside a vault will first synchronize and only one core signals

an update to the rest of the stack. After all of the vaults in

the stack have synchronized, one will send a message for

cross-stack synchronization.

IV. PRACTICAL SOFTWARE FOR NDP SYSTEMS

The NDP architecture in section III supports flexible inter-

thread communication and scalable coherence. We exploit

these features in a software infrastructure that supports a va-

riety of popular analytics frameworks. As shown in Figure 3,

a lightweight runtime interfaces between the OS and user-

level software. It hides the low-level NDP hardware details

and provides system services through a simple API. We

ported three popular frameworks for in-memory analytics to

the NDP runtime: MapReduce, graph processing, and deep

neural networks. The application developer for these frame-
works is unaware that NDP hardware is used and would
write exactly the same program as if all execution happened
in a conventional system. Due to the similarity between

our low-level API and distributed (cluster) environments,

we expect that other scale-out processing frameworks would

also achieve high performance and energy efficiency on our

NDP system.

A. NDP Runtime

The NDP runtime exposes a set of API functions that

initialize and execute software on the NDP hardware. It also

monitors the execution of NDP threads and provides run-

time services such as synchronization and communication.

Finally, it coordinates with the OS running on host cores for

file I/O and exception handling.

Data partitioning and program launch: The NDP

runtime informs applications running on the host cores about

the availability of NDP resources, including the number of

NDP cores, the memory capacity, and the topology of NDP

components. Applications, or more typically frameworks,

can use this information to optimize their data partitioning

and placement strategy. The runtime provides each NDP

thread a private stack and a heap, and works with the

OS to allocate memory pages. Applications can optionally

specify the owner cache for each page (by default the caller

thread’s local cache), and preferred stacks or vaults in which

to allocate physical memory. This is useful when the host

thread partitions the input dataset. The runtime prioritizes

allocation on the vault closest to the owner cache as much as

possible before spilling to nearby vaults. However, memory

allocations do not have to perfectly fit within the local vault

since if needed an NDP thread can access remote vaults

with slightly worse latency and power. Finally, the runtime

starts and terminates NDP threads with an interface similar

to POSIX threads, but with hints to specify target cores.

This enables threads to launch next to their working sets and

ensures that most memory accesses are to local memory.

Communication model: In-memory analytics workloads

usually execute iteratively. In every iteration, each thread

first processes an independent sub-dataset in parallel for a

certain period (parallel phase), and then exchanges data with

other threads at the end of the current iteration (communica-
tion phase). MapReduce [49], graph processing [43], [50],

and deep neural networks [44] all follow this model. While

the parallel phase is easy to implement, the communication

phase can be challenging. This corresponds to the shuffle

phase in MapReduce, scatter/gather across graph tiles in

graph, and forward/backward propagation across network

partitions in deep neural networks.

We build on the hardware support for direct communica-

tion between NDP threads to design a pull model for data ex-

change. A producer thread will buffer data locally in its own

memory vault. Then, it will send a short message containing

an address and size to announce the availability of data. The

message is sent by writing to a predefined mailbox address

for each thread. The consumer will later process the message

and use it to pull (remote load) the data. The remote load

buffers ensure that the overheads of remote loads for the pull

are amortized through prefetching. We allocate a few shared

pages within each stack to implement mailboxes. This pull-

based model of direct communication is significantly more

efficient and scalable than communication through the host

processor in previous work [25], [26]. First, communication

between nearby cores does not need to all go through the

host processor, resulting in shorter latency and lower energy

cost. Second, all threads can communicate asynchronously

and in parallel, which eliminates global synchronization and

avoids using only a limited number of host threads. Third,

consumer threads can directly use or apply the remote data
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while pulling, avoiding the extra copy cost.

Exception handling and other services: The runtime

initiates all NDP cores with a default exception handler

that forwards to the host OS. Custom handlers can also be

registered for each NDP core. NDP threads use the runtime

to request file I/O and related services from the host OS.

B. In-memory Analytics Frameworks

While one can program straight to the NDP runtime

API, it is best to port to the NDP runtime domain-specific

frameworks that expose higher-level programming inter-

faces. We ported three analytics frameworks. In each case,

the framework utilizes the NDP runtime to optimize access

patterns and task distribution. The NDP runtime hides all

low-level details of synchronization and coherence.

First, we ported the Phoenix++ framework for in-memory

MapReduce [51]. Map threads process input data and buffer

the output locally. The shuffle phase follows the pull model,

where each reduce thread will remotely fetch the inter-

mediate data from the map threads’ local memory. Once

we ported Phoenix++, all Phoenix workloads run without

modification. Second, we developed an in-memory graph

framework that follows the gather-apply-scatter approach

of GraphLab [43]. The framework handles the gather and

scatter communication, while the high-level API visible to

the programmer is similar to GraphLab and does not expose

any of the details of NDP system. Third, we implemented

a parallel deep neural network (DNN) framework based on

Project Adam [44]. This framework supports both network

training and prediction for various kinds of layers. Each

layer in the network is vertically partitioned to minimize

cross-thread communication. Forward and backward propa-

gation across threads are implemented using communication

primitives in the NDP runtime.

Applications developed with the MapReduce framework

perform mostly sequential (streaming) accesses as map and

reduce threads read their inputs. This is good for energy

efficiency as it amortizes the overhead of opening a DRAM

row (most columns are read) and moving a cacheline to the

NDP core (most bytes are used). This is not necessarily the

case for the graph framework that performs random accesses

and uses only a fraction of the data structure for each vertex.

To explore the importance of optimizing software for spatial

locality for NDP systems, we developed a fourth framework,

a second version of the graph framework that uses the same

high-level API. While the original version uses a vertex-

centric organization where computation accesses vertices

and edges randomly, the second implementation is modeled

after the X-Stream system that is edge-centric and streams

edges which are arranged consecutively in memory [50]. We

find that the edge streaming method is much better suited

to NDP (see section VI).

C. Discussion
The current version of the NDP runtime does not im-

plement load balancing. We expect load balancing to be

handled in each analytics framework and most frameworks

already do this (e.g., MapReduce). Our NDP runtime can

support multiple analytics applications and multiple frame-

works running concurrently by partitioning NDP cores and

memory. The virtual memory and TLB support provide

security isolation.
The NDP hardware and software are optimized for exe-

cuting the highly-parallel phases with little temporal locality

on NDP cores, while less-parallel phases with high temporal

locality run on host cores. Division of labor is managed by

framework developers given their knowledge about the local-

ity and parallelism. Our experience with the frameworks we

ported shows that communication and coordination between

host and NDP cores is infrequent and involves small amounts

of data (e.g., the results of a highly-parallel memory scan).

The lack of fine-grained cache coherence between NDP and

host cores is not a performance or complexity issue.
A key departure in our NDP system is the need for

coarse-grained address interleaving. Conventional systems

use fine-grained interleaving where sequential cachelines in

the physical address space are interleaved across channels,

ranks, and banks in a DDRx memory system. This optimizes

bandwidth and latency for applications with both sequential

and random access patterns. Unfortunately, fine-grained in-

terleaving would eliminate most of the NDP benefits. The

coarse-grained interleaving we use is ideal for execution

phases that use NDP cores but can slow down phases that

run on the host cores. In section VI, we show that this is

not a major issue. Host cores are used with cache-friendly

phases. Hence, while coarse-grained interleaving reduces the

memory bandwidth available for some access patterns, once

data is in the host caches execution proceeds at full speed.

Most code that would benefit from fine-grained partitioning

runs on NDP cores anyway.

V. METHODOLOGY

A. Simulation Models
We use zsim, a fast and accurate simulator for thousand-

core systems [52]. We modified zsim to support fine-grained

(cycle-by-cycle) multithreading for the NDP cores and TLB

management. We also extended zsim with a detailed memory

model based on DDR3 DRAM. We validated the model with

DRAMSim2 [53] and against a real system. Timing parame-

ters for 3D-stacked memory are conservatively inferred from

publicly-available information and research literature [18],

[38], [54]–[56].
Table I summarizes the simulated systems. Our conven-

tional baseline system (Conv-DDR3) includes a 16-core

OoO processor and four DDR3-1600 memory channels with

4 ranks per channel. We also simulate another system, Conv-

3D, which combines the same processor with eight 3D
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Host Processor
Cores 16 x86-64 OoO cores, 2.6 GHz

L1I cache 32 KB, 4-way, 3-cycle latency
L1D cache 32 KB, 8-way, 4-cycle latency

L2 cache private, 256 KB, 8-way, 12-cycle latency
L3 cache shared, 20 MB, 8 banks, 20-way, 28-cycle latency

TLB 32 entries, 2 MB page, 200-cycle miss penalty
NDP Logic

Cores in-order fine-grained MT cores, 1 GHz
L1I cache 32 KB, 2-way, 2-cycle latency

L1D cache 32 KB, 4-way, 3-cycle latency
TLB 16 entries, 2 MB page, 120-cycle miss penalty

DDR3-1600
Organization 32 GB, 4 channels × 4 ranks, 2 Gb, x8 device

Timing tCK = 1.25 ns, tRAS = 35.0 ns, tRCD = 12.5 ns
Parameters tCAS = 12.5 ns, tWR = 15.0 ns, tRP = 12.5 ns
Bandwidth 12.8 GBps × 4 channels

3D Memory Stack
Organization 32 GB, 8 layers × 16 vaults × 8 stacks

Timing tCK = 1.6 ns, tRAS = 22.4 ns, tRCD = 11.2 ns
Parameters tCAS = 11.2 ns, tWR = 14.4 ns, tRP = 11.2 ns
Serial links 160 GBps bidirectional, 8-cycle latency

On-chip links 16 Bytes/cycle, 4-cycle zero-load delay

Table I
THE KEY PARAMETERS OF THE SIMULATED SYSTEMS.

memory stacks connected into four chains. The serial links

of each chain require roughly the same number of pins

from the processor chip as a 64-bit DDR3 channel [18],

[37]. Both systems use closed-page policy. Each serial link

has an 8-cycle latency, including 3.2 ns for SerDes [55].

The on-chip NoC in the logic layer is modeled as a 4 × 4
2D-mesh between sixteen vaults with 128-bit channels. We

assume 3 cycles for router and 1 cycle for wire as the zero-

load delay [57], [58]. Finally, the NDP system extends the

conventional 3D memory system by introducing a number

of simple cores with caches into the logic layer. We use

64-byte lines in all caches by default.

B. Power and Area Models

We assume 22 nm technology process for all logic, and

that the area budget of the logic layer in the 3D stack is

100 mm2. We use McPAT 1.0 to estimate the power and area

of the host processor and the NDP cores [59]. We calculate

dynamic power using its peak value and core utilization

statistics. We also account for the overheads of the FPUs.

We use CACTI 6.5 for cache power and area [60]. The NDP

L1 caches use the ITRS-HP process for the peripheral circuit

and the ITRS-LSTP process for the cell arrays. The use of

ITRS-LSTP transistors does not violate timing constraints

due to the lower frequency of NDP cores.

We use the methodology in [61] to calculate memory

energy. DDR3 IDD values are taken from datasheets. For 3D

memory stacks, we scale the static power with different bank

organization and bank numbers, and account for the repli-

cated peripheral circuits for each vault. For dynamic power,

we scale ACT/PRE power based on the smaller page size

and reduced latency. Compared to DDR3, RD/WR power

increases due to the wider I/O of 3D stacking, but drops due

to the use of smaller banks and shorter global wires (TSVs).

Overall, our 3D memory power model results in roughly 10

to 20 pJ/bit, which is close to but more conservative than

the numbers reported in HMC literature [54], [62].

We use Orion 2.0 for interconnect modeling [63]. The

vault router runs at 1 GHz, and has 4 I/O ports with 128-

bit flit width. Based on the area of the logic layer, we set

wire length between two vaults to 2.5 mm. We assume that

each serial link and SerDes between stacks and the host

processor consume 1 pJ/bit for idle packets, and 3 pJ/bit for

data packets [25], [55], [62]. We also model the overheads

of routing between stacks in the host processor.

C. Workloads

We use the frameworks discussed in section IV:

Phoenix++ for in-memory MapReduce analytics [51], the

two implementations of the graph processing based on the

gather-apply-scatter model [43], [50], and a deep neural

network framework [44]. We choose a set of representative

workloads for each framework described in Table II. Graph

applications compute on real-world social networks and

online reviews obtained from [64]. Overall, the workloads

cover a wide range of computation and memory patterns.

For instance, histogram (Hist) and linear regression (LinReg)

do simple linear scans; PageRank is both read- and write-

intensive; ALS requires complex matrix computation to

derive the feature vectors; ConvNet needs to transfer lots of

data between threads; MLP and dA (denoising autoencoder)

have less communication due to combined propagation data.

We also implement one application per framework that

uses both the host processor and NDP cores in different

phases with different locality characteristics. They are sim-

ilar to real-world applications with embedded, memory-

intensive kernels. FisherScoring is an iterative logistic re-

gression method. We use MapReduce on NDP cores to

calculate the dataset statistics to get the gradient and Hessian

matrix, and then solve the optimal parameters on the host

processor. KCore decomposition first computes the maximal

induced subgraph where all vertices have degree at least k
using NDP cores. Then, the host processor calculates con-

nected components on the smaller resultant graph. ConvNet-

Train trains multiple copies of the LeNet-5 Convolutional

Neural Network [65]. It uses NDP cores to process the input

images for forward and backward propagation, and the host

processor will periodically collect the parameter updates and

send new parameters to each NDP worker [44].

VI. EVALUATION

We now present the results of our study, focusing on the

key insights and trade-offs in the design exploration. Unless

otherwise stated, the graph workloads use the edge-centric

implementation of the graph framework. Due to space
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Framework Application Data type Data element Input dataset Note

MapReduce

Hist Double 8 Bytes Synthetic 20 GB binary file Large intermediate data
LinReg Double 8 Bytes Synthetic 2 GB binary file Linear scan
grep Char 1 Bytes 3 GB text file Communication-bound
FisherScoring Double 8 Bytes Synthetic 2 GB binary file Hybrid and iterative

Graph

PageRank Double 48 Bytes 1.6M nodes, 30M edges social graph Read- and write-intensive
SSSP Int 32 Bytes 1.6M nodes, 30M edges social graph Unbalanced load
ALS Double 264 Bytes 8M reviews for 253k movies Complex matrix computation
KCore Int 32 Bytes 1.6M nodes, 30M edges social graph Hybrid

DNN

ConvNet Double 8 Bytes MNIST dataset, 70k 32× 32 images Partial connected layers
MLP Double 8 Bytes MNIST dataset, 70k 32× 32 images Fully connected layers
dA Double 8 Bytes Synthetic 500-dimension input data Fully connected layers
ConvNet-Train Double 8 Bytes MNIST dataset, 70k 32× 32 images Hybrid and iterative

Table II
THE KEY CHARACTERISTICS OF MAPREDUCE, GRAPH, AND DNN WORKLOADS AND THEIR DATASETS.

limitations, in some cases we present results for the most

representative subset of applications: Hist for MapReduce,

PageRank for graph, and ConvNet for DNN.

A. NDP Design Space Exploration

Compute/memory bandwidth balance: We first explore

the balance between compute and memory bandwidth in the

NDP system. We use a single-stack configuration with 16

vaults and vary the number of cores per vault (1 to 16), their

frequency (0.5 or 1 GHz), and the number of threads per core

(1 to 4). The maximum bandwidth per stack is 160 Gbytes/s.

Figure 4 shows both the performance and maximum vault

bandwidth utilization.

Performance scales almost linearly with up to 8 cores

and benefits significantly from higher clock frequency and

2 threads per core. Beyond 8 cores, scaling slows down for

many workloads due to bandwidth saturation. For PageRank,

there is a slight drop due to memory congestion. The graph

and DNN workloads saturate bandwidth faster than MapRe-

duce workloads. Even with the edge-centric scheme, graph

workloads still stress the random access bandwidth, as only a

fraction of each accessed cacheline is utilized (see Figure 6).

DNN workloads also require high bandwidth as they work

on vector data. In contrast, MapReduce workloads perform

sequential accesses, which have high cacheline utilization

and perform more column accesses per opened DRAM row.

Overall, the applications we study need no more than

eight 2-threaded cores running at 1 GHz to achieve balance

between the compute and memory resources. Realistic area

constraints for the logic die further limit us to 4 cores per

vault. Thus, for the rest of the paper, we use four 2-threaded

cores at 1 GHz. This configuration requires 61.7 mm2 for

the NDP cores and caches, while the remaining 38.3 mm2

are sufficient for the DRAM controllers, the interconnect,

and the circuitry for external links.

NDP memory hierarchy: Figure 5 shows the relative

performance for using different stack structures. HMC-like

stack uses 16 vaults with 64-bit data bus, and HBM-like

stack uses 8 vaults with 128-bit data bus. We keep the

Figure 5. Performance impact of stack design.

Figure 6. Vertex-centric and edge-centric graph frameworks.

same total number of data TSVs between the two stacks.

Performance is less sensitive to the number of vaults per

stack and the width of the vault bus. HBM is preferred for

DNN workloads because they usually operate on vectors

where wider buses could help with prefetching.

We have also looked into using different cache struc-

tures. When varying L1 cacheline sizes, longer cachelines

are always better for MapReduce workloads because their

streaming nature (more spatial locality) amortizes the higher

cache miss penalty in terms of time and energy. For graph

and DNN workloads, the best cacheline size is 64 bytes;

longer cachelines lead to worse performance due to the lack

of spatial locality. Using a 256-Kbyte L2 cache per core

leads to no obvious improvement for all workloads, and even

introduces extra latency in some cases.
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Figure 4. Performance scaling and bandwidth utilization for a single-stack NDP system.

The impact of software optimizations: The most energy-

efficient way to access memory is to perform sequential

accesses. In this case, the energy overhead of fetching a

cacheline and opening a DRAM row is amortized by using

(nearly) all bytes in the cacheline or DRAM row. While

the hardware design affects efficiency as it determines the

energy overheads and the width of the row, it is actually

the software that determines how much spatial locality is

available during execution.

Figure 6 compares the performance, energy, cacheline

utilization, and DRAM row utilization for the two implemen-

tations of the graph framework (using open-page policy).

The edge-centric implementation provides a 2.9x improve-

ment in both performance and energy over the vertex-centric

implementation. The key advantage is that the edge-centric

scheme optimizes for spatial locality (streaming, sequential

accesses). The cacheline utilization histogram shows that the

higher spatial locality translates to a higher fraction of the

data used within each cacheline read from memory, and a

lower total number of cachelines that need to be fetched (not

shown in the figure).

Note that the number of columns accessed per DRAM

row is rather low overall, even with the edge-centric design.

This is due to several reasons. First, spatial locality is

still limited, usually less than column size. Second, these

workloads follow multiple data streams that frequently cause

row conflicts within banks. Finally, the short refresh interval

in DDR3 (7.8μs) prevents the row buffer from being open

for the very long time needed to capture further spatial

locality. Overall, we believe there is significant headroom

for software and hardware optimizations that further improve

the spatial locality and energy efficiency of NDP systems.

NDP scaling: We now scale the number of stacks in the

Figure 7. Performance as a function of the number of stacks.

NDP system to observe scaling bottlenecks due to communi-

cation between multiple stacks. We use two cores per vault

with 16 vaults per stack. The host processor can directly

connect with up to 4 stacks (limited by pin constraints).

Hence, for the configurations with 8 and 16 stacks, we

connect up to 4 stacks in a chain as shown in Figure 1.

Figure 7 shows that applications scale very well up to 16

stacks. With 8 stacks, the average bandwidth on inter-stack

links is less than 2 Gbytes/s out of the peak of 160 Gbytes/s

per link. Even in communication-heavy phases, the traffic

across stacks rarely exceeds 20% of the peak throughput.

Most communication traffic is handled within each stack

by the network on chip, and only a small percentage of

communication needs to go across the serial links.

B. Performance and Energy Comparison

We now compare the NDP system to the baseline Conv-

DDR3 system, the Conv-3D system (3D stacking without

processing in the logic layer), and the base NDP system in

section III-A that uses the host processor for communication

between NDP threads [25]. We use four 2-threaded cores per
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Figure 8. Performance and energy comparison between Conv-DDR3, Conv-3D, Base-NDP and NDP systems.

vault and 16 vaults per stack. This means 512 NDP cores

(1024 threads) across 8 stacks.

Figure 8 shows the performance and energy comparison

between the four systems. The Conv-3D system provides

significantly higher bandwidth than the DDR3 baseline due

to the use of high-bandwidth 3D memory stacks. This

is particularly important for the bandwidth-bound graph

workloads that improve by up to 25% in performance and

19% in energy, but less critical for the other two frameworks.

The Conv-3D system is actually less energy-efficient for

these workloads due to the high background power of the

memory stacks and the underutilized high-speed links. The

slight performance drop for Hist, MLP, etc. is because the

sequential accesses are spread across too many channels in

Conv-3D, and thus there are fewer requests in each channel

that can be coalesced and scheduled to utilize the opened

row buffers.

The two NDP systems provide significant improvement

over both the Conv-DDR3 and the Conv-3D systems in

terms of performance and energy. The base-NDP system

is overall 3.5x faster and 3.4x more energy efficient over

the DDR3 baseline. Our NDP system provides another 2.5x

improvement over the base-NDP, and achieves 3-16x better

performance and 4-16x less energy over the base-DDR3

system. This is primarily due to the efficient communication

between NDP threads (see section III and IV). The benefits

are somewhat lower for grep, MLP and dA. Grep works

on 1-byte char data which requires less bandwidth per

computation. MLP and dA are computationally intensive and

their performance is limited by the capabilities of the simple

NDP cores.

Figure 9 provides further insights into the comparison

by breaking down the average power consumption. Note

that the four systems are engineered to consume roughly

the same power and utilize the same power delivery and

cooling infrastructure. The goal is to deliver the maximum

performance within the power envelope and avoid energy

waste. Both conventional systems consume half power in

the memory system and half in the processor. The cores

are mostly stalled waiting for memory, but idleness is not

Figure 9. System power breakdown (host processor + 8 stacks).

sufficiently long to invoke deeper low power modes (e.g.,

C3 to C6 modes). The DDR3 channels are burning dynamic

energy to move data with little reuse for amortization, with

relatively low background energy due to the modest capacity.

In the Conv-3D memory system, background power is much

higher due to the large number of banks and replicated pe-

ripheral circuitry. Dynamic energy decreases due to efficient

3D structure and TSV channels, but bandwidth is seriously

underutilized.

For the NDP system, dynamic memory power is higher

as there are now hundreds of NDP threads issuing memory

accesses. The host cores in our NDP system are idle for long

periods now and can be placed into deep low-power modes.

However, for the base NDP system, workloads which have

iterative communication require the host processor to coordi-

nate, thus the processor spends more power. The NDP cores

across the 8 stacks consume significant power, but remain

well-utilized. Replacing these cores with energy-efficient

custom engines would provide further energy improvement

(up to an additional 20%), but these savings are much lower

than those achieved by eliminating data movement with

NDP. A more promising direction is to focus the design of

custom engines on performance improvements (rather than
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power), e.g., by exploiting SIMD for MapReduce and DNN

workloads. This approach is also limited by the available

memory bandwidth (see Figure 4).

We do not include a comparison with baseline sys-

tems replacing OoO cores with many small cores at the

host processor side. The Conv-DDR3 system is already

bandwidth-limited, therefore using more cores would not

change its performance. A Conv-3D system would achieve

performance improvements with more small cores but would

still spend significant energy on the high-speed memory

links. Moreover, as we can infer from Figure 9 it would

lead to a power problem by significantly increasing the

dynamic power spent on the links. Overall, it is better to

save interconnect energy by moving a large number of small

cores close to memory and maintaining OoO cores on the

host for the workloads that actually need high ILP [66].

Regarding thermal issues, our system is nearly power-

neutral compared with the Conv-3D system. This can be

further improved with better power management of the

links (e.g., turn off some links when high bandwidth is not

needed), as they draw significant static power but are seri-

ously underutilized. Also, our power overhead per stack is

close to previous work [25], which has already demonstrated

the feasibility of adding logic into HMC [67].

C. System Challenges

The NDP system uses coarse-grained rather than fine-

grained address interleaving. To understand the impact of

this change, we run the SPEC CPU2006 benchmarks on

the Conv-3D system with coarse-grained and fine-grained

interleaving. All processing is performed on the host pro-

cessor cores. For the benchmarks that cache reasonably

well in the host LLC (perlbench, gcc, etc.), the impact

is negligible (<1%). Among the memory-intensive bench-

marks (libquantum, mcf, etc.), coarse-grained interleaving

leads to an average 10% slowdown (20.7% maximum for

GemsFDTD). Overall, this performance loss is not trivial

but it is not huge either. Hence, we believe it is worth it to

use coarse-grained interleaving to enable the large benefits

from NDP for in-memory analytics, even if some host-side

code suffers a small degradation. Nevertheless, we plan to

study adaptive interleaving schemes in future work.

Finally, Figure 10 compares the performance of the hybrid

workloads on the four systems. Energy results are similar.

The memory-intensive phases of these workloads execute on

NDP cores, leading to overall performances gain of 2.5x to

13x over the DDR3 baseline. The compute-intensive phases

execute on the host processor on all systems. ConvNet-Train

has negligible compute-intensive work. The baseline NDP

system uses the host processor for additional time in order

to coordinate communication between NDP cores. In our

NDP system, in contrast, NDP cores coordinate directly.

While this increases their workload (see KCore), this work

is parallelized and executes faster than on the host processor.

Figure 10. Hybrid workload performance comparison.

VII. CONCLUSION

We presented the hardware and software features nec-

essary for efficient and practical near-data processing for

in-memory analytics (MapReduce, graph processing, deep

neural networks). By placing simple cores close to memory,

we eliminate the energy waste for data movement in these

workloads with limited temporal locality. To support non-

trivial software patterns, we introduce simple but scal-

able NDP hardware support for coherence, virtual memory,

communication and synchronization, as well as a software

runtime that hides all details of NDP hardware from the

analytics frameworks. Overall, we demonstrate up to 16x

improvement on both performance and energy over the

existing systems. We also demonstrate the need of the

coherence and communication support in NDP hardware and

the need to optimize software for spatial locality in order to

maximize NDP benefits.
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