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Instability of electrokinetic microchannel flows with conductivity gradients
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Electrokinetic flow is leveraged in a variety of applications, and is a key enabler of on-chip
electrophoresis systems. An important sub-class of electrokinetic devices aim to pump and control
electrolyte working liquids with spatial gradients in conductivity. These high-gradient flows can
become unstable under the application of a sufficiently strong electric field. In this work the
instability physics is explored using theoretical and numerical analyses, as well as experimental
observations. The flow in a long, rectangular-cross-section channel is considered. A conductivity
gradient is assumed to be orthogonal to the main flow direction, and an electric field is applied in
the streamwise direction. It is found that such a system exhibits a critical electric field above which
the flow is highly unstable, resulting in fluctuating velocities and rapid stirring. Modeling results
compare well with experimental observations. The model indicates that the fluid forces associated
with the thin dimension of the channel~transverse to both the conductivity gradient and the main
flow direction! tends to stabilize the flow. These results have application to the design and control
of on-chip assays that require high conductivity gradients, and provides a rapid mixing mechanism
for low Reynolds number flows in microchannels. ©2004 American Institute of Physics.
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I. INTRODUCTION

Over the past decade there has been extensive res
into the design of microfluidic systems for chemical analys
These devices offer the promise of integrating multiple la
ratory processes onto a single chip, thereby increas
throughput and decreasing assay cost.1 Extensive reviews of
manufacturing techniques, applications, and enginee
challenges of micro total analysis systems~mTAS! have been
presented.2–5

The mass and ion transport regimes ofmTAS are often
distinct from macro-scale flow devices. One important
gime is electrokinetics~EK!, which describes the coupling o
ion transport, fluid flow, and electric fields.6,7 A solid surface
in contact with an electrolyte typically acquires a surfa
charge and forms an electric double layer~EDL!, composed
of the wall charge and a counter-ion shielding layer with
thickness characterized by the Debye length. Electroosm
is the bulk motion of liquid that results upon the applicati
of an external field with a component parallel to the surfa
Electrokinetics includes also electrophoresis, which is
drift motion of charged species.

Typical microchannel flows have characteristic scales
10 microns or greater, and Debye lengths of 10 nm or less
that the EDL is confined to a thin layer near the wall. F
‘‘thin’’ EDLs, electrolyte motion outside of the double laye
can be modeled as flow with a slip velocity condition.8 This

a!Electronic mail: hao.lin@stanford.edu
1921070-6631/2004/16(6)/1922/14/$22.00
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slip approximation is unlike the stress-free condition of p
tential flow theory9 in that it supports both a slip velocity
proportional to local electric field and a viscous stress. As
shall discuss here, net charge can also be generated in
bulk flow due to the interaction of electric fields and condu
tivity gradients; this leads to body forces that can destabi
electrokinetic flow.10,11

Electrokinetics is a subfield of electrohydrodynami
~EHD!, which can be defined as the interaction between e
tric fields and fluid motion. Generalized transport equatio
for EHD flows are presented in a review by Saville.12 EK
effects are distinguished by the importance of charge sep
tion at solid–liquid interfaces.7,13,14 These interfacial forces
can dominate solute transport inmTAS. General EHD theory
also includes forces that act away from solid–liquid inte
faces in regions where the liquid has conductivity and p
mittivity gradients.15 Classical EHD studies typically dea
with near-dielectric liquids with conductivities of orde
10211– 1029 S/m and can be described by the leak
dielectric model developed by Taylor and Melcher.12 In this
model, liquids are described as having both polarizabi
and free charge, and the internal electric field generated
accumulated charges can be on the order of the extern
imposed field. The leaky-dielectric model is reviewed in d
tail by Saville12 and Melcher and Taylor.15,16 The model of-
ten uses a formulation for conservation of net charge
conductivity as scalar quantities.15 This Ohmic model has
been used to describe instabilities in EHD flows where int
facial EK effects are not considered.17 This work includes
2 © 2004 American Institute of Physics
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1923Phys. Fluids, Vol. 16, No. 6, June 2004 Instability of electrokinetic microchannel flows
EHD stability studies with axial~i.e., parallel to an electric
field!,11,18 and transverse conductivity gradients.10

We shall apply concepts from generalized EHD theory
describe EK flow instabilities in microchannels. Particula
relevant to our work is that of Hoburg and Melcher,10 who
studied a similar flow configuration and electric field co
figuration. They performed a stability analysis for an elect
field parallel to a liquid–liquid interface~perpendicular to
the conductivity gradient! and flow initially at rest. Their
analysis, which neglects molecular diffusion, showed the
terface is stable for all electric fields when the liquid–liqu
interface is assumed to be infinitely sharp.19 More impor-
tantly, they showed this configuration is unstable for all a
plied electric fields when the interface is modeled with
finite-width, exponentially dependent concentration pro
between the two liquids~with no subsequent diffusion!. The
latter case exhibited an instability that resulted in buckl
and distortion of the interface. Hoburg and Melcher d
scribed the instability mechanism as initiated by charge
cumulation at a perturbed interface, and made qualita
comparisons to experiments with an oil–oil interface co
tained between two 19 by 70 mm glass plates separated
mm in the direction perpendicular to both the applied fie
and the conductivity gradient, and a characteristic field
;104 V/cm.10 Another important insight is offered by th
work of Baygents and Baldessari11 who found that including
the diffusion of conductivity is crucial to the existence of
critical electrical field above which the flow is unstable. A
though their conclusion was reached for a different elec
field/conductivity gradient configuration, we will show th
idea also holds for our case.~A study of a flow field similar
to that considered by Baygents and Baldessari was also
formed by Benet al.,20 using a similarity analysis approach
however, these authors concluded that flow instabilities w
insignificant for their parameter range of interest.!

Here we are interested in EK flows with conductivi
gradients, which are critical to a variety of on-chip assa
including field amplified sample stacking,21 isoelectric
focusing,22 and electrophoretic assays where conductivit
of various sample and buffer streams are either unknow
poorly controlled. This flow also has direct applications
rapid mixing of sample streams and to preserving the sta
ity of co-flowing streams as in lamination processes.23 A fun-
damental understanding of electrokinetic instabilities c
provide a design framework whereby instabilities a
avoided, as they are often detrimental to system per
mance. Two of us~C.H.C. and J.G.S.! reported observation
of EK instabilities in flows with significant conductivity gra
dients within microfluidic T- and X-junctions.24 Three of us
~C.H.C., H.L., J.G.S. together with S. K. Lele! presented a
formulation of these instability dynamics and summariz
the results of a linear analysis that models the mechan
behind the growth and propagation of the unstable wave
EK T-junctions.25 These instabilities can also be applied a
means for rapid mixing of low Reynolds number flow
where mixing is often limited by molecular diffusion.26 For
example, two of us~M.H.O. and J.G.S.! have leveraged elec
trokinetic instabilities in a rapid micromixer design.27
Downloaded 30 Apr 2004 to 171.64.116.167. Redistribution subject to AIP
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In this paper we present experimental, analytical, a
computational results in order to quantify an electrokine
flow instability observed in long, thin electrokinetic micro
channels with conductivity gradients orthogonal to the ch
nel axis. We will re-exam the assumptions of Hoburg a
Melcher for micro-fluidic applications, and follow a gener
formulation and framework given by Melcher.15 In particu-
lar, we include advective effects due to electroosmotic flo
an initial conductivity profile consistent with our exper
ments, and a diffusive component of the conductivity cons
vation equation critical in modeling EK instabilities. Th
electroosmotic flow results in a shear flow imposed on
liquid. The detailed physics of the EDL are treated
coupled to the rest of the flow through a slip boundary co
dition which depends on local electrolyte conductivity. W
present a two-dimensional linear stability analysis and c
duct nonlinear flow simulations. We also extend the line
analysis to include three-dimensional effects.

The paper is organized as follows. In Sec. II we outli
our flow field and present experimental results; in Sec. III
formulate the governing equations; in Sec. IV we presen
two-dimensional model, conduct a linear stability analys
present stability diagrams in the phase space of wave num
and the applied electrical field, and present full numeri
simulations; in Sec. V we perform analysis of the thre
dimensional flow and perform linearized numerical simu
tions to find stability boundaries. We discuss the differen
between the flow dynamics in the two- and thre
dimensional cases, demonstrate the mechanisms for th
stability and compare theory to experiments in Sec. VI.

II. EXPERIMENTAL OBSERVATIONS

A. Setup

Figure 1 shows a schematic of the microchannel se
used in the experiments. The microchannel consisted o
borosilicate glass capillary~Wilmad-Labglass, NJ! with a
rectangular cross section; the inner dimensions were 1
3100mm, and the length was 40 mm. The capillary en
were sealed using a silicone adhesive to custom-mach
acrylic manifolds housing inlet and outlet ports. A syring
pump forced dyed and undyed buffer solutions from the in
ports through the capillary toward the outlet port. The bu
ered solutions completed the electric circuit between pl
num electrodes located at the inlet and outlet of the capill
The aqueous buffered solutions consisted of a 10 m
HEPES buffer~Sigma-Aldrich Corp, MO!. To visualize fluid
motion, an electrically neutral, high-molecular-weight d
~70kDalton! composed of a dextran-rhodamine B conjuga
~Molecular Probes, OR! was added to one of the buffe
streams at a concentration of 2mM. This dye was used to
minimize both electrophoretic drift and molecular diffusio
of dye molecules during experiments of order 10 s durati
The dynamics of the scalar fields shown here are, theref
associated with the development of the background bulk
uid. Potassium chloride was added to the dyed buffer so
tion to control/increase its electrical conductivity. The dy
solution conductivity,shigh, was measured as 50mS/cm us-
ing a CON 500 Oakton Instruments conductivity meter~Ver-
 license or copyright, see http://pof.aip.org/pof/copyright.jsp



vi

it
re
th
icr
wo
e
a-

the
ile
sed
n-

tro-
c-
ge

n-

lt-

ge
ing

pec-

on-
ig.

nel
00,
top

ace
nnel
the
DC
un-
on-
as
p-
two
dly
le

ro-
and

ion
00
ate
ble

er-
led
ng
w-
n of
he

000
ke
c-
te
, as
ity

T

i-
ith
ig
vit
n
du
ne
he

1924 Phys. Fluids, Vol. 16, No. 6, June 2004 Lin et al.
non, IL!, while that of the undyed buffer solution,s low , was
5 mS/cm, yielding a conductivity ratio ofg510. The dilute
electrolytes can be assumed to have the permittivity and
cosity of pure water.28,29 Other properties of the working
electrolytes are discussed in Sec. III, and summarized
Table I.

The two syringes on the syringe pump were loaded w
high and low conductivity liquid. These two outputs we
connected to the upstream manifold which combined
pressure-driven streams of the syringes into the glass m
channel, forming an interface within the channel. The t
buffer streams initially occupied the upper and lower halv
of the microchannel resulting in a diffuse conductivity gr
dient along the spanwise,y-direction. Following buffer

FIG. 1. Schematic of the setup used for microchannel flow experiments.
channel is 1 mm wide~y!, 100mm deep~z!, and 40 mm long~x!. Two buffer
solutions with differing electrical conductivities are introduced into the m
crochannel using a syringe pump, resulting in a single buffer stream w
spanwise electrical conductivity gradient. Upon the application of a h
voltage along the streamwise direction, the width of the diffuse conducti
interface is approximately 750mm at the imaging location, halfway betwee
the inlet and outlet of the capillary. The shape and thickness of the con
tivity field is derived from the residence time of the interface in the chan
~;12 s! before the activation of the electric field and as it flows from t
inlet to the viewing area.

TABLE I. Parameters and fundamental scales.

Symbol Description Value

eo Universal permittivity coefficient 8.85310212 C/V•m
e r Relative permittivity 78.3
e Permittivity 6.93310210 C/V•m
m Absolute viscosity 1023 kg/m•s
ro Density for water 103 kg/m3

D Diffusivity 2.031029 m2/s
w Mobility 8.2310213 mol•s/kg
F Faraday constant 9.653104 C/mol
zo Reference EDL zeta potential 27.031022 V

DCo Molar concentration difference 3.731027 mol/m3

Co Molar concentration 3.331022 mol/m3

H Half-width of the channel 5.031024 m
Eo Typical value for impose field 2.53104 V/m
Uev Electroviscous velocity scale 2.231021 m/s
T Time scale 2.431022 s
Downloaded 30 Apr 2004 to 171.64.116.167. Redistribution subject to AIP
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stream injection, the syringe pump was deactivated and
electric potential of the inlet port electrode was raised wh
keeping the outlet port electrode grounded. The impo
electric potential initiated an electroosmotic flow in the cha
nel and, for electric fields above a threshold value, elec
kinetic instabilities. The potential drop between the ele
trodes was held constant at 1, 2, or 3 kV using a volta
signal from a LabVIEW-controlled DAQ card~National In-
struments Inc.! coupled to a high voltage amplifier~10/10b,
Trek Inc., NJ!. Fluid motions were observed using an i
verted, epi-fluorescent microscope~Nikon TE300! and a 43
microscope objective~numerical aperture of 0.2!. To increase
the field of view, a 0.63 demagnifying lens was used, resu
ing in an overall magnification of 2.43. A CCD camera
~CoolSnap fx, Roper Scientific Inc., AZ! with a 12-bit inten-
sity digitization resolution recorded the images. Ima
signal-to-noise ratio and frame rate was improved by binn
individual CCD pixels to form 434 super pixels, which re-
sulted in final binning dimensions of 26.8326.8mm in the
image plane. The exposure time and frame rate were, res
tively, 15 ms and 10 frames per second.

B. Results

A representative set of images from experiments c
ducted at 1, 2, and 3 kV applied potentials are shown in F
2. The potentials were applied over the 40 mm chan
length; these were equivalent to applied fields of 250
50000, and 75000 V/m, respectively. In each case, the
figure of each series shows the initial, undisturbed interf
between the dyed and undyed buffer streams in the cha
(t50). The successive images in each column show
temporal evolution of the imaged dye under a constant,
potential. In this color scheme, blue corresponds to the
dyed, low-conductivity stream, and red to the dyed high c
ductivity stream. For a field of 25000 V/m, the interface w
only slightly perturbed and only slight fluctuations were a
parent in the images captured at 4.0 and 5.0 s. At the
higher applied potentials, the interface exhibited a rapi
growing wave pattern within the first 0.5 s. The unstab
fluid motion in the channel buckled the interface and p
ceeded to stretch and fold material lines. The transverse
fluctuating velocities associated with this unstable mot
resulted in rapid mixing of the two streams. At the 750
V/m applied field, the channel reached a well-stirred st
with nearly homogeneous concentration fields observa
within 5 s. Qualitatively, the observed dynamics of the int
face may be described as follows: First, the interface buck
into a wave-like pattern with spatial wavelengths rangi
from 1 to 2 times of the spanwise channel width. Next, lo
intensity, unseeded regions extended into the dyed regio
the flow in a series of finger-like structures aligned with t
concentration minima in the initial wave~e.g., see the 1.0 s
image at 50000 V/m and, especially, the 0.5 s image at 75
V/m!. Next, the interface and fingering structures bro
down into a more complex pattern with concentration flu
tuations occupying the full width of the channel. At this la
stage, rolling structures were sometimes apparent. Finally
the complex velocities associated with the instabil
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1925Phys. Fluids, Vol. 16, No. 6, June 2004 Instability of electrokinetic microchannel flows
stretched and folded material lines, the dye distribu
evenly throughout the channel, making it difficult to furth
observe liquid motion. The largest transverse velocities in
experiments~observable by the initial transverse motion
the interface! were roughly 0.1–5 mm/s for applied fields o
25000–75000 V/m. Again note that diffusive transport of t
dye in this experiment was negligible so that the homo
neous dye concentration at the later times of the 50000
75000 V/m experiments were indicative of a well-stirr
state.

III. THEORETICAL FORMULATION

The description of experiments given above serves a
introduction to the problem and describes observed feat
of electrokinetic flow instability. We now turn to a theoretic
formulation of the flow following a general framework pro
vided by Melcher.15 We start with general charge conserv
tion equations, perform scaling analysis, and obtain a se
simplified equations that is suitable for the parameter ra
of our experiments.

FIG. 2. ~Color! Sample images from the experiment, shown for appl
fields of 25000, 50000, and 75000 V/m, corresponding to the first, sec
and third column. Images obtained at various times are shown for e
column. The electric field and bulk flow directions were from left to rig
High voltage was applied as a Heaviside function att50 s. Each image
corresponds to a physical area 1 mm wide~y! and 3.6 mm long~x!. The
depth of the channel is 100mm along thez direction~into the page!. At the
time of the application of the high voltage, the diffuse conductivity interfa
was approximately 750mm wide at the imaging location. Small amplitud
waves observed att50.5 s quickly grow and lead to rapid stirring of th
initially distinct buffer streams. The instability quickly stretches and fo
material lines and, after about 4 s for the 75000 V/m applied field, results i
a well-stirred, relatively homogeneous dye concentration field. The tim
the images in each row are shown in the figure.
Downloaded 30 Apr 2004 to 171.64.116.167. Redistribution subject to AIP
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A. Governing equations

We start with the conservation laws for a dilute, tw
species electrolyte solution:15

]C1

]t
1v•¹C15w1¹•~z1FC1¹F!1D1¹2C1 , ~1!

]C2

]t
1v•¹C25w2¹•~z2FC2¹F!1D2¹2C2 , ~2!

where Ci8s are the molar concentration of the electrolyte
wi8s are the coefficients of mobility,F is the Faraday con-
stant,Di8s are the diffusive coefficients,zi8s are the valence
numbers~we assumez152z251), and F is the electric
potential. The Poisson equation for the electric field is th

e¹2F52rE , ~3!

where

rE5(
i 51

2

ziFCi . ~4!

HererE is the charge density, ande5e reo is the permittivity
of the liquid. In the Poisson formulation, we assume t
permittivity of the liquid is uniform as we are interested
nearly isothermal electrokinetic microflows of dilute electr
lytes ~e.g., biological buffers with order 10 mM concentr
tions!. In such systems, electrolyte conductivity field
dominated by ion densities and a uniform ion mobility, a
electrolyte permittivity is that of the solvent~typically wa-
ter!. To complete the system we need also the continuity
conservation of momentum equations for the liquid,

¹•v50, ~5!

rS ]v

]t
1v•¹vD52¹p1m¹2v2rE¹F. ~6!

Here,r is the density,v is the flow velocity,p is the pressure,
andm is the absolute viscosity. The electric flux and spec
conservation are coupled to the mechanics through the e
tric force 2rE¹F in the momentum equation.

For our problem it is more convenient to transform t
system of molar concentrations (C1 ,C2) into the quantities
of (rE ,s), using Eq.~4! and the definition for conductivity

s[(
i

wizi
2F2Ci . ~7!

For the simple case of two species, Eqs.~4! and ~7! consti-
tute a reversible transformation from the pair (C1 ,C2) to
(rE ,s), with the inverse transform

C15
s1w2FrE

F2~w11w2!
,

C25
s2w1FrE

F2~w11w2!
.

If we further assume, for simplicity, that other properties
the electrolytes are symmetric, i.e.,w15w25w, D15D2

5D, andz152z251, we can re-write Eqs.~1! and ~2! in
terms ofrE ands, as

]rE

]t
1v•¹rE5¹•~s¹F!1D¹2rE , ~8!

d,
ch

f

 license or copyright, see http://pof.aip.org/pof/copyright.jsp



o

n

a
i
o
ld
a
s
u

ro
ng

n

nd

o
y

re

th
m
e
o
m

ity
t

-
he
b-
of
in
st

.
en

r
is

e

sed
-

er,

s
in

in-
de-
ec-

1926 Phys. Fluids, Vol. 16, No. 6, June 2004 Lin et al.
]s

]t
1v•¹s5F2w2¹•~rE¹F!1D¹2s. ~9!

Equations~8! and~9!, together with~3!, ~5!, ~6!, and appro-
priate boundary conditions, completely define our system
interest.

B. Scaling and simplifications

We introduce the following scales for the nondimensio
alization of our governing equations:

@v#5Uev , @L#5H, @ t#5H/Uev ,

@s#5wF2Co , @F#5EoH, @rE#5FDCo ,

@r#5ro , @p#5mU/H, @z#5zo .

Herez is the EDL zeta potential~discussed below!. The val-
ues we adopt for these scales are listed in Table I, and
chosen to best represent the experiments in Sec. II. The
diffusivity and mobilities are averages of the values of p
tassium chloride ions which dominate the conductivity fie

A few remarks on the value of the scales we choose
appropriate. First, the scale for the charge density is cho
such that the electric field generated by charges in the b
matches the imposed one in magnitude@see Eq.~3!#:

FDCo5
eEo

H
,

or

DCo

Co
5

eEo

FCoH
;1.031025.

The choice of characteristic length in this relation is app
priate as we are interested in cases where the diffusive le
scale is on the order of the spanwise channel widthH. Be-
cause the charge density is induced by the molar differe
of the two species, the smallness of the parameterDCo /Co

implies the well-known electroneutrality assumption.10,11,15

This assumption states an approximately net neutral co
tion of the form

C1'C2 .

However, the finite difference between the concentration
the two species is proportional to the net charge in the s
tem and, although small compared toCo , can easily generate
a significant electric body force term that must be conside
in the equations of fluid motions.~We have confirmed with
nonlinear numerical simulations of these equations that
generated field in unstable–rapid mixing conditions is co
parable to or greater than the applied field in magnitud!
Second, the velocity scale is derived from the balance
viscous force with the electric body force in the momentu
equation~6!, following Hoburg and Melcher:10

Uev[
eEo

2H

m
. ~10!

Note that we do not use the apparent, ‘‘obvious’’ veloc
scale that is observed experimentally in the base flow, tha
the electroosmotic velocity

Ueo[2
ezoEo

m
. ~11!
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This is the well-known Helmholtz–Smoluchowski formula
tion which we use to relate electroosmotic velocity to t
wall zeta potential and electric field. This velocity is esta
lished within the EDL and determines the bulk advection
scalars in the flow field. However, as we will show later
Sec. IV, for the unstable, rapid-mixing regime of intere
here, the electroviscous velocity scaleUev is correct in char-
acterizing the fluctuations associated with EK instabilities

Our governing equations in dimensionless form th
read

DCo

Co
S ]rE

]t
1v•¹rED5b¹•~s¹F!1

DCo

RaeCo
¹2rE ,

~12!

]s

]t
1v•¹s5

DCo

Co
b¹•~rE¹F!1

1

Rae
¹2s, ~13!

¹2F52rE , ~14!

¹•v50, ~15!

ReS ]v

]t
1v•¹vD52¹p1¹2v2rE¹F, ~16!

where

Rae[
UevH

D
5

eEo
2H2

mD
;5.43104, ~17!

is an electric Rayleigh number~this use of Rayleigh numbe
to denote the ratio of diffusive to convective time scale
similar to that by Baygents and Baldessari!,11

Re[
r0UevH

m
5

roeEo
2H2

m2 ;100, ~18!

is the Reynolds number. The dimensionless numberb is de-
fined as

b[
wFEo

Uev
;931023, ~19!

which is the ratio of the electrophoretic ion velocity to th
electroviscous flow velocity.

We should mention that as the magnitude of the impo
field ~and subsequently the scaleEo) changes, the dimen
sionless numbersDCo /Co , b, Rae , andRechange as well,
and the flow can be brought into different regimes. Howev
for the electric field range of interest,DCo /Co remains a
very small quantity, which results in further simplification
of our system.36 Namely, the divergence term is dominant
Eq. ~12!, so the equation reduces to

¹•~s¹F!50. ~20!

This relaxation assumption states that the generated field
stantaneously satisfies the divergence condition. If we
compose the electric field into a constant, imposed, unidir
tional field plus a generated one asE5Eoex2¹f in
dimensional form~or E5ex2¹f in nondimensional form!,
we obtain

]s

]x
5¹•~s¹f!. ~21!
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1927Phys. Fluids, Vol. 16, No. 6, June 2004 Instability of electrokinetic microchannel flows
We denote the generated field withf, and distinguish it from
the total~appliedplus generated! field F. Consequently, Eq
~13! can be simplified as

]s

]t
1v•¹s5

1

Rae
¹2s, ~22!

which is a natural consequence out of the electroneutra
condition.

Equations~14!–~16!, ~21!, and ~22! constitute a com-
plete system fors, rE , f, p, andv, and will be the set of
governing equations.

It is instructive to compare this formulation for EK flow
instabilities to previous work on EHD flow instabilities
First, the inclusion of the diffusive term in the conservati
of conductivity equation~22! is suggested by the work o
Baygents and Baldessari.11 Although they examined a differ
ent electric field and conductivity gradient configuratio
Baygents and Baldessari found that molecular diffusion
an important stabilizing effect and is responsible for the
istence of a threshold electric field below which their EH
flow was stable. Our modeling work shows that the diffus
conductivity term in Eq.~22! is indeed required to capture
threshold instability condition in our flow. The model o
Hoburg and Melcher,10 who explored a configuration simila
to ours~with a conductivity gradient perpendicular to applie
field! neglected this term as their flow length scales of int
est were larger than those of our 10031000mm channel
cross-section. Our convective electroosmotic flow bound
conditions~see next section! are also a new characteristic n
found in the initially stationary-liquid EHD work. Anothe
difference between this and the work of Hoburg and Melc
is that we consider a more realistic conductivity profile co
sistent with our experiments.~Note that Hoburg and Melche
also used a more realistic diffusive profiles in later studies
different flow configurations, see for example, Ref. 1!
Lastly, we consider both two- and three-dimensional flow
and solve the fully nonlinear equations in the tw
dimensional case.

C. Boundary conditions

In our analysis we shall assume periodicity in t
streamwise~x! direction, and prescribe the following~dimen-
sionless! boundary conditions on the walls:

¹f•n50, ~23!

¹s•n50, ~24!

v"t5
1

Rv
zE"t, ~25!

v"n50, ~26!

where t and n are the tangential and normal vectors of t
wall, respectively. Equations~23! and ~24! are respectively
the condition that the boundary is nonconductive, and t
there is no ion diffusion across the boundaries; Eq.~26! is the
condition that the wall is impenetrable. Special attent
should be paid to Eq.~25!. This equation is simply the di
mensionless form of the Helmholtz–Smoluchowski formu
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tion ~11!, but with z being a function of local conductivity
and E being the instantaneous local electric field. Our no
dimensionalization gives us another dimensionless group

Rv[
EoH

2zo
;5.631023, ~27!

which represents the electroviscous to electroosmotic ve
ity ratio.

To close the system Eq.~25! can be combined with the
following approximate empirical correlation for the nond
mensional zeta potential:

z5S C

CR
D n

,

where CR is a reference concentration at whichz* 5zo

52731022 V. We take its dimensional value asCR*
51.0 mol/m3, which correspond to a dimensionless value
CR'30 in our current scheme of nondimensionalization. F
the power indexn, classical EDL theory would suggest
value ofn521/2, which assumes a constant surface cha
density.7 However, more recent models of EDL physic
~Scaleset al.30! suggest a somewhat weaker dependencez
on ion density. In this paper, we assume an approxim
value ofn521/3 as suggested by the experimental work
Yao et al.31 who measured zeta potentials of borosilicate s
faces. Our diffusive ohmic model formulation, therefor
couples with the physics of the EDL only through a s
velocity which is dependent on local ion density.

Lastly, note that in nondimensional termss'2C from
the electroneutrality assumption.

IV. TWO-DIMENSIONAL MODEL

In this section we assume that the flow exists only in
x-y plane, with no dynamics in thez direction. This analysis
will capture the basic physics of the instability mechanis
due to the conductivity gradient. As we discuss in the n
section, the primary defect of this model is the neglect of
influence from the side walls in thex-y plane. The experi-
mental channel is ‘‘shallow’’~in z! compared to the heigh
~in y!. ~Here we refer to a channel as shallow if its asp
ratio @z#/@y#!1, and ‘‘deep’’ if @z#/@y#@1 such that the
two-dimensional simplification can be assumed.! Despite its
limitations, the two-dimensional model provides a fram
work to understand the full three-dimensional physics a
the experimental results.

We will start the section by conducting a linear stabili
analysis of the governing equations to analyze the beha
of the system. We follow by a two-dimensional nonline
simulation to demonstrate the basic features of the simula
flow and draw comparisons to the experiments.

A. Linear analysis

We use a linear stability analysis to predict the regim
where we would expect rapid mixing to occur. We start
defining a base state that satisfies the governing equat
The base state is assumed to be a function ofy and t only.
This simple assumption, coupled with two-dimensional
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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and continuity, demand that velocity field iny is zero. The
base state of conductivitys0(y,t) thereby obeys the simpl
diffusion equation

]s0

]t
5

1

Rae
¹2s0 ,

subjected to the Neumann boundary conditi
@]s0 /]y#y56150. To determines0(y,t50) we solve a pre-
liminary problem where the upper and lower halves of
channel are assumed to be of uniform, but differing cond
tivities separated by an infinitely sharp gradient. The int
face is allowed to diffuse for a time equal to the advect
time from the channel inlet to the viewing area of the expe
ment. The resulting conductivity profile is then used as
initial condition to the instability analysis.

The difference in the conductivity in the two chann
halves induces different electroosmotic velocities at the
per and lower boundaries of the channel. The resulting b
state flow field under these assumptions is a sheared Co
flow

u05
U11U21

2
1y

U12U21

2
, ~28!

where the velocities at the boundaries (U1 and U21) are
provided by Eq.~25!. The base values for the generated el
tric potential and charge density are zero.

The base solution satisfies the governing equations,
we check the stability of this base state with respect to sm
perturbations. We assume periodicity inx and expand the
base solution in normal modes asf 5 f 0(y,t)1e f̂ (y,t)eikx,
wheree is a small parameter.32 The linearized equations fo
the disturbances read

052 ikŝ1s0¹2f̂1
ds0

dy

]f̂

]y
, ~29!

]ŝ

]t
52 iku0ŝ2 v̂

ds0

dy
1

1

Rae
¹2ŝ, ~30!

ikû1
] v̂
]y

50, ~31!

]û

]t
52 ikuoû2 v̂

duo

dy
1

1

Re
~2 ik p̂1¹2û2¹2f̂ !, ~32!

] v̂
]t

52 ikuov̂1
1

ReS 2
] p̂

]y
1¹2v̂ D , ~33!

where

¹2[S ]2

]y22k2D .

The boundary conditions become

]f̂

]y
50, ~34!

]ŝ

]y
50, ~35!
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1 ikf̂ D , ~36!

v̂50. ~37!

The time dependence of the base state introduces a
homogeneous function in time that prevents us from ass
ing the standard separable temporal growthest. We can make
a quasi-steady assumption for the base state and cond
traditional linear stability analysis replacing the time deriv
tives in the above equations as]/]t5s. This quasi-steady
assumption is accurate when the growth rate of the pertu
tion is rapid with respect to the time scale of diffusion of t
base state conductivity, which is the case of interest w
predicting rapid mixing regimes. When the growth rate of t
disturbance is very slow~i.e., just above neutral stability!,
the streams will significantly mix via molecular diffusio
before the disturbance waves grow large enough to begi
nonlinearly fold the two fluid streams. To verify the accura
of our assumption we have solved the linearized equati
above with and without this quasi-steady assumption; for
latter we solve the full time-dependent, initial value proble
We find that the linear flow evolution is identical for eithe
solution method when the growth rate of the perturbation
‘‘large’’ ~we shall define a large growth rate via a mixin
criterion below!.

The linearized equations are solved using stand
pseudo-spectral techniques with Chebyshev polynomials
the basis functions. Under the quasi-steady assumption
replace the time derivatives in Eqs.~29!–~37! with the eigen-
value s, and solve for the eigenvalues and eigenfunctio
using the methods outlined in such references by Trefeth33

and Weidman.34 The time dependent simulations of the lin
earized equations employed spectral methods as well, u
the techniques outlined by Peyret.35 For both methods we
find that 64 points provides adequate resolution at reason
computational cost.

B. Linear results

We have obtained, for each wave numberk and applied
field Eo , a set of eigenvalues~the growth rates!, together
with their respective eigenfunctions. In Fig. 3 we show
contour plot of the growth rates of most unstable eigenfu
tion in the wave number-electric Rayleigh number~electric
field! parameter space. The neutral stability curve is obtai
by settingsr[real(s)50. A threshold electric field can be
determined from the minimal value ofEo on the neutral sta-
bility curve. Similar to the results of Baygents an
Baldessari,11 we found that the inclusion of the diffusiv
term (1/Rae)¹

2s in Eq. ~22! is crucial for the existence o
the neutral stability curve.

Nevertheless, the neutral stability curve is less intere
ing in our case for practical purposes. Recall that when
growth rate is close to zero, our quasi-steady assumptio
not accurate, and the flow will significantly mix~and be
smoothed! by molecular and momentum diffusion befo
there is sharp folding of the material. Here we define a f
growth that will serve as the demarcation between a mi
and unmixed flow in our analysis. Thisad hoc kinematic
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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criterion is preferred over the neutral stability curve to fac
tate a straightforward comparison with experiments wh
observableinstability dynamics lead to rapid mixing. We de
note adimensionalgrowth rate by

sr* [srUev /H,

and set our rapid mixing criterion to be

sr* ;4 s21. ~38!

A growth rate of this magnitude corresponds to the amp
cation of a perturbation by a factor of 105 in approximately
three seconds. With this growth rate a disturbance of nan
eter size will grow to 10% of the channel height in a fe
seconds. This growth rate should be observable in our
periments and will serve as a criterion between rapid
slow mixing regimes in our analysis. The necessity of t
mixing criterion will be demonstrated later in Sec. IV C b
nonlinear numerical simulations, where we will also discu
the scaling behavior of~i.e., the critical physical forces asso
ciated with! the instability dynamics.

Using the mixing criterion~38! we find that the two
dimensional analysis under-predicts the mixing thresh
when compared to the experimental data. The experim
show a strong transition to mixing occurring between appl
fields of E52.53104 V/m and E553104 V/m, whereas
the analysis predicts the mixing threshold to occur at
proximatelyE51.253104 V/m.

Using our model we also investigate the sensitivity
the mixing results to changes in conductivity ratio of the tw
streams. We keep the concentration of the lower stream fi
and vary the concentration of the upper stream. In Fig. 4
show the predicted mixing boundary in wave number a
electric field parameter space for various conductivity rati
We see that the critical field is lowered for larger values
conductivity ratio across the stream. Note that this the
also predicts that the most dangerous wave number rem
essentially unchanged (k'2.5) as the conductivity ratio
changes. This trend is consistent with preliminary expe

FIG. 3. Contour plot of growth rates (sr* ) versus wave number and electr
Rayleigh number. Dimensional applied electric field is provided on the r
axis. For the case plotted here, the initial interface of the two fluids appr
mately extends between20.75,y,0.75 and the ratio of the conductivity
between the two streams is 10.
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ments we have performed at conductivity ratios of 2, 5, a
10 which will be discussed in a future paper.

In Fig. 5 we show the unstable eigenfunctions of t
linearized equations at an electric field of 2.53104 V/m. The
stream function assumes the standard relation to the fl
velocity components as

S ]C

]y
,2

]C

]x D5~u,v !,

and is obtained through

t
i-
FIG. 4. Comparison of the contour corresponding to thesr* 54 s21 growth
rate for the same parameters as Fig. 3, but shown for various conduc
ratios. We see that the critical electric field required for mixing is lower
the conductivity ratio increases.

FIG. 5. Eigenfunctions of the most unstable mode for the 2.53104 V/m
situation. The contour plot of the stream function, conductivity, and elec
potential perturbations are shown. There is a set of nearly symmetric ei
functions that have streamlines that lean toward the left. The ‘‘1’’ and ‘‘ 2’’
signs denote the local maxima and minima of the plotted functions.
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Ĉ5
i

k
v̂.

We show the disturbance functions for streamlines, cond
tivity, and electric potential.

For higher applied fields such that rapid mixing occu
the most unstable modes almost always come in pairs,
~real! growth rates being nearly equal, and the eigenfuncti
being nearly symmetric to each other. Compared with
exact symmetry~i.e., complex-conjugate eigenvalues, a
eigenfunctions being mirror images! observed by Hoburg
and Melcher,10 the slight asymmetry of our eigenvalues a
eigenfunctions is due to our base electroosmotic flow. T
for example the case ofEo525000 V/m, at the most un
stable wave numberk53, the most unstable eigenvalue
s50.037120.09i , which translates to a dimensional grow
rate of sr* ;16 s21, and a right-traveling wave speed o
si* /k* ;6.6 mm/s. The paired eigenmode assumes a valu
s50.033610.013i , which translates to a dimension
growth rate ofsr* ;15 s21, and a left-traveling wave spee
of si* /k* ;21.2 mm/s. On the other hand, if we set the ba
shear flow as defined by~28! to be uo50, we recover the
symmetry and obtains50.036660.0522i , or sr* ;16 s21,
and waves traveling to the right and left at equal speed
;3.8 mm/s. Therefore including the electroosmotic ba
state~28! causes a shift of wave speed in the direction
electroosmotic flow. The magnitude of the shift is;2.7
mm/s, which agrees almost exactly with the average valu
uo from Eq. ~28!, i.e., (U11U2)/2;2.8 mm/s.

Aside from the phase speed change in the instab
waves, the electroosmotic velocity does not have a str
influence on the stability physics for our current parame
range of interest. Nonetheless in a simultaneous work
three of us~C.H.C., H.L., J.G.S. together with S. K. Lele!,
the electroosmotic velocity is found indeed important fo
different parameter range, and a critical value ofRv , which
is defined as the ratio of electroviscous to electroosm
velocity, serves to demarcate between absolute and con
tive instability @see C.-H. Chen, H. Lin, S. K. Lele, and J. G
Santiago, ‘‘Convective and absolute electrokinetic instabi
with conductivity gradients,’’ J. Fluid Mech.~submitted!#.
We refer the readers to that study for details. For the cur
paper, we simply point out that becauseRv!1 @Eq. ~27!#,
electroosmotic flow has only minor influence, and our ins
bility is dominantly absolute in nature, which is consiste
with the temporal growth of the instability waves.

C. Two-dimensional „2D… numerical simulation

We solve the governing Eqs.~14!–~16! and ~21!–~26!
numerically to capture the nonlinear evolution of the ins
bility observed in the experiments. The initial conditions a
the base states that have been discussed in the linear ana
and a white noise perturbation is supplied with an amplitu
of 1025 with respect to the base state.

The equations are solved using a pseudo-spectral c
cation method. We use Chebyshev polynomials to expand
equations in the cross stream direction, and Fourier serie
the streamwise direction. The details on the implementa
Downloaded 30 Apr 2004 to 171.64.116.167. Redistribution subject to AIP
c-

,
he
s
e

e

of

e

of
e
f

of

y
g
r
y

ic
ec-

y

nt

-
t

-

sis,
e

o-
he
in
n

of similar problems are found in the literature.33,35 The non-
linear terms are explicitly integrated forward in time using
second-order Adams–Bashforth scheme, while diffus
terms are integrated using a Crank–Nicholson scheme
achieve numerical stability. The momentum equation
solved with the velocity-pressure formulation outlined
Peyret.35 Resolution of 64 points in both directions provide
adequate results, and finer grids were used to test for con
gence. The methods we used are standard and w
documented; we will not provide the details herein. To aid
direct comparison with the experimental visualizations,
solve an advection-diffusion equation for a passive tra
with a 3310211 m2/s diffusivity to simulate the motion of
the dye molecules observed in the experiments. Because
dye has a much lower diffusivity~compared with 2
31029 m2/s for the electrolytes!, it avoids the diffusive ef-
fects in numerical visualization, exhibits a sharper interfa
and better characterizes material line distortions observe
experiments.~In fact we shall show in Sec. IV D that for th
more violently unstable regime, i.e., the high electric Ra
leigh number dynamics, diffusion of the conductivity field
largely negligible so that the observed dye follows clos
the evolution of the conductivity field.!

First we demonstrate the necessity of the mixing cri
rion ~38! as we have proposed in Sec. IV B. Shown in Fig
is the nonlinear evolution of the instability at applied fiel
of 6250, 8500, and 12500 V/m. The linear theory predi
growth rates ofsr* 51, 2, and 4 s21, respectively. Each col-
umn of snapshots corresponds to different growth rates
given by higher driving electric fields. In the first column o
Fig. 6, the distribution of the dye is governed by molecu
diffusion, even though the linear stability analysis demo
strates that the flow is unstable. The simulation evolves
18 seconds before we see visual evidence of waves. As
increase the electric field to observe different growth ra
we see that the instability can begin to mix the flow mo
rapidly than molecular and momentum diffusion can smo
it. The main point to be taken concerning Fig. 6 is that th
is a regime where the quasi-steady analysis predicts the
to be unstable, but the growth rate is not sufficient to be
practical interest as a rapid effect.

In Fig. 7 we show the nonlinear evolution of the sim
lated dye field at stronger electric fields. The two right c
umns have applied fields stronger than those shown in Fi
and are well within the rapid mixing regime. For comparis
we also show in the left column the case ofEo

510000 V/m which is just below the rapid-mixing thres
old. The model reproduces many of the essential featu
observed in the experiments, including the shape and in
break-up dynamics of the interface, the transverse growt
a wave pattern in the interface, and a roll-up of scalar str
tures observed at later times. Note the similarity in the m
unstable~and most apparent! wave number at later time
between the simulation and experiments.

Despite similarities between wave number and the
namics of the interface breakup, the threshold imposed fie
from both the linear and nonlinear predictions are lower th
those shown for the experiment in Fig. 2.@In fact, thead hoc
criterion ~38! was suggested to us by the nonlinear simu
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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tions shown in Fig. 6.# For example, compare the evolutio
of the dye at 25000 V/m from the experiments~Fig. 2, col-
umn 1! and the simulation~Fig. 7, column 3!. We see that the
simulation at 25000 V/m predicts a well-stirred flow field
less than three seconds while experiments show that the
is stable on the time scale of the experiments. The simula
of 25000 V/m is qualitatively similar to the experiment
flow at 75000 V/m~Fig. 2, column 3!. Despite the discrep
ancy in the magnitude of the applied field, our simulati
captures a threshold field and scalar features qualitati
similar to the experiment. In Sec. V we will try to addre
possible causes for the under-prediction of the thresh
electric field by including three-dimensional effects.

D. Discussion

In both our linear and nonlinear calculations we ha
given our results indimensionalunits, i.e., we used the di
mensional field strength to determine instability thresho
and a dimensional growth rate to quantify instability grow
rate. This approach has been adopted primarily to facili
direct comparisons with experiments. In this section we t
to discuss the scaling characteristics of the instability, p
ticularly in light of the electroviscous scaling proposed
Hoburg and Melcher.10

In Hoburg and Melcher10 the authors defined an electro
viscous time

FIG. 6. ~Color! Snapshots of the dye field at various instances in time
different driving electric fields. The electric fields~applied att50) and bulk
flow are directed from left to right. Each column indicates a different
plied field and the rows within each column present selected snapsho
time. The image correspond to a physical domain of 3.6 mm31 mm. ~Note
that the images have been slightly stretched in they direction to give best
visualization.! The left-hand column corresponds to an applied field ofE
56250 V/m, the middle column toE58500 V/m, and the right-hand col
umn to E512500 V/m, and the linearly predicted growth rates aresr*
51 s21, sr* 52 s21, and sr* 54 s21, respectively. The time for noticeabl
waves to develop is decreased as the field is increased. For the purpo
this paper, we decide that the mixing provided bysr* 54 s21 indicates a
well-mixed flow in the times of practical interest.
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and demonstrated that instability growth rates scale astev .
Here we examine this instability scaling behavior using o
nonlinear simulations. In Fig. 8~a! we plot dimensional ve-
locity as a function of dimensional time for various applie
fields; the velocityvmax is defined as the maximum trans
verse velocity in the nonlinear simulations at each insta
For each applied field~with the exception of the lowest!,
vmax grows exponentially to a peak value consistent with
most vigorous stage of the instability, and then relaxes t
slowly decaying value as a well-mixed state is achieved. T
curves show the general trend that for higher field, the ins
bility grows faster, and a higher peak value forvmax is ob-
tained. In Fig. 8~b!, we scalevmax and t with the electrovis-
cous scalesUev andtev , respectively. Under this scaling, w
find the dynamics ofvmax nicely collapse to a single curv
for a wide range within the strongly unstable regime (Eo

58500, 17500, and 25000 V/m!. Note that these three evo
lution curves nearly exactly overlap, with identical dime
sionless growth rates and peak values ofvmax/Uev . In con-
trast, we also observe minor deviations from t

r

-
in

s of

FIG. 7. ~Color! Sample images from the nonlinear numerical simulations
three different applied fields~columns! and various times~rows!. The elec-
tric field and bulk flow are directed from left to right. High field is applie
at t50 s. Each image corresponds to a visualization of a passive scalar
physical domain of 1 mm wide~y! by 3.6 mm long~x!; thez ~depth! dimen-
sion is not modeled in these simulations.~Note that the images have bee
slightly stretched in they direction to give best visualization.! An initial
white-noise perturbation with an amplitude of 1025 with respect to the base
state is provided. The images display a passive tracer that has the diffus
of the dye used in the experiments. The images in each row are taken a
same time as shown in the figure.
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FIG. 8. Demonstration of the electroviscous scaling. For both graphs, simulations at electric fields ofEo54500~solid!, 6250~dash–dot!, 8500~circles!, 17500
~triangles!, 25000~diamonds! and 50000~dash! V/m are shown. In~a! we plot a dimensionalvmax as a function of the dimensional timet, wherevmax is
defined as the maximum transverse velocity in the field at each instant from the nonlinear simulations. In~b! we scalevmax and t with Uev and tev ,
respectively. The modeling shows that, for a wide range of electric fields~from 8500 to 25000 V/m! of interest here, the various curves collapse alm
identically to a single curve which grows exponentially, overshoots a critical value, and then damps down slowly as mixing progresses. The collaf the
curves validates the electroviscous processes as the dominant dynamics over most of the range of interest. The 6250 V/m~dash–dot! and 50000~dash! V/m
cases show significant deviation from electroviscous scaling due to increased molecular diffusion and inertial effects, respectively. In the 4500 V/m ~solid!
case~close to the instability threshold!, molecular diffusion dominates the development of the field and the electroviscous scaling is no longer valid.
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electroviscous behavior atEo56250 and 50000 V/m, and
major deviation atEo54500 V/m when the field strengt
approaches the instability threshold.

The collapse of the dynamics ofvmax for the mid-range
of the significantly unstable regime is well explained by t
electroviscous time and velocity scaling arguments
Hoburg and Melcher.10 The limitation of this scaling at high
and low electric field values can be explained by compar
the electroviscous time to the time scales of molecular
momentum diffusion. In Hoburg and Melcher10 the authors
define a momentum diffusion time scale as

tv[
rH2

m
;0.25 s, ~40!

which signifies the relative importance of the inertial force
the momentum equation. As suggested by the work of B
gents and Baldessari,11 we also have yet another importa
time scale, the diffusion time

td[
H2

D
;125 s. ~41!

Ratios of these times scales yield dimensionless number
defined earlier:

Re5
tv

tev
}Eo

2, Rae5
td

tev
}Eo

2, ~42!

and both these numbers increase quadratically as ap
field increases. For higher values of the field strength~such
as theEo550000 V/m case in Fig. 8!, the electric-field-
driven flow is characterized by a Reynolds number of or
unity or greater, and so inertial forces affect the dynamics
the instability and we expect deviations from the electrov
cous behavior. However, as pointed out in Hoburg a
Melcher,10 the dependence of the instability dynamics onRe
is weak in this regime, and so the deviation is apparent
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not dramatic. For lower values of field strength~such as the
6250 V/m case in Fig. 8!, on the other hand, deviations from
the electroviscous behavior is due to the increased rela
importance of the simple molecular diffusion associated w
small electric Rayleigh numbers and a~relatively! small dif-
fusive time scaletd . As one further decreases the fie
strength to approach the instability threshold~e.g., theEo

54500 V/m case of Fig. 8!, molecular diffusion plays the
dominant role in the development of the flow field and t
electroviscous scaling is no longer valid. The growth of d
turbances is mostly quenched by diffusion and only margi
instability is observed.

Note that even though the electroviscous velocity a
times scales adequately collapse the instability dynam
across applied fields, the absolute values of these scales
to be significantly larger than the values observed in the n
linear simulations. For example, the characteristic values
the scaled, nondimensional velocity and time scales in F
8~b! are of order 0.1 and 103, respectively.~A similar con-
clusion is found in scaling the streamwise disturbance ve
ity umax.) However, the derived electroviscous velocity a
time scales used here are based on simplified scaling a
ments and are not directly observed quantities in an exp
ment ~i.e., these are estimates of the internal physical sc
and not quantities directly imposed by the experimentali!.
Therefore, although these electroviscous scales corre
scale the dynamics, caution should be used in applying th
derived scales to identify dynamic regimes of the generali
formulation. For example, the value of the electric Raylei
number based on the derived electroviscous velocity s
@Eq. ~17!# for the Eo56500 V/m case in Fig. 8 isRae

.3400, suggesting that diffusive effect can be safely
nored. However, as our numerical simulation@Fig. 8~a!, dot–
dash# finds, aneffectivetime scale for the instability growth
in this case isteff.20 s, which gives an effective Rayleig
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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number of Raeff[td /teff.6, and which suggests diffusio
processes are important@Fig. 8~b!, dot–dash#. ~This trend of
over-prediction becomes more prominent as one approa
the instability threshold, e.g., for theEo54500 V/m case,
where the electroviscous scaling is no longer valid.!

V. THREE-DIMENSIONAL MODEL

In the previous sections we have provided a tw
dimensional framework that appears to capture the prim
physics of our flow. The primary limitation in our model
the two-dimensional assumption. The channel in the exp
ment is shallow, with an aspect ratio of@z#/@y#50.1. In the
two-dimensional model, we assumed that EDL’s formed
the upper and lower (y561) boundaries of the channel an
drove a linear Couette flow. In the actual three-dimensio
case, an EDL also forms along the side walls (z56d, where
d[d/H, andd is the half-depth of the channel!, and strongly
drives the flow due to the small depth of the channel. T
three-dimensional flow base state is, therefore, not a sim
Couette profile. Also, the three-dimensional nature of a t
channel couples the instability dynamics to the side walls
viscous forces. Below, we present a preliminary assessm
of these three-dimensional effects using a linearized analy
A fully nonlinear three-dimensional investigation will be pr
sented in a future paper.

A. Base state

The base state is assumed to be invariant in
x-direction and the initial conductivity field is assumed
function ofy only. By Eq.~21! we find that the conductivity
field induces no electric field, and therefore, does not dire
couple to the momentum equation. The base state condu
ity, therefore, evolves as

]s0

]t
5

1

Rae

]2s0

]y2 , ~43!

subjected to Neumann boundary conditions aty561 and
z56d.

The base state velocity field is determined by the re
tionship between the zeta potential and the conductivity
the fluid at the wall. The flow is driven by the EDL at th
walls y561 andz56d. The velocity in they andz direc-
tions are both zero as provided by continuity and the
sumption of invariance in thex-direction. The base state ve
locity field is determined by the momentum equation

]u0

]t
5

1

Re
S ]2

]y2 1
]2

]z2D u0 , ~44!

subject to the boundary conditions

u05
1

Rv
z~s0!, ~45!

at the wallsy561 andz56d. In the application of interes
the electric Rayleigh number is large in comparison to
Reynolds number, such that the time-dependent term in
momentum equation can be neglected.@Recall that the veloc-
ity boundary condition is coupled to the conservation of co
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ductivity relation via ~25!#. Note that in the three-
dimensional case with an addedz-dimension, the flow is
better characterized by a new effective Reynolds num
Red[Ud/n. However, for simplicity, we will continue to
use the Reynolds number defined earlier and the statem
presented here are still true sinceRed,Re. The conductivity
slowly diffuses while the velocity field instantaneously co
rects itself to the new boundary condition. The base s
velocity field is therefore well approximated by

05S ]2

]y2 1
]2

]z2D u0 , ~46!

subjected to boundary condition~45!.
In Fig. 9 we compare the velocity profile as a function

y along the planez50 for the deep~two-dimensional! and
shallow~three-dimensional! EK channels. For deep channe
the flow behaves as a Couette flow as previously assum
For shallow channels, the flow closely follows the EDL v
locity along the side walls.

B. Linearized model

Again we investigate the stability character of the ba
state by linear analysis. We assume that all variables ca
expanded as the base flow plus a small perturbation o
single Fourier modef 5 f 0(y,z,t)1e f̂ (y,z,t)eikx. The gov-
erning equations for the perturbations read

ReS ]û

]t
1 iku0û1 v̂

]u0

]y
1ŵ

]u0

]z D52 ik p̂1¹2û1 r̂E ,

~47!

FIG. 9. Base state conductivity~left-hand plot! and velocity profiles for a
channel that is deep~middle plot! and shallow~right-hand plot! in the span-
wise, z direction into the page as shown in Fig. 7. In both cases, a
velocity profile along the transversey direction is shown for the mid-plane
along z50. When the channel is deep and the effects of side walls
negligible, the flow is dominated by the EDL slip velocity that forms at t
top and bottom walls aty561, resulting in a linear shear. When the cha
nel is shallow, the flow is dominated by the EDL velocity on the side wa
~in the x-y plane!, and the flow field follows closely the shape of the co
ductivity profile.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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ReS ] v̂
]t

1 iku0v̂ D52
] p̂

]y
1¹2v̂, ~48!

ReS ]ŵ

]t
1 iku0ŵD52

] p̂

]z
1¹2ŵ, ~49!

¹2f̂52 r̂E , ~50!

ikŝ5s0¹2f̂1
]s0

]y

]f̂

]y
, ~51!

]ŝ

]t
1 iku0ŝ1 v̂

]s0

]y
5

1

Rae
¹2ŝ, ~52!

where

¹2[S ]2

]y2 1
]2

]z22k2D .

The boundary conditions become

¹ŝ•n50, ~53!

¹f̂•n50, ~54!

v̂•t52uoF1

3

ŝ

so
ex1¹f̂G•t, ~55!

v̂•n50, ~56!

where

¹[S ik,
]

]y
,

]

]zD .

This formulation allows us to solve the time dependent pr
lem evolution of a single Fourier mode in three dimensio
just as we have done in two-dimensions. In the thr
dimensional case we elect to solve the time-dependent
lution rather than the complete eigenvalue problem.~The ei-
genvalue approach has not been adopted here;
computation for the three-dimensional case exhibits a p
scaling with respect to the number of grid points and is p
hibitively expensive for our current numerical scheme.! We
initialize the flow with a random perturbation in they andz
directions, and the growth rate for a single Fourier mode
extracted by fitting the disturbance amplitude to the funct
est. We apply the same rapid mixing criterion ofsr* 54 s21

as in the two-dimensional case.
The three-dimensional equations are again solved

pseudo-spectral methods as outlined by Peyret~2002!.35 We
use Chebyshev polynomials as basis functions in they andz
directions. We again use the Adams–Bashforth method
integration of the convective terms and Crank–Nicholson
integration of the diffusive terms.

C. Results

We now recreate Fig. 3 with the three-dimensional line
analysis and show the growth rate contours forg510 in Fig.
10. By adopting the same kinematic growth-rate criter
sr* 54 s21, the analysis predicts a critical electric field fo
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mixing of approximately 50000 V/m for the conductivity ra
tio of 10, in closer agreement with the experimental data th
the two-dimensional model.

In general when compared with the two-dimension
infinite-depth analysis, we found that the critical electric fie
under the same conditions was much larger for the thr
dimensional case for each of the conditions. The side bou
aries in shallow channels~which can support a shear stres!
act to stabilize the flow field. We also note that the line
three-dimensional model predicts a higher most-danger
wave number at higher electric fields. However, which mo
becomes the most rapidly growing in the fully nonlinear r
gime awaits further study with full nonlinear, three
dimensional simulations.

One interesting aspect of this problem is the differen
in the physical mechanisms that exist in the two- and thr
dimensional flows. In two-dimensions the instability orig
nates purely from the within the conductivity gradient. In t
three-dimensional case the flow is strongly coupled to
side walls. Due to the shallow channel depth and the l
Reynolds number in the cross-stream direction, we exp
that the electroosmotic flow in the channel to be quite u
form in the z direction, especially at the onset of the inst
bility. This implies that the flow in the interior of the chann
is deeply influenced by the velocity boundary condition
the side walls, which is in turn correlated to the genera
electric field and the EDL. This side wall boundary conditio
provides a stabilizing force with respect to the instabil
dynamics due only to the conductivity gradient in the bu
liquid.

VI. SUMMARY

We have presented experimental, numerical, and ana
cal results that explain the basic mechanisms behind an e
trokinetic mixing phenomena observed in micro-fluid

FIG. 10. Contour plot of growth ratessr* for different combinations of wave
number and electric field using the three-dimensional analysis. In this
the interface of the two fluids approximately extends between20.75,y
,0.75 and the ratio of the conductivity between the two streams is 10. T
figure used the same parameters as Fig. 3 for the two-dimensional ana
Compared to the two-dimensional model, the contours are shifted to hi
electric fields indicating that the side walls stabilize the flow.@Note that we
have shown the same ranges ofRae (Eo) andk as in Fig. 3.#
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channels. We have presented analysis and computa
based on different sets of assumptions for EK flows in
long, thin channel with a transverse conductivity gradie
Our analysis takes into account a shear imposed on the
due to the dependence of zeta potential on local concen
tion and the effects associated with the diffusion of the c
ductivity scalar. In the first analysis we assumed that the fl
was purely two-dimensional with neither variations in thez
directions, nor influence from side walls. In the seco
analysis we accounted for the side walls and conduc
three-dimensional linearized simulations. In both analy
we found a threshold electric field above which the flo
becomes highly unstable and rapid mixing occurs. We a
found that the coupling of the flow to the side walls in t
three-dimensional model helps to stabilize the conductiv
gradient. We have presented a mixing criterion useful
comparisons between model and experiments, and have
plained key differences between the two- and thr
dimensional analyses. We have confirmed the validity of
electroviscous scaling proposed by Hoburg and Melch10

with nonlinear numerical simulations, and discussed
range of validity. Our model is able to predict general tren
in the data, and many of the basic aspects of the obse
flow field. Our results demonstrate that the general fram
work as pioneered by Hoburg and Melcher,10 and extended
by Baygents and Baldessari,11 is suitable for the study of EK
instabilities provided boundary conditions, base states,
diffusion effects consistent with electroosmotic flow in m
crochannel systems are used. Future work will involve m
detailed three-dimensional simulations to examine how
nonlinear regimes are impacted by the effect of the s
walls.

The models presented in this work are useful in optim
zation studies, as parameter space can be spanned in si
tions more quickly than in the laboratory. Work described
Oddy et al.27 has demonstrated that oscillatory electric fie
can potentially drive even more vigorous mixing. The mo
els presented in this work can be used to optimize the fo
of forcing functions, to design the shape of a micromix
and to develop optimal control strategies for both mic
mixing and the suppression of instabilities.
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