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Instability of electrokinetic microchannel flows with conductivity gradients
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Electrokinetic flow is leveraged in a variety of applications, and is a key enabler of on-chip
electrophoresis systems. An important sub-class of electrokinetic devices aim to pump and control
electrolyte working liquids with spatial gradients in conductivity. These high-gradient flows can
become unstable under the application of a sufficiently strong electric field. In this work the
instability physics is explored using theoretical and numerical analyses, as well as experimental
observations. The flow in a long, rectangular-cross-section channel is considered. A conductivity
gradient is assumed to be orthogonal to the main flow direction, and an electric field is applied in
the streamwise direction. It is found that such a system exhibits a critical electric field above which
the flow is highly unstable, resulting in fluctuating velocities and rapid stirring. Modeling results
compare well with experimental observations. The model indicates that the fluid forces associated
with the thin dimension of the channétansverse to both the conductivity gradient and the main
flow direction tends to stabilize the flow. These results have application to the design and control
of on-chip assays that require high conductivity gradients, and provides a rapid mixing mechanism
for low Reynolds number flows in microchannels. ZB04 American Institute of Physics.
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I. INTRODUCTION slip approximation is unlike the stress-free condition of po-

. tential flow theory in that it supports both a slip velocity
Over the past decade there has been extensive reseaighortional to local electric field and a viscous stress. As we

into the de_sign of microfluidic.syster.ns for chemical 'analysissha" discuss here, net charge can also be generated in the
These devices offer the promise of integrating multiple 1abo, i fiow due to the interaction of electric fields and conduc-
ratory processes onto a single chip, thereby increasingir, gradients; this leads to body forces that can destabilize
throughput and decreasing assay ¢dsktensive reviews of electrokinetic flowto:1t
manufacturing techniques, applications, and engineering  gjecqrokinetics is a subfield of electrohydrodynamics
challeng%s_ 5°f micro total analysis syste(pIAS) have been ghp) which can be defined as the interaction between elec-
presented. , _ tric fields and fluid motion. Generalized transport equations
~ The mass and ion transport regimes.ofAS are often o EHD flows are presented in a review by SavifeEK
distinct from macro-scale flow devices. One important re-gftects are distinguished by the importance of charge separa-
gime is electrokineticéEK), which describes the coupling of tjon ot solid—liquid interfaced™> These interfacial forces
ion transport, fluid flow, and electric fields.A solid surface .41, dominate solute transport iTAS. General EHD theory
in contact with an electrolyte typically acquires a surface,isq includes forces that act away from solid—liquid inter-
charge and forms an electric double layBDL), composed  ¢5ceq in regions where the liquid has conductivity and per-
of the wall charge and a counter-ion shielding layer with aniivity gradients!® Classical EHD studies typically deal
thickness characterized by the Debye length. Electroosmosiiih near-dielectric liquids with conductivities of order
is the bulk motion of liquid that results upon the application1-11_15-9 5/m and can be described by the leaky-
of an external field with a component parallel to the surfaceyigjectric model developed by Taylor and Melch&m this
Elgctroki_netics includes alsc_) electrophoresis, which is th‘?nodel, liquids are described as having both polarizability
drift mo.tlon Of, charged species. . and free charge, and the internal electric field generated by
Typ|cal microchannel flows have characteristic scales of, .., mulated charges can be on the order of the externally
10 microns or greater, and Debye lengths of 10 nm or less, S osed field. The leaky-dielectric model is reviewed in de-
that the EDL is confined to a thin layer near the wall. For; by Savillé2 and Melcher and Tayld?16 The model of-
“thin” EDLs, electrolyte motion outside of the double layer (o, ;ses a formulation for conservation of net charge and
can be modeled as flow with a slip velocity conditfbfihis conductivity as scalar quantitié$.This Ohmic model has
been used to describe instabilities in EHD flows where inter-
dElectronic mail: hao.lin@stanford.edu facial EK effects are not considerétlThis work includes
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EHD stability studies with axiali.e., parallel to an electric In this paper we present experimental, analytical, and
field),'**8 and transverse conductivity gradiefis. computational results in order to quantify an electrokinetic
We shall apply concepts from generalized EHD theory toflow instability observed in long, thin electrokinetic micro-
describe EK flow instabilities in microchannels. Particularly channels with conductivity gradients orthogonal to the chan-
relevant to our work is that of Hoburg and MelcH8who ~ nel axis. We will re-exam the assumptions of Hoburg and
studied a similar flow configuration and electric field con- Melcher for micro-fluidic applications, and follow a general
figuration. They performed a stability analysis for an electricformulation and framework given by Melch€rIn particu-
field parallel to a liquid—liquid interfacéperpendicular to lar, we include advective effects due to electroosmotic flow,
the conductivity gradientand flow initially at rest. Their an initial conductivity profile consistent with our experi-
analysis, which neglects molecular diffusion, showed the infments, and a diffusive component of the conductivity conser-
terface is stable for all electric fields when the liquid—liquid vation equation critical in modeling EK instabilities. The
interface is assumed to be infinitely shafpMore impor- electroosmotic flow results in a shear flow imposed on the

tantly, they showed this configuration is unstable for all ap-iquid. The detailed physics of the EDL are treated as
plied electric fields when the interface is modeled with acoupled to the rest of the flow through a slip boundary con-

finite-width, exponentially dependent concentration profiledition which depends on local electrolyte conductivity. We

between the two liquidéwith no subsequent diffusionThe present a two—dimensjonal _Iinear stability analysis and_ con-
latter case exhibited an instability that resulted in bucklingduc'f npn:m(.earl fI(j)Wtﬁlmuljl_tlons._WelaI?fo ?xtend the linear
and distortion of the interface. Hoburg and Melcher de-2Nnalysis to Inciude three-dimensional etiects.

scribed the instability mechanism as initiated by charge ac- The paper is organized as follows. In Sec. Il we outline

cumulation at a perturbed interface, and made qualitativé)urfIOW field and present expe_rlmenf[al results; in Sec. il we
. . : S ormulate the governing equations; in Sec. IV we present a
comparisons to experiments with an oil-oil interface con-

tained between two 19 by 70 mm glass plates separated bytwo-dimensi(_)_nal r_nodel, C.OndUCt a linear stability analysis,
mm in the direction perpendicular to both the applied fieldpresent stability diagrams in the phase space of wave number

and the conductivity gradient, and a characteristic field of: :;]jurggoigpI;Edsilsct\/nc\;a\\llefleg}oarmmd ;)r:glsesri]st 1;uf|| trhlgn:ﬁrr:acil
~10* V/em.'® Another important insight is offered by the ’ ' P y

. . . dimensional flow and perform linearized numerical simula-
work .Of Bgygents and B.a!detc,sjén/vh_o found that. including tions to find stability boundaries. We discuss the differences
the diffusion of conductivity is crucial to the existence of a

itical electrical field ab hich the flow i wable. Al between the flow dynamics in the two- and three-
critical electrical Tield above whic € Tlow 1S unstable. " dimensional cases, demonstrate the mechanisms for the in-

though their conclusion was reached for a different electrlc;Stability and compare theory to experiments in Sec. VI
field/conductivity gradient configuration, we will show the o

idea also holds for our caséA study of a flow field similar . EXPERIMENTAL OBSERVATIONS

to that considered by Baygents and Baldessari was also pelll

formed by Beret al.?° using a similarity analysis approach; A. Setup

however, these authors concluded that flow instabilities were Figure 1 shows a schematic of the microchannel setup

insignificant for their parameter range of intergst. __used in the experiments. The microchannel consisted of a
Here we are interested in EK flows with conductivity . qgjjicate glass capillarywilmad-Labglass, NJwith a
gradients, which are critical to a variety of on-chip assay§ectangular cross section; the inner dimensions were 1 mm
including field amplified sample stackifg, isoelectric X100um, and the length was 40 mm. The capillary ends
focusi_ng?z and electrophoretic assays where conductivitieSyere sealed using a silicone adhesive to custom-machined
of various sample and buffer streams are either unknown of¢ryjic manifolds housing inlet and outlet ports. A syringe
poorly controlled. This flow also has direct applications 0 pump forced dyed and undyed buffer solutions from the inlet
rapid mixing of sample streams and to preserving the stabilportS through the capillary toward the outlet port. The buff-
ity of co-flowing streams as in lamination proces$é&fun-  ered solutions completed the electric circuit between plati-
damental understanding of electrokinetic instabilities camym electrodes located at the inlet and outlet of the capillary.
provide a design framework whereby instabilities areThe aqueous buffered solutions consisted of a 10 mM

avoided, as they are often detrimental to system perfor4EPES buffeSigma-Aldrich Corp, MQ. To visualize fluid
mance. Two of u¢C.H.C. and J.G.$reported observations motion, an electrically neutral, high-molecular-weight dye
of EK instabilities in flows with significant conductivity gra- (70kDaltor) composed of a dextran-rhodamine B conjugate
dients within microfluidic T- and X-junction& Three of us (Molecular Probes, ORwas added to one of the buffer
(C.H.C,, H.L,, J.G.S. together with S. K. Lg¢lpresented a streams at a concentration of M. This dye was used to
formulation of these instability dynamics and summarizedminimize both electrophoretic drift and molecular diffusion
the results of a linear analysis that models the mechanisiof dye molecules during experiments of order 10 s duration.
behind the growth and propagation of the unstable waves ifhe dynamics of the scalar fields shown here are, therefore,
EK T-junctions® These instabilities can also be applied as aassociated with the development of the background bulk lig-
means for rapid mixing of low Reynolds number flows, uid. Potassium chloride was added to the dyed buffer solu-
where mixing is often limited by molecular diffusidfi.For  tion to control/increase its electrical conductivity. The dyed
example, two of u$M.H.O. and J.G.S.have leveraged elec- solution conductivity,o,gn, Was measured as 505/cm us-
trokinetic instabilities in a rapid micromixer desigh. ing a CON 500 Oakton Instruments conductivity meiéer-

Downloaded 30 Apr 2004 to 171.64.116.167. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



1924 Phys. Fluids, Vol. 16, No. 6, June 2004 Lin et al.

stream injection, the syringe pump was deactivated and the
Dyed aygh z electric potential of the inlet port electrode was raised while

High-Voltage
Electrode

Undyed o, Buffer Inlet Port Y keeping the outlet port electrode grounded. The imposed
Buffer InletPort " electric potential initiated an electroosmotic flow in the chan-
ap - X nel and, for electric fields above a threshold value, electro-
_ \‘\\‘l!/ Bgfsi:::a‘e kinetic instabilities. The potential drop between the elec-
h'::r"!r’f'(')‘l’d \}E@','/ ' prany E?e'&ﬁe trodes was held constant at 1, 2, or 3 kV using a voltage
‘;’o Outlet signal from a LabVIEW-controlled DAQ car(National In-
Port struments Ing.coupled to a high voltage amplifi€¢t0/10b,
> Trek Inc., NJ. Fluid motions were observed using an in-
verted, epi-fluorescent microscoffédikon TE30Q and a 4
microscope objectivénumerical aperture of 0)2To increase
Acrylic the field of view, a 0.& demagnifying lens was used, result-
Manifold ing in an overall magnification of 24. A CCD camera

(CoolSnap fx, Roper Scientific Inc., AZvith a 12-bit inten-
FIG. 1. Schematic of the setup used for microchannel flow experiments. Thé!ty d|g|t|za_t|on r_eSOIUtlon recorded the Images. Image
channel is 1 mm widéy), 100 um deep(z), and 40 mm longx). Two buffer ~ Signal-to-noise ratio and frame rate was improved by binning
solutions with differing electrical conductivities are introduced into the mi- individual CCD pixels to form &4 super pixels, which re-

crochannel using a syringe pump, resulting in a single buffer stream with ulted in final binning dimensions of 26<®@6.8um in the
spanwise electrical conductivity gradient. Upon the application of a high ’ oM

voltage along the streamwise direction, the width of the diffuse conductivitylMage plane. The exposure time and frame rate were, respec-
interface is approximately 750m at the imaging location, halfway between tively, 15 ms and 10 frames per second.

the inlet and outlet of the capillary. The shape and thickness of the conduc-

tivity field is derived from the residence time of the interface in the channelB Results

(~12 9 before the activation of the electric field and as it flows from the —°

inlet to the viewing area. A representative set of images from experiments con-

ducted at 1, 2, and 3 kV applied potentials are shown in Fig.
2. The potentials were applied over the 40 mm channel
non, IL), while that of the undyed buffer solutiom,,, Was  |ength; these were equivalent to applied fields of 25000,
5 uS/cm, yielding a conductivity ratio of=10. The dilute 50000, and 75000 V/m, respectively. In each case, the top
electrolytes can be assumed to have the permittivity and Visigure of each series shows the initial, undisturbed interface
cosity of pure watef>?® Other properties of the working petween the dyed and undyed buffer streams in the channel
electrolytes are discussed in Sec. lll, and summarized ir(ltzo). The successive images in each column show the
Table I. temporal evolution of the imaged dye under a constant, DC
The two syringes on the syringe pump were loaded withygtential. In this color scheme, blue corresponds to the un-
high and low conductivity liquid. These two outputs were gyed, Jow-conductivity stream, and red to the dyed high con-
connected to the upstream manifold which combined they,ctivity stream. For a field of 25000 V/m, the interface was
pressure-driven streams of the syringes into the glass micresnly slightly perturbed and only slight fluctuations were ap-
channel, forming an interface within the channel. The tWOparent in the images captured at 4.0 and 5.0 s. At the two
buffer streams initially occupied the upper and lower halvesyigher applied potentials, the interface exhibited a rapidly
of the microchannel resulting in a diffuse conductivity gra- growing wave pattern within the first 0.5 s. The unstable
dient along the spanwisey-direction. Following buffer  fj,ig motion in the channel buckled the interface and pro-
ceeded to stretch and fold material lines. The transverse and
fluctuating velocities associated with this unstable motion
resulted in rapid mixing of the two streams. At the 75000
Symbol Description Value V/m applied field, the channel reached a well-stirred state
with nearly homogeneous concentration fields observable

TABLE |. Parameters and fundamental scales.

- — — 0
2’ Un'Ves;laﬁsgmp:t:rvrﬁtﬁimc'em 8'&51078.3%/'"] within 5 s. Qualitatively, the observed dynamics of the inter-
E Permittivity 6.9310°°C/V-m face may be described as follows: First, the interface buckled
o Absolute viscosity 10° kg/m-s into a wave-like pattern with spatial wavelengths ranging
Po Density for water 18 kggm32 from 1 to 2 times of the spanwise channel width. Next, low-
\I/Dv D,\'Aﬂc‘)’;'l‘i’t;y o 22%01?)}?; m’:l_’:/kg intensity, unseeded regions extended into the dyed region of
F Faraday constant " 9.6510° C/mol the flow in a series of finger-like structures aligned with the
Zs Reference EDL zeta potential _7.0x10°2V concentration minima in the initial wave.g., see the 1.0 s

AC, Molar concentration difference 3710~ 7 mol/m? image at 50000 V/m and, especially, the 0.5 s image at 75000
Co Molar concentration 38102 mol/m’® V/m). Next, the interface and fingering structures broke
H Half-width of the channel 58 1(?474 m down into a more complex pattern with concentration fluc-
UE° Té’;'gt?l):/'iaslssufso:/g:)i?;eszg:g %;iﬂlo*lvr:q ";s tuations occupying the full width of the channel. At this late
T Time scale 2%10°2s stage, rolling structures were sometimes apparent. Finally, as

the complex velocities associated with the instability
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25,000 V/m 50,000 V/m 75,000 V/im A. Governing equations

i=1

Herepg is the charge density, and= €, €, is the permittivity

of the liquid. In the Poisson formulation, we assume the
permittivity of the liquid is uniform as we are interested in

nearly isothermal electrokinetic microflows of dilute electro-
FIG. 2. (Color) Sample images from the experiment, shown for applied lytes (e_g_, biological buffers with order 10 mM concentra-

fields of 25000, 50000, and 75000 V/m, corresponding to the first, seconct. . . .
and third column. Images obtained at various times are shown for eac jons). In such systems, electrolyte conduct|V|ty field is

column. The electric field and bulk flow directions were from left to right. dominated by ion densities and a uniform ion mobility, and
High voltage was applied as a Heaviside functionta0's. Each image electrolyte permittivity is that of the solverttypically wa-
corresponds to a physical area 1 mm wiggand 3.6 mm longx). The  tep) To complete the system we need also the continuity and

depth of the channel is 100m along thez direction(into the pagg At the - . Lo
time of the application of the high voltage, the diffuse conductivity interface conservation of momentum equations for the Iqu|d,

was approximately 75@&m wide at the imaging location. Small amplitude V.-v=0, (5)
waves observed at=0.5s quickly grow and lead to rapid stirring of the

P A We start with the conservation laws for a dilute, two-

PR species electrolyte solutids:

TEEEET dC4q )

SRR 7+V'VC12W1V-(Zchlvq))-l-DlV Cq, (€N)

SRR ac, ,

e — TV VC=W,V (2FCV ) +D,VPC,, (2

A LA L , -

R where C/s are the molar concentration of the electrolytes,
w; s are the coefficients of mobilityr is the Faraday con-

FASETe stant,D/ s are the diffusive coefficientg/' s are the valence

_ numbers(we assumez;=—2z,=1), and® is the electric

esreee = o w peag potential. The Poisson equation for the electric field is then

e AN V2D =—pg, 3

(TSR where

RS 2

e e pe=2, zFC;. )

B I 2

initially distinct buffer streams. The instability quickly stretches and folds ov 2

material lines and, after abbd s for the 75000 V/m applied field, results in P E +Vv-Vv|=—-Vp+uVv—peVo. (6)

a well-stirred, relatively homogeneous dye concentration field. The time of

the images in each row are shown in the figure. Here,p is the densityy is the flow velocity,p is the pressure,

and u is the absolute viscosity. The electric flux and species
conservation are coupled to the mechanics through the elec-

stretched and folded material lines, the dye distributed"c force —peV® in the momentum equation.

evenly throughout the channel, making it difficult to further ~ FOF our problem it is more convenient to transform the
observe liquid motion. The largest transverse velocities in th§YStém of molar concentration€{,C) into the quantities
experimentsobservable by the initial transverse motion of °f (Pe.0), using Eq.(4) and the definition for conductivity
the interfacg were roughly 0.1-5 mm/s for applied fields of _ 22

25000-75000 V/m. Again note that diffusive transport of the U:Ei wiziF7Ci. (@)
dye in this experiment was negligible so that the homoge- . . .
neous dye concentration at the later times of the 50000 an't?iOr the simple case of two species, E¢S.and (7) consti-

75000 V/m experiments were indicative of a well-stirred tte a reversible transformation from the pally(Cy) to
(pe,o), with the inverse transform

State.
o+ WZFPE
Cim=———,
Fo(wypt+wsy)
IIl. THEORETICAL FORMULATION
o—wiFpe

The description of experiments given above serves as an Co= F2(Wy+W,)
introduction to the problem and describes observed featur
of electrokinetic flow instability. We now turn to a theoretical
f(_)rmulatlon of thesflow foIIowmg a general framework pro- =D, andz,= - z,=1, we can re-write Eqs(1) and (2) in
vided by Melchett® We start with general charge conserva-
. X . . : t]erms ofpg anda, as
tion equations, perform scaling analysis, and obtain a set 0
simplified equations that is suitable for the parameter range 9P

e V.Vpe=V. 2
of our experiments. ot TV Vpe=V-(aVP)+DVpe, ®

S% we further assume, for simplicity, that other properties of
the electrolytes are symmetric, i.ev;=w,=w, D;=D,
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Jo - 5 This is the well-known Helmholtz—Smoluchowski formula-
—+V-Vo=FWV-(pegV®P)+DV-o. (9 tion which we use to relate electroosmotic velocity to the

at
) . wall zeta potential and electric field. This velocity is estab-
Equations(8) and(9), together with(3), (5), (6), and appro-  ighaq within the EDL and determines the bulk advection of

priate boundary conditions, completely define our system of. a1 in the flow field. However, as we will show later in
interest. Sec. IV, for the unstable, rapid-mixing regime of interest
here, the electroviscous velocity scélg, is correct in char-
acterizing the fluctuations associated with EK instabilities.
We introduce the following scales for the nondimension-  Our governing equations in dimensionless form then

B. Scaling and simplifications

alization of our governing equations: read
[VI=Ug,, [L]=H, [t]=H/Ug,, ACo(apE+ v ) BY - (aV D)+ AC, V2
—— V- = . .
[0]=WF?C,, [®]=EH, [pe]=FAC,, Co L at T TPE 7T Rac, PE "
[p]=po, [PI=pUIH, [{]=(,.
Here{ is the EDL zeta potentidldiscussed beloy The val- ‘9_‘7 +Vv.-Vo= AG, BV - (peV D)+ ivza (13)
ues we adopt for these scales are listed in Table I, and are Jt Co Rae ’
chosen to best represent the experiments in Sec. Il. The ion V2= (14)
diffusivity and mobilities are averages of the values of po- PE:
tassium chloride ions which dominate the conductivity field.  V.v=0, (15
A few remarks on the value of the scales we choose are
appropriate. First, the scale for the charge density is chosen g ﬂJrv_Vv = —Vp+V2v—peV O (16)
such that the electric field generated by charges in the bulk ot ’
matches the imposed one in magnitddee Eq.(3)]: where
€E, 2142
FAC,=—, ~ UgH €eEGH
H Ra=—(—= D 5.4x 10%, (17
or
AC E is an electric Rayleigh numbéthis use of Rayleigh number
°o_ S0 10x10°5 to denote the ratio of diffusive to convective time scale is
Co FCoH similar to that by Baygents and Baldesgati
The choice of characteristic length in this relation is appro- U.H cE2H?2
priate as we are interested in cases where the diffusive length Re= Pore™ _ Po ; ~100, (18

scale is on the order of the spanwise channel widtiBe-

cause the charge density is induced by the molar differencg the Reynolds number. The dimensionless nungir de-
of the two species, the smallness of the param&®@;/C,  fined as

implies the well-known electroneutrality assumpti@rt*°

This assumption states an approximately net neutral condi- B= WFE0~9X10—3 (19)
tion of the form ev '
C,~C,. which is the ratio of the electrophoretic ion velocity to the

However, the finite difference between the concentration oflectroviscous flow velocity. _ _

the two species is proportional to the net charge in the sys- We should mention that as the magnitude of the imposed
tem and, although small compareddg, can easily generate fiéld (and subsequently the scali) changes, the dimen-

a significant electric body force term that must be considere§ionless numberaC,/C,, B, Ra,, andRechange as well,

in the equations of fluid motiongWe have confirmed with ~and the flow can be brought into different regimes. However,
nonlinear numerical simulations of these equations that thfr the electric field range of intereshC,/C, remains a
generated field in unstable—rapid mixing conditions is com€ry small quantity, which results in further simplifications
parable to or greater than the applied field in magnitude.of our systen?® Namely, the divergence term is dominant in
Second, the velocity scale is derived from the balance ofd-(12), so the equation reduces to

viscous force with the electric body force in the momentum  y.(sv@)=0. (20)

equation(6), following Hoburg and Melchet? . . . o
5 This relaxation assumption states that the generated field in-
eEgH (10) stantaneously satisfies the divergence condition. If we de-
T compose the electric field into a constant, imposed, unidirec-
Note that we do not use the apparent, “obvious” velocity tional field plus a generated one d=E,&—V¢ in
scale that is observed experimentally in the base flow, that iglimensional form(or E=e,—V ¢ in nondimensional form

Ue,=

the electroosmotic velocity we obtain
Ugom — 050 11 7 Y (¥ 21
eo— w (11 ox (aV ). (21
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We denote the generated field with and distinguish it from  tion (11), but with ¢ being a function of local conductivity,
the total(appliedplus generateffield ®. Consequently, Eq. andE being the instantaneous local electric field. Our non-

(13) can be simplified as dimensionalization gives us another dimensionless group

do 1 E.H

 4Vv.Vo= — V2 R,= ~5.6x 1073, 2

7 v-Vo RaeV o, (22 iy (27)
which is a natural consequence out of the electroneutrality/hiCh_ represents the electroviscous to electroosmotic veloc-
condition. ity ratio. ' .

Equations(14)—(16), (21), and (22) constitute a com- To close the system E@25) can be combined with the
plete system fow, pg, ¢, p, andv, and will be the set of following approximate empirical correlation for the nondi-
governing equations. mensional zeta potential:

It is instructive to compare this formulation for EK flow c\n
instabilities to previous work on EHD flow instabilities. §=(C—) ,

R

First, the inclusion of the diffusive term in the conservation
of conductivity equation(22) is suggested by the work of where Cy is a reference concentration at whi¢ti =¢,
Baygents and BaldessatiAlthough they examined a differ- =—7x102V. We take its dimensional value a€}

ent electric field and conductivity gradient configuration, =1.0 mol/n?, which correspond to a dimensionless value of
Baygents and Baldessari found that molecular diffusion hadCgr~30 in our current scheme of nondimensionalization. For
an important stabilizing effect and is responsible for the exthe power indexn, classical EDL theory would suggest a
istence of a threshold electric field below which their EHD value ofn=—1/2, which assumes a constant surface charge
flow was stable. Our modeling work shows that the diffusivedensity’ However, more recent models of EDL physics
conductivity term in Eq(22) is indeed required to capture a (Scaleset al*%) suggest a somewhat weaker dependende of
threshold instability condition in our flow. The model of on ion density. In this paper, we assume an approximate
Hoburg and Melchel® who explored a configuration similar value ofn=—1/3 as suggested by the experimental work of
to ours(with a conductivity gradient perpendicular to applied Yao et al3! who measured zeta potentials of borosilicate sur-
field) neglected this term as their flow length scales of interfaces. Our diffusive ohmic model formulation, therefore,
est were larger than those of our 200000um channel couples with the physics of the EDL only through a slip
cross-section. Our convective electroosmotic flow boundaryelocity which is dependent on local ion density.
conditions(see next sectiorare also a new characteristic not Lastly, note that in nondimensional terms=2C from
found in the initially stationary-liquid EHD work. Another the electroneutrality assumption.

difference between this and the work of Hoburg and Melcher

is that we consider a more realistic conductivity profile con-

sistent with our experimentéNote that Hoburg and Melcher V. TWO-DIMENSIONAL MODEL

also used a more realistic diffusive profiles in later studies of
different flow configurations, see for example, Ref.)18.
Lastly, we consider both two- and three-dimensional flows
and solve the fully nonlinear equations
dimensional case.

In this section we assume that the flow exists only in the
x-y plane, with no dynamics in thedirection. This analysis
: will capture the basic physics of the instability mechanisms
in the two- g6 1o the conductivity gradient. As we discuss in the next
section, the primary defect of this model is the neglect of the
influence from the side walls in they plane. The experi-
mental channel is “shallow{in z) compared to the height
In our analysis we shall assume periodicity in the(in y). (Here we refer to a channel as shallow if its aspect
streamwiséx) direction, and prescribe the followir{dimen-  ratio [z]/[y]<1, and “deep” if [z]/[y]>1 such that the
sionles$ boundary conditions on the walls: two-dimensional simplification can be assumddespite its
limitations, the two-dimensional model provides a frame-

C. Boundary conditions

Vé-n=0, (23 work to understand the full three-dimensional physics and
Vo-n=0, (24) the experimental results.
We will start the section by conducting a linear stability
1 analysis of the governing equations to analyze the behavior
vit= R_UgE't’ 29 of the system. We follow by a two-dimensional nonlinear
simulation to demonstrate the basic features of the simulated
v-n=0, (260 flow and draw comparisons to the experiments.

wheret andn are the tangential and normal vectors of the
wall, respectively. Equation&3) and (24) are respectively
the condition that the boundary is nonconductive, and that We use a linear stability analysis to predict the regimes
there is no ion diffusion across the boundaries; 26) is the  where we would expect rapid mixing to occur. We start by
condition that the wall is impenetrable. Special attentiondefining a base state that satisfies the governing equations.
should be paid to Eq(25). This equation is simply the di- The base state is assumed to be a functioy ahdt only.
mensionless form of the Helmholtz—Smoluchowski formula-This simple assumption, coupled with two-dimensionality

A. Linear analysis
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and continuity, demand that velocity field inis zero. The A 16 .
base state of conductivity,(y,t) thereby obeys the simple u= —Uo(§ U—+lk¢>), (36)
diffusion equation °
doog 1 _, v=0. (37)
ot ﬁev 0. The time dependence of the base state introduces a non-

homogeneous function in time that prevents us from assum-

subjected to the ~Neumann boundary  conditionjng the standard separable temporal groefthWe can make
[dog/dy]y-+1=0. To determinery(y,t=0) we solve a pre-

a quasi-steady assumption for the base state and conduct a

liminary problem where the upper and lower halves of they,itional linear stability analysis replacing the time deriva-
channel are assumed to be of uniform, but differing conducs;yes in the above equations @t=s. This quasi-steady

tivities separated by an infinitely sharp gradient. The inter'assumption is accurate when the growth rate of the perturba-

face is allowed to diffuse for a time equal to the advectiongjyp, ig rapid with respect to the time scale of diffusion of the
time from the channel inlet to the viewing area of the experi-p,se state conductivity, which is the case of interest when
.m_e.nt. The.r.esultmg andUCt,'Y'ty profllg is then used as arbredicting rapid mixing regimes. When the growth rate of the
initial condition to the instability analysis. disturbance is very slovi.e., just above neutral stability
The difference in the conductivity in the two channel i, streams will significantly mix via molecular diffusion

halves induces different electroosmotic velocities at the Uppafore the disturbance waves grow large enough to begin to
per and lower boundaries of the channel. The resulting basg,njinearly fold the two fluid streams. To verify the accuracy
state flow field under these assumptions is a sheared Couetfe assumption we have solved the linearized equations

flow above with and without this quasi-steady assumption; for the
U,+U_, U;—-U_, latter we solve the full time-dependent, initial value problem.
U= Ty —5 (28)  We find that the linear flow evolution is identical for either

solution method when the growth rate of the perturbation is

where the velocities at the boundaried,(and U_;) are  “large” (we shall define a large growth rate via a mixing
provided by Eq(25). The base values for the generated elec-criterion below.
tric potential and charge density are zero. The linearized equations are solved using standard

The base solution satisfies the governing equations, angseudo-spectral techniques with Chebyshev polynomials as
we check the stability of this base state with respect to smalthe basis functions. Under the quasi-steady assumption we
perturbations. We assume periodicity xnand expand the replace the time derivatives in Eq29)—(37) with the eigen-
base solution in normal modes agfo(y,t)JrEf(y,t)eikX, value s, and solve for the eigenvalues and eigenfunctions.
wheree is a small parametéf The linearized equations for Using the methods outlined in such references by Treféthen

the disturbances read and Weidmari* The time dependent simulations of the lin-
~ earized equations employed speﬁcétral methods as well, using
A ~ dogd¢ the techniques outlined by PeyrétFor both methods we
0= —ikg+ooV2ig+ dy ay’ @9 find that 64 points provides adequate resolution at reasonable
computational cost.
196' d(TO 1 2A
Gt~ KU vd_y+ ﬁev - @0 g |inear results
b We have obtained, for each wave numkeand applied
ikl+ @:O' (31) field E,, a set of eigenvalue@he growth rates), together
with their respective eigenfunctions. In Fig. 3 we show a
N o duy, 1 o ) ,- contour plot of the growth rates of most unstable eigenfunc-
71~ Tkugl—o dy R TIkPFVIU—V"), (32 tion in the wave number-electric Rayleigh numtgelectric
field) parameter space. The neutral stability curve is obtained
v 1 p 5. by settings,=real(s)=0. A threshold electric field can be
gt Kud T Re| Ty TV (33 determined from the minimal value &, on the neutral sta-
bility curve. Similar to the results of Baygents and
where Baldessart! we found that the inclusion of the diffusive
52 term (1Ra,) V2o in Eq. (22) is crucial for the existence of
V2=<—2— kz) the neutral stability curve.
% Nevertheless, the neutral stability curve is less interest-
The boundary conditions become ing in our case for practical purposes. Recall that when the
~ growth rate is close to zero, our quasi-steady assumption is
ip not accurate, and the flow will significantly mitand be
W_O’ (34) smoothed by molecular and momentum diffusion before
A there is sharp folding of the material. Here we define a fast
07_020 (35) growth that will serve as the demarcation between a mixed
ay and unmixed flow in our analysis. Thid hoc kinematic
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FIG. 3. Contour plot of growth rates{) versus wave number and electric
Rayleigh number. Dimensional applied electric field is provided on the rightg g 4. Comparison of the contour corresponding toshe4 s~ * growth
axis. For the case plotted here, the initial interface of the two fluids approXiyate for the same parameters as Fig. 3, but shown for various conductivity

mately extends between 0.75<y<0.75 and the ratio of the conductivity ratios. We see that the critical electric field required for mixing is lower as
between the two streams is 10. the conductivity ratio increases.

criterion is preferred over the neutral stability curve to facili- o .
tate a straightforward comparison with experiments wherénents we h.ave pe_rformed at conductivity ratios of 2, 5, and
observabldnstability dynamics lead to rapid mixing. We de- 10 which will be discussed in a future paper.

note adimensionalgrowth rate by In Fig. 5 we show the unstable eigenfunctions of the
. linearized equations at an electric field of 2.50* V/m. The
St =5Ue, /H, stream function assumes the standard relation to the fluid
and set our rapid mixing criterion to be velocity components as
* —1 Ad A Y
sf~4 st (39 ,—)—(u,u),
ay ' X

A growth rate of this magnitude corresponds to the amplifi-

cation of a perturbation by a factor of 3th approximately —and is obtained through

three seconds. With this growth rate a disturbance of nanom-

eter size will grow to 10% of the channel height in a few

seconds. This growth rate should be observable in our ex- 2 ik
: ) L : U(y)e

periments and will serve as a criterion between rapid and 1

slow mixing regimes in our analysis. The necessity of this s
mixing criterion will be demonstrated later in Sec. IV C by = o (
nonlinear numerical simulations, where we will also discuss
the scaling behavior di.e., the critical physical forces asso- -
1 — 1 L 1 1 1
(y)

o

o

ciated with the instability dynamics. - .
Using the mixing criterion(38) we find that the two ¢

dimensional analysis under-predicts the mixing threshold

1 L T T T T T
when compared to the experimental data. The experiments 0 1
show a strong transition to mixing occurring between applied = Q
fields of E=2.5x 10" V/m and E=5x10* V/m, whereas -05

the analysis predicts the mixing threshold to occur at ap- -t L ™
proximatelyE=1.25x 10* V/m. 1 P(y)e™™
Using our model we also investigate the sensitivity of

the mixing results to changes in conductivity ratio of the two 05 \?

streams. We keep the concentration of the lower stream fixed & © Q

and vary the concentration of the upper stream. In Fig. 4 we :

show the predicted mixing boundary in wave number and 4 . - L - ) )
T

o

o

o

electric field parameter space for various conductivity ratios. 0
We see that the critical field is lowered for larger values of
conductivity ratio across the stream. Note that this theoryFIG. 5. Eigenfunctions of the most unstable mode for thex26' V/im

also predicts that the most dangerous wave number I.erm;.ms‘guation. The contour plot of the stream function, conductivity, and electric
potential perturbations are shown. There is a set of nearly symmetric eigen-

essentially u_nchange_dk(vZ.S_) as th_e Cond_uc_tiVity ratio _functions that have streamlines that lean toward the left. Thédnd * —”
changes. This trend is consistent with preliminary experisigns denote the local maxima and minima of the plotted functions.

Downloaded 30 Apr 2004 to 171.64.116.167. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



1930 Phys. Fluids, Vol. 16, No. 6, June 2004 Lin et al.

i of similar problems are found in the literatut&® The non-

V= E?J- linear terms are explicitly integrated forward in time using a
second-order Adams—Bashforth scheme, while diffusive

terms are integrated using a Crank—Nicholson scheme to

WE.3 show the d|§turbanc_e functions for streamlines, ConOIucé\chieve numerical stability. The momentum equation is
tivity, and electric potential.

For hiah lied field h that id mixi solved with the velocity-pressure formulation outlined by
th or tlg e: iﬁ)p e dle slsuct Ia fapid mixing ()(_:Curfr’]Peyrel‘?5 Resolution of 64 points in both directions provides
€ most unstable modes aimost always come In pairs, gdequate results, and finer grids were used to test for conver-
(rea) growth rates being nearly equal, and the eigenfunction

being nearly symmetric to each other. Compared with th ence. The methpds we gsed are ;tandarq and .w.ell-
exact symmetry(i.e complex—conjugat'e eigenvalues anddpcumented; we will .not provide the deta|Is.here_|n. To aid in
eigenfunctions béir'\,g mirror imagesbserved by Hob’urg direct comparison Wlt.h th_e experlmental V|suaI|za.t|ons, we
and Melcher the slight asymmetry of our eigenvalues and S0vC_ " advection-diffusion equation for a passive tracer
eigenfunctioﬁs is dug to oZr baseyelectroosr%otic flow Takwr[h a 3x10 * m/s diffusivity to simulate the motion of

for example the case df,—25000 V/m, at the most un- fhe dye molecules observed in the experiments. Because the

stable wave numbek=3, the most unstable eigenvalue is dye has a much lower diffusivitycompared with 2

; i : X 10™° m?/s for the electrolytes it avoids the diffusive ef-
5= 0'037}_ O'OQLthICh tran;lates to a'dlmensmnal growth fects in numerical visualization, exhibits a sharper interface,
rate of sy~16s -, and a right-traveling wave speed of

< /K" ~ 6.6 mm/s. The paired eigenmode assumes a value afnd better characterizes material line distortions observed in
i . ' P 9 . . %xperiments(ln fact we shall show in Sec. IV D that for the
s=0.0336+0.013, which translates to a dimensional

th rate ofs* 15 s 1 d a lefit i q more violently unstable regime, i.e., the high electric Ray-
g;z\iv/k*ra € (1) zrmm/sso'n ‘;?e cihgr 'h;i\;e 'i?sv:’:;tetﬁgebzsqleigh number dynamics, diffusion of the conductivity field is
R - ’ | ligibl hat th foll losel

shear flow as defined b§28) to be u,=0, we recover the argely negligible so that the observed dye follows closely

. the evolution of the conductivity field.
symmetry and obtairs=0.0366+0.0522, or s*~16s 1, y field

: ) First we demonstrate the necessity of the mixing crite-
and waves traveling to the right and left at equal speeds qfion (38) as we have proposed in Sec. IV B. Shown in Fig. 6

~3.8 mm/s. Therefore including the electroosmotic basqs the nonlinear evolution of the instability at applied fields

stlate(28) caqsefsl a Sq_';t of wave Zpeecfi i?] thehqfiri;;;i%n Ofof 6250, 8500, and 12500 V/m. The linear theory predicts
electroosmotic flow. The magnitude of the shift 1s2. rowth rates ok} =1, 2, and 4 s?, respectively. Each col-

mmy/s, which agrees almost exactly with the average value Ogmn of snapshots corresponds to different growth rates as

Uo from Eq.(28), i.e., (U, +U)2~2.8mm/s.  giuan by higher driving electric fields. In the first column of
Aside from the phas_e speeql change in the instabilit ig. 6, the distribution of the dye is governed by molecular
waves, the electroosr_notlc vel_ocny does not have a Strongiffusion, even though the linear stability analysis demon-
influence on ihe stability physics for our current parametely, ies that the flow is unstable. The simulation evolves for
range of interest. Nonetheless in a simult.aneous work b¥L8 seconds before we see visual evidence of waves. As we
three of us(C.H.C,, H.L., J.G.S. together with S. K. Lele increase the electric field to observe different growth rates

the electroosmotic velocity is found indeed important for aye see that the instability can begin to mix the flow more

different parameter range, and a critical valueRyf, which rapidly than molecular and momentum diffusion can smooth

is defined as the ratio of electroviscous to electroosmoticﬁ The main point to be taken concerning Fig. 6 is that there

velocity, serves to demarcate between absolute and conveg- regime where the quasi-steady analysis predicts the flow

'gve ;pstab!‘lgy[see tCH %hel;" ']"th'IS'tK'kI_‘el?_’ ?”dtJb% to be unstable, but the growth rate is not sufficient to be of
antiago, “Convective and absolute electrokinetic insta "ypractical interest as a rapid effect.

with conductivity gradients,” J. Fluid Mechsubmitted) In Fig. 7 we show the nonlinear evolution of the simu-

We refer the readers to that study for details. For the currer]%‘ted dye field at stronger electric fields. The two right col-

p;’:\per, we S'mﬂ:y pcr)]mt ou} tha_t bepa}t{luﬁg<1 [E%' (27)]_’ umns have applied fields stronger than those shown in Fig. 6
electroosmotic flow has only minor influence, and our insta=, 4 4re el within the rapid mixing regime. For comparison
bility is dominantly absolute in nature, which is consistent

ith the t | th of the instabilit we also show in the left column the case @&,
wi € temporal growth ot the Instability waves. =10000 V/m which is just below the rapid-mixing thresh-

old. The model reproduces many of the essential features
observed in the experiments, including the shape and initial
We solve the governing Eq$14)—(16) and (21)—(26) break-up dynamics of the interface, the transverse growth of
numerically to capture the nonlinear evolution of the insta-a wave pattern in the interface, and a roll-up of scalar struc-
bility observed in the experiments. The initial conditions aretures observed at later times. Note the similarity in the most
the base states that have been discussed in the linear analysinstable(and most apparentwave number at later times
and a white noise perturbation is supplied with an amplitudéoetween the simulation and experiments.
of 10> with respect to the base state. Despite similarities between wave number and the dy-
The equations are solved using a pseudo-spectral collaramics of the interface breakup, the threshold imposed fields
cation method. We use Chebyshev polynomials to expand thigom both the linear and nonlinear predictions are lower than
equations in the cross stream direction, and Fourier series ifmose shown for the experiment in Fig.[fh fact, thead hoc
the streamwise direction. The details on the implementatiowrriterion (38) was suggested to us by the nonlinear simula-

C. Two-dimensional (2D) numerical simulation
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FIG. 6. (Colorn Snapshots of the dye field at various instances in time for
different driving electric fields. The electric fiel§applied at =0) and bulk

flow are directed from left to right. Each column indicates a different ap-
plied field and the rows within each column present selected snapshots in
time. The image correspond to a physical domain of 3.6inmm. (Note

that the images have been slightly stretched inythirection to give best t=% g
visualization) The left-hand column corresponds to an applied fieldEof

=6250 V/m, the middle column t&=28500 V/m, and the right-hand col- F|G. 7. (Color) Sample images from the nonlinear numerical simulations for
umn to E=12500 V/m, and the linearly predicted growth rates afe  three different applied field&olumns and various timegrows). The elec-
=1s! sf=2s! andsf=4s", respectively. The time for noticeable tric field and bulk flow are directed from left to right. High field is applied
waves to develop is decreased as the field is increased. For the purposesart=0's. Each image corresponds to a visualization of a passive scalar in a
this paper, we decide that the mixing provided §y=4 s ! indicates a  physical domain of 1 mm widéy) by 3.6 mm long(x); thez (depth dimen-
well-mixed flow in the times of practical interest. sion is not modeled in these simulatiorislote that the images have been
slightly stretched in they direction to give best visualizationAn initial
white-noise perturbation with an amplitude of FOwith respect to the base
state is provided. The images display a passive tracer that has the diffusivity
of the dye used in the experiments. The images in each row are taken at the
same time as shown in the figure.

tions shown in Fig. §.For example, compare the evolution
of the dye at 25000 V/m from the experimeniEsg. 2, col-
umn 1) and the simulationiFig. 7, column 3. We see that the
simulation at 25000 V/m predicts a well-stirred flow field in
less than three seconds while experiments show that the flow H m
is stable on the time scale of the experiments. The simulation  Tev= Us €E2’
of 25000 V/m is qualitatively similar to the experimental

flow at 75000 V/m(Fig. 2, column 3. Despite the discrep- and demonstrated that instability growth rates scale.gs
ancy in the magnitude of the applied field, our simulationHere we examine this instability scaling behavior using our
captures a threshold field and scalar features qualitativelponlinear simulations. In Fig.(8 we plot dimensional ve-
similar to the experiment. In Sec. V we will try to address locity as a function of dimensional time for various applied
possible causes for the under-prediction of the threshold€lds; the velocityv ya, is defined as the maximum trans-

(39

electric field by including three-dimensional effects. verse velocity in the nonlinear simulations at each instant.
For each applied fieldwith the exception of the lowest
D. Discussion Umax grows exponentially to a peak value consistent with the

) ) ) most vigorous stage of the instability, and then relaxes to a
~ In both our linear and nonlinear calculations we havegjowly decaying value as a well-mixed state is achieved. The
given our results irdimensionalunits, i.e., we used the di- cyrves show the general trend that for higher field, the insta-
mensional field strength to determine instability threshold,bi“ty grows faster, and a higher peak value fgy, is ob-
and a dimensional growth rate to quantify instability growthtained. In Fig. &), we scalev 5, andt with the electrovis-
rate. This approach has been adopted primarily to facilitateous scaletl ., andr, , respectively. Under this scaling, we
direct comparisons with experiments. In this section we turrfind the dynamics ob 4 Nicely collapse to a single curve
to discuss the scaling characteristics of the instability, parfor a wide range within the strongly unstable regintg, (
ticularly in light of the electroviscous scaling proposed by =8500, 17500, and 25000 VjmNote that these three evo-

Hoburg and Melchel? lution curves nearly exactly overlap, with identical dimen-
In Hoburg and Melchef the authors defined an electro- sionless growth rates and peak valuew gfy/Us, . In con-
viscous time trast, we also observe minor deviations from the
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FIG. 8. Demonstration of the electroviscous scaling. For both graphs, simulations at electric flejés4500(solid), 6250(dash—dagt 8500(circles, 17500
(triangles, 25000(diamond$ and 50000(dash V/m are shown. In(@) we plot a dimensionad ,, as a function of the dimensional tiniewhereuv ,, is
defined as the maximum transverse velocity in the field at each instant from the nonlinear simulatitmswénscalev ,,, andt with U, and 7, ,
respectively. The modeling shows that, for a wide range of electric fi#dm 8500 to 25000 V/mof interest here, the various curves collapse almost
identically to a single curve which grows exponentially, overshoots a critical value, and then damps down slowly as mixing progresses. Thé tt@lapse o
curves validates the electroviscous processes as the dominant dynamics over most of the range of interest. The(6280-\dgtand 50000 dash V/m

cases show significant deviation from electroviscous scaling due to increased molecular diffusion and inertial effects, respectively. In tire(46l0d) V
case(close to the instability thresholdmolecular diffusion dominates the development of the field and the electroviscous scaling is no longer valid.

electroviscous behavior &,=6250 and 50000 V/m, and a not dramatic. For lower values of field strengtuch as the
major deviation atE,=4500 V/m when the field strength 6250 V/m case in Fig.)8 on the other hand, deviations from
approaches the instability threshold. the electroviscous behavior is due to the increased relative
The collapse of the dynamics of,, for the mid-range  importance of the simple molecular diffusion associated with
of the significantly unstable regime is well explained by thesmall electric Rayleigh numbers andralatively) small dif-
electroviscous time and velocity scaling arguments offusive time scalery. As one further decreases the field
Hoburg and Melchet? The limitation of this scaling at high strength to approach the instability threshaklg., theE,
and low electric field values can be explained by comparing=4500 V/m case of Fig. )8 molecular diffusion plays the
the electroviscous time to the time scales of molecular andiominant role in the development of the flow field and the
momentum diffusion. In Hoburg and MelcHBtthe authors  electroviscous scaling is no longer valid. The growth of dis-

define a momentum diffusion time scale as turbances is mostly quenched by diffusion and only marginal
pH?2 instability is observed.
TUET"‘O.ZS S, (40 Note that even though the electroviscous velocity and

times scales adequately collapse the instability dynamics
which signifies the relative importance of the inertial force inacross applied fields, the absolute values of these scales tend
the momentum equation. As suggested by the work of Bayto be significantly larger than the values observed in the non-
gents and Baldessari,we also have yet another important linear simulations. For example, the characteristic values of

time scale, the diffusion time the scaled, nondimensional velocity and time scales in Fig.
2 8(b) are of order 0.1 and 20 respectively.(A similar con-
4= 3~125 S. (41 clusion is found in scaling the streamwise disturbance veloc-

ity Umax.) However, the derived electroviscous velocity and
Ratios of these times scales yield dimensionless numbers wane scales used here are based on simplified scaling argu-

defined earlier: ments and are not directly observed quantities in an experi-
, , ment(i.e., these are estimates of the internal physical scales

Re= _”ocEg, Rae:—docEg, (42) and not quantities directly imposed by the experimenjalist
Tev Tev Therefore, although these electroviscous scales correctly

and both these numbers increase quadratically as appliestale the dynamics, caution should be used in applying these
field increases. For higher values of the field strengtich  derived scales to identify dynamic regimes of the generalized
as theE,=50000 V/m case in Fig. )8 the electric-field- formulation. For example, the value of the electric Rayleigh
driven flow is characterized by a Reynolds number of ordenmumber based on the derived electroviscous velocity scale
unity or greater, and so inertial forces affect the dynamics ofEq. (17)] for the E,=6500 V/m case in Fig. 8 iRa,

the instability and we expect deviations from the electrovis-=3400, suggesting that diffusive effect can be safely ig-
cous behavior. However, as pointed out in Hoburg anchored. However, as our numerical simulat{éig. 8(a), dot—
Melcher?® the dependence of the instability dynamicsk@  dasH finds, aneffectivetime scale for the instability growth

is weak in this regime, and so the deviation is apparent buin this case isre=20 s, which gives an effective Rayleigh
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number of Rags=14/7.4=6, and which suggests diffusion deep shallow
processes are importaiiig. 8b), dot—dash (This trend of [ ' ' ' '
over-prediction becomes more prominent as one approaches
the instability threshold, e.g., for thE,=4500 V/m case,

where the electroviscous scaling is no longer valid. 0.5t

V. THREE-DIMENSIONAL MODEL

In the previous sections we have provided a two- =0

dimensional framework that appears to capture the primary
physics of our flow. The primary limitation in our model is
the two-dimensional assumption. The channel in the experi- -0.5}
ment is shallow, with an aspect ratio [of]/[y]=0.1. In the
two-dimensional model, we assumed that EDL's formed on
the upper and lowery(= £ 1) boundaries of the channel and . , , , , )
drove a linear Couette flow. In the actual three-dimensional 0 5 10 0.1 015 0.1 0.15
case, an EDL also forms along the side watls:(+ 5, where oo(Y) uo(y, 2 =0) uo(y, 2z = 0)
6=d/H, andd is the half-depth of the channelnd strongly B ) ,
drives the flow due to the small depth of the channel. TheC: 9. Base state conductivijeft-hand plok and velocity profiles for a
h di . 1l b s theref . Ichannel that is deefmiddle ploy and shallow(right-hand plot in the span-
three- iImensional Tlow base Stat_e IS, t'ere ore, not a SIMPHise, z direction into the page as shown in Fig. 7. In both cases, axial
Couette profile. Also, the three-dimensional nature of a thirvelocity profile along the transversedirection is shown for the mid-plane
channel couples the instability dynamics to the side walls viglong z=0. When the channel is deep and the effects of side walls are
viscous forces. Below. we present a preliminar assessmeﬁ?gllglble, the flow is dominated by the EDL slip velocity that forms at the
- ! P .p . y ~top and bottom walls ag= * 1, resulting in a linear shear. When the chan-
of these thr_ee'd|men5|0_”a| eﬁ?CtS using a “n?a”Z?d analysige| is shallow, the flow is dominated by the EDL velocity on the side walls
A fully nonlinear three-dimensional investigation will be pre- (in the x-y plang, and the flow field follows closely the shape of the con-
sented in a future paper. ductivity profile.

A. Base state

The base state is assumed to be invariant in theuctivity relation via (25)]. Note that in the three-
x-direction and the initial conductivity field is assumed adimensional case with an addeedimension, the flow is
function ofy only. By Eq.(21) we find that the conductivity better characterized by a new effective Reynolds number
field induces no electric field, and therefore, does not directhRe;=Ud/v. However, for simplicity, we will continue to
couple to the momentum equation. The base state conductiuse the Reynolds number defined earlier and the statements
ity, therefore, evolves as presented here are still true sirRey;<Re. The conductivity
slowly diffuses while the velocity field instantaneously cor-

(90'0 1 (920'0 . -,
= (43)  rects itself to the new boundary condition. The base state

at  Rag gy’ velocity field is therefore well approximated by
subjected to Neumann boundary conditionsyat+1 and 2 52
Z==*6. =(—2+—2)U0, (46)
The base state velocity field is determined by the rela- aayc oz

tionship between the zeta potential and the conductivity Ogubjected to boundary conditid#5).

the fluid at the wall. The flow is driven by the EDL at the In Fig. 9 we compare the velocity profile as a function of
wallsy==*1 andz=x 4. The velocity in they andzdirec- v giong the plane=0 for the deeptwo-dimensional and
tions are both zero as provided by continuity and the asgpg|iow(three-dimensionalEK channels. For deep channels
sumption of invariance in the-direction. The base state ve- he flow behaves as a Couette flow as previously assumed.

locity field is determined by the momentum equation For shallow channels, the flow closely follows the EDL ve-
g 1 [ 5 locity along the side walls.
—:—<—2+—2)U0, (44)
gt Reldy® oz B. Linearized model
subject to the boundary conditions Again we investigate the stability character of the base
1 state by linear analysis. We assume that all variables can be
Uo:R—Ué”(Uo), (45  expanded as the base flow plus a small perturbation of a

o _ single Fourier modd = fo(y,z,t) + ef(y,z,t)e**. The gov-
at the wallsy= =1 andz= = §. In the application of interest erning equations for the perturbations read
the electric Rayleigh number is large in comparison to the

Reynolds number, such that the time-dependent term in the R @-Hk Gt s dUg +W5Uo — L iKPLV204 5
momentum equation can be neglectdRecall that the veloc- at Ul v ay gz | P U= pe,
ity boundary condition is coupled to the conservation of con- (47)
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a p o, 10°
Re 5y Tikugd | =— 20+ V°D, (48) sy = 20sec |
R R s* =4sec L]
Rd 2 4 ikugi ® vz (49) j
— +ikugW |=— — W,
at 0 iz .
. 3 E
V2hp=—pg, (50 o Neutral >
. 10° 110° o
ko= o v2gt 270 70 (51) =
IKo= 0 -,
oV 3y ay
a&+_k A+Aaoo 1 V25 52 10}
— +IKUgo+v—==—V*“0,
ot 0 dy Rag .
10° 10'
where k
92 92 FIG. 10. Contour plot of growth rates$ for different combinations of wave
Vi=| —+ ——K? number and electric field using the three-dimensional analysis. In this case
(3’y2 9z° the interface of the two fluids approximately extends betwedh75<y
. <0.75 and the ratio of the conductivity between the two streams is 10. This
The boundary conditions become figure used the same parameters as Fig. 3 for the two-dimensional analysis.
. Compared to the two-dimensional model, the contours are shifted to higher
Vo-n=0, (53 electric fields indicating that the side walls stabilize the flfMote that we
have shown the same rangesR¥é, (E,) andk as in Fig. 3]
Vé-n=0, (54)
. 10 . mixing of approximately 50000 V/m for the conductivity ra-
Vit=—Uy 3 —6&+ Ve L, (55 tio of 10, in closer agreement with the experimental data than
° the two-dimensional model.
v-n=0, (56) In general when compared with the two-dimensional,

infinite-depth analysis, we found that the critical electric field

where under the same conditions was much larger for the three-
J 0 dimensional case for each of the conditions. The side bound-
VE( ik, 7y E) aries in shallow channelsvhich can support a shear stress

act to stabilize the flow field. We also note that the linear
This formulation allows us to solve the time dependent probthree-dimensional model predicts a higher most-dangerous
lem evolution of a single Fourier mode in three dimensionswave number at higher electric fields. However, which mode
just as we have done in two-dimensions. In the threebecomes the most rapidly growing in the fully nonlinear re-
dimensional case we elect to solve the time-dependent evgime awaits further study with full nonlinear, three-
lution rather than the complete eigenvalue probléhme ei-  dimensional simulations.
genvalue approach has not been adopted here; the One interesting aspect of this problem is the difference
computation for the three-dimensional case exhibits a pooin the physical mechanisms that exist in the two- and three-
scaling with respect to the number of grid points and is pro-dimensional flows. In two-dimensions the instability origi-
hibitively expensive for our current numerical schem&e  nates purely from the within the conductivity gradient. In the
initialize the flow with a random perturbation in tyeandz  three-dimensional case the flow is strongly coupled to the
directions, and the growth rate for a single Fourier mode isside walls. Due to the shallow channel depth and the low
extracted by fitting the disturbance amplitude to the functionrReynolds number in the cross-stream direction, we expect
et We apply the same rapid mixing criterion sf=4s™!  that the electroosmotic flow in the channel to be quite uni-
as in the two-dimensional case. form in the z direction, especially at the onset of the insta-
The three-dimensional equations are again solved b¥pility. This implies that the flow in the interior of the channel
pseudo-spectral methods as outlined by Pef@@02.3° We is deeply influenced by the velocity boundary condition on
use Chebyshev polynomials as basis functions inytaedz ~ the side walls, which is in turn correlated to the generated
directions. We again use the Adams—Bashforth method foelectric field and the EDL. This side wall boundary condition
integration of the convective terms and Crank—Nicholson foprovides a stabilizing force with respect to the instability

integration of the diffusive terms. dynamics due only to the conductivity gradient in the bulk
liquid.
C. Results
We now recreate Fig. 3 with the three-dimensional Iineaer' SUMMARY
analysis and show the growth rate contoursyer10 in Fig. We have presented experimental, numerical, and analyti-

10. By adopting the same kinematic growth-rate criterioncal results that explain the basic mechanisms behind an elec-
sf=4s1, the analysis predicts a critical electric field for trokinetic mixing phenomena observed in micro-fluidic
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