Cesium Lead Halide Perovskites with Improved Stability for Tandem Solar Cells

Stanford University, Moore Materials Research Laboratory, 466 Lomita Mall, Palo Alto, California 94305, United States

Supporting Information

ABSTRACT: A semiconductor that can be processed on a large scale with a bandgap around 1.8 eV could enable the manufacture of highly efficient low cost double-junction solar cells on crystalline Si. Solution-processable organic–inorganic halide perovskites have recently generated considerable excitement as absorbers in single-junction solar cells, and though it is possible to tune the bandgap of (CH3NH3)Pb(Br1−xIx)3 between 2.3 and 1.6 eV by controlling the halide concentration, optical instability due to photoinduced phase segregation limits the voltage that can be extracted from compositions with appropriate bandgaps for tandem applications. Moreover, these materials have been shown to suffer from thermal degradation at temperatures within the processing and operational window. By replacing the volatile methylammonium cation with cesium, it is possible to synthesize a mixed halide absorber material with improved optical and thermal stability, a stabilized photoconversion efficiency of 6.5%, and a bandgap of 1.9 eV and enable the synthesis of CsPb(Br1−xIx)3 perovskites that are thermodynamically favorable at room temperature.24

Controlling the halide stoichiometry in (MA)PbX3 perovskites has been explored as a means of tuning the bandgap, but an optical instability where the peak photoluminescence redshifts due to the perovskite separating into iodine-rich and bromine-rich phases under continued illumination reduces the voltage extracted and renders these materials ineffective as photovoltaic absorbers.25–27 Here, we investigate CsPb(Br1−xIx)3 materials with x ranging from 0 to 1 and find that films with low Br concentrations maintain uniform halide composition under illumination. By substituting the CsPbI3 lattice with 33% Br and annealing well below the transition temperature of 315 °C for the polycrystalline bulk material,28 we are able to solution-process a 1.9 eV bandgap material with improved optical and thermal stability relative to MA-based perovskites and improved structural phase stability relative to CsPbI3. Devices using this material have thus far yielded a stabilized PCE of 6.5%.

A series of films with increasing bromide fraction were spun from 0.4 M solutions of CsPbI3 and CsPbBr3 in dimethyl sulfoxide (DMSO) mixed in the appropriate molar ratio for the desired CsPb(Br1−xIx)3 composition. The exact composition of the x = 0.33 material used in devices was verified via ion chromatography on redissolved films. The measured I and Br fractions were 37.39% and 11.79% of the total mass, which corresponds to an I:Br ratio of 2.00:1 as expected. We have no reason to believe any iodine or bromine left any of the films we

Received: January 2, 2016
Accepted: February 10, 2016

DOI: 10.1021/jp5060002
prepared and determined the composition of the other films based on the measured amounts of precursors that were put into the spin-casting solution.

The structure of all films was examined via X-ray diffraction, and all relevant XRD spectra are shown below in Figure 1. Note that the film of phase-pure CsPbI3 transformed upon removal from the dry-air box, so the spectra shown here is from published first-principles calculations for the cubic perovskite CsPbI3 structure. A Mylar Chemplex Spectromembrane was used to protect the x = 0.4 and x = 0.2 samples resulting in a large amorphous feature centered around 2θ = 26° in both scans. The measured spectrum for CsPbBr3 shown here is in good agreement with literature data for the orthorhombic perovskite structure, the notable difference between the cubic and orthorhombic spectra being the absence of a distinct (111) peak. We note that the (100) and (200) peaks have increased relative intensity compared to literature data, suggesting that the processing route used here yields films that are somewhat oriented in the (100) direction. Because I is larger than Br, there should be a lattice contraction when Br substitutes for I. Thus, according to Bragg’s law nλ = 2d sin θ, there should also be a corresponding shift in XRD peaks to higher angles as Br concentration increases. The XRD spectra for x = 0.8 and 0.6 are thus consistent with an orthorhombic perovskite lattice that is slightly dilated relative to CsPbBr3. The relative intensity of the (110), (210), and (211) peaks are even further reduced in the spectra for the x = 0.4 and x = 0.33 compositions suggesting that these films are both oriented and in better agreement with a cubic rather than orthorhombic perovskite structure. In the scan for the x = 0.2 material, only the (100) and (110) perovskite peaks are present. No higher-angle perovskite peaks can be distinguished, and the peak at 2θ = 37° can be attributed to the delta phase. Although the perovskite peaks are dominant at low angles, the δ-phase peaks are more dominant at higher angles that were measured later in time, indicating that the material transitioned from the pseudocubic perovskite structure to the δ-phase over the course of the measurement. A spectrum for the room-temperature CsPbI3 δ-phase from Stoumpos et al. is included for reference.

The pseudocubic lattice parameter was also extracted from the (100) peak near 2θ = 15°. There is a lattice contraction with increasing Br content (Figure 2a) confirming that substitution on the anion site in CsPbX3 is occurring. The absorption spectra in Figure 2b show that the bandgap increases with bromide fraction from about 1.77 to 2.38 eV. Work by Hoke et al. has shown that (MA)Pb(Br, I1-x) compounds demonstrate a rapid redshift in photoluminescence wavelength due to photoinduced phase segregation for bromide concentrations exceeding 20% at fluences as low as 15 mW/cm², so we monitored the photoluminescence of the cesium mixed-halide perovskites to determine whether the same effect was present. Figure 3 plots the peak photoluminescence wavelength for the same series of compositions over time. The PL peak position was stable over time for CsPb(Br, I1−x) films with 0.4 < x < 1, however, shifted significantly at the same excitation fluence. We speculate that the photoinduced phase separation involves the formation of iodine-rich and bromine-rich phases and that it occurs because the free energy of the semiconductor in the excited state can be reduced when the

Figure 1. XRD spectra for CsPb(Br, I1−x)0.6 where x = 0 to 1. The spectrum of the membrane introduces a large amorphous feature into the x = 0.2 and 0.4 spectra that is difficult to subtract cleanly and is cut off here for ease of viewing. The full spectra for x = 0.2, 0.4, and the membrane are included in the Supporting Information.

Figure 2. Change in (a) lattice parameter based on the shift in the (100) peak and concurrent change in the bandgap energy and (b) absorption onset in CsPb(Br, I1−x)3 with increasing Br content.

DOI: 10.1021/acs.jpclett.6b00002

747
The thermal stability of CsPbBrI₂ was also examined at 200 °C in an inert atmosphere, slightly higher than the typical curing temperature of ethylene-vinyl acetate (EVA) and other viable encapsulants. The full absorption spectra were monitored over time via UV–vis spectroscopy. The (MA)PbI₃ control rapidly decomposed to PbI₂ after just 10 min at only 180 °C as indicated by the absorption edge shifting from 780 to around 520 nm. The absorption onset in CsPbBrI₂ is comparably stable even at the higher temperature (Figure 4). Future work will examine the thermal stability of optimized films to better assess long-term thermal stability.

Solar cells using CsPbBrI₂ in an inverted architecture were prepared using the architecture in Figure S4a. A 150 nm-thick perovskite layer was spun on a poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS) hole transport layer on an indium tin oxide (ITO)-coated glass substrate. [6,6]-phenyl-C₆₁ butyric acid methyl ester ([60]PCBM) was used as a hole transport layer with 8 nm of [2,9]-dimethy-[4,7]-diphenyl-[1,10]-phenanthroline (BCP) as a hole-blocking layer and 100 nm of Al as an electron selective contact. The as-spun perovskite layer was preannealed at 65 °C for 5 min to form the cubic perovskite phase and then immediately annealed at 135 °C for an additional 15 min to drive off solvent. As shown in Figure Sb, cells had a champion PCE of 6.69% when scanned from positive to negative voltage and 6.80% when scanned from negative to positive voltage with a Voc of 1.12 and 1.06 V, respectively, and a Jsc of 10.9 mA/cm² in both cases. Maximum power point tracking gave a stabilized efficiency of 6.5% (Figure 5a).

The external quantum efficiency of the device (Figure 5c) shows a maximum in absorption around 500 nm and a reduction in EQE at shorter wavelengths that can likely be attributed to parasitic absorption in the ITO.

With a bandgap of approximately 1.9 eV, CsPbBrI₂ could have a Jsc as high as 17.1 mA/cm² under the AM 1.5G spectrum. It should be possible to significantly improve device efficiency with better materials processing. The perovskite absorber layer is very thin, ~150 nm, with some pinholes that can be seen in an SEM image (Figure S4b), so shunts in the device is likely to reduce the fill factor and Voc whereas Jsc is likely limited by absorption. Thicker films could not be prepared via the one-step deposition of stoichiometric solutions because solution concentration was limited to 0.4 M by the solubility limit of CsBr. Work on developing a processing route that yields thicker films with better morphology is ongoing, and...
an optimized perovskite layer should yield a cell with significantly improved performance in all parameters. Further investigation of the energy levels in the material will enable better contact selection to maximize V_{oc} and photoconversion efficiency. Recent reports of the successful fabrication of single junction devices with Cs-stabilized FA-based perovskite absorbers suggest that further bandgap tuning may also be possible via the substitution of (MA) or (FA) on the cation site. With further optimization, the future of Cs-based mixed-halide perovskites as potential absorbers in tandem top-cells and other optoelectronic applications such as LEDs is bright.

EXPERIMENTAL METHODS

Materials Synthesis and Characterization. For all films and devices, 0.4 M solutions of CsPbBr$_3$ and CsPbI$_3$ in dimethyl sulfoxide (DMSO) were prepared using CsBr, CsI, PbBr$_2$, PbI$_2$ precursors and mixed in the appropriate molar ratios for the CsPb(Br$_x$I$_{1-x}$)$_3$ target composition. Solutions were prepared under an inert atmosphere in an N$_2$ glovebox with <5 ppm of O$_2$ and H$_2$O, dissolved at 150 °C for 1 h, filtered through a 200 nm PTFE filter, and then transferred to a dry-air box for deposition processes. Films for XRD, absorption, photoluminescence, and thermal stability measurements were prepared by spinning 80 μL of solution at 2000 rpm for 60 s. The glass substrates were cleaned, UV-ozone treated for 30 min, and heated to 65 °C along with the filtered solutions in the dry-air box for at least 15 min prior to deposition, which was done rapidly while the substrate and solution were still at an elevated temperature. Films with $x \geq 0.4$ were annealed at 65 °C for 1 h, but films with $x \leq 0.2$ were found to change color from brown-black to yellow, presumably transitioning to the more thermodynamically stable δ-phase, over the course of such a long annealing time. These films were heated for only 15 min and characterized immediately after the annealing step. Films for photoluminescence and XRD measurements were also capped with a 50 mg/mL polystyrene solution in chlorobenzene spun at 2000 rpm for 30 s.

X-ray diffraction spectra were measured on a Panalytical X’Pert Pro Diffractometer (Copper anode, $K\alpha_1 = 1.54060$ Å, $K\alpha_2 = 1.54443$ Å, $K\alpha_2/K\alpha_1$ ratio = 0.50). A Mylar Chemplex Spectromembrane was used to protect air sensitive samples during XRD characterization. All other characterization and device testing was done in a dry N$_2$ box unless otherwise specified. Absorption was measured with an Ocean Optics USB4000 spectrophotometer and an HL-200 halogen light source using a blank glass slide as a reference sample. In thermal stability tests, CsPbBr$_2$I$_2$ samples were heated in a dry N$_2$ box (O$_2$ < 15 ppm) at either 85 or 180 °C alongside (MA)PbI$_3$ control samples prepared via a spectator-ion method with lead acetate that has been used to produce our lab’s highest-efficiency MA-based devices, and absorption was measured as a function time. Photoluminescence measurements were performed with a 488 nm CW laser at 100 mW/cm2 (unless otherwise specified) for CsPb(Br$_{1-x}$I$_x$)$_3$ with $0 \leq x \leq 0.6$ and 375 nm CW laser at 130 mW/cm2 for $0.8 \leq x \leq 1$. PL samples were kept in an N$_2$ chamber during measurement.

Figure 5. (a) Stabilized power output and (b) current density–voltage characteristics (0.025 V/s scan rate) for the champion device; (c) external quantum efficiency for a representative device with an integrated current of 9.5 mA/cm2 (see Figure S5 for steady-state J_{sc}).
Device Fabrication and Testing. For devices, 10 Ω/square ITO substrates were again cleaned and UV-ozone treated for 30 min, then coated with a ∼30 nm thick PEDOT:PSS hole transport layer (Figure S4b) spun at 4000 rpm for 30 s in ambient conditions. Substrates and films were heated and deposited as above. After spinning, the coated substrates were heated for 5 min at 65 °C so that a uniform brownish black perovskite layer with little optical haze formed and were then annealed for an additional 15 min at 135 °C. The unfinished devices were then allowed to cool to room temperature before the deposition of bathocuproine (BCP) and 100 nm of Al (Figure S4b) were evaporated as a hole-blocking layer and an electron selective contact, respectively. The finished devices were then coated with a Keithley 2400 source meter and a SpectraPhysics 91160-1000 Instruments SpectraPro 150 monochromator and chopped at the excitation beam, which was focused through a Princeton 100 W tungsten lamp (Newport) was used to provide an 80 μL of 22 wt % [6,6]-phenyl-C61-butyric acid methyl ester ([60]PCBM) was pipetted onto the perovskite layer and spun at 3000 rpm for 40 s. The [60]PCBM layer was annealed for 7 min at 85 °C, and the unfinished devices were left overnight in a dry N2 glovebox. Then, 8 nm of nickel, N. H. Perovskite Solar Cells with Large-Area CVD-Graphene for Tandem Solar Cells. J. Phys. Chem. Lett. 2015, 6, 2745–2750.

