1. Tighter Bounds for Random Projections of Manifolds

Ken Clarkson
IBM Almaden

2. Dimensionality Reduction

- Given a high-dimensional dataset, in \mathbb{R}^m, map it to a lower-dimensional space
- One approach: carefully pick which coordinates to keep
 - Some dimensions are features, others are not
- Or: carefully rotate the data, then carefully pick which coordinates to keep, or do something even more complicated
 - SVD (PCA, LSI, EigenFace*), SDP, ICA, MDS, ETC
 - *See also: EigenEyebrow, EigenEye, EigenNose, EigenMouth, EigenHead....
 - EigenHand, EigenBody, EigenHeart...
 - **Not: EigenCluster, EigenMonkey

3. Random projection

- Instead of picking a rotation carefully, pick one at random
- Instead of picking from the new coordinates carefully, pick the first k

4. Random projection, more specifically

- Again:
 - Apply a random rotation to $v \in \mathbb{R}^m$
 - Drop all but k coordinates
 - Scale (multiply by a constant) so that new vector v' has $E[\|v'\|] = \|v\|
- Equivalently: pick a random subspace of dimension k, project v onto it, then scale
- Johnson-Lindenstrauss (JL) Lemma: with high probability, this preserves length, approximately:
 - Let a k-map P be a random projection from \mathbb{R}^m to \mathbb{R}^k, as above
 - If $k \geq \varepsilon^{-2} C \log(1/\delta)$, then with probability at least $1 - \delta$,
 $$(1 - \varepsilon)\|v\| \leq \|Pv\| \leq (1 + \varepsilon)\|v\|$$
- Since P is linear, $\|\alpha Pv\| = \alpha \|Pv\|$ for $\alpha \geq 0$, so WLOG $\|v\| = 1$
5. **Random projection: why?**

- Existence proof: if a random projection gives good results, what if we work harder?
- There are many similar algorithms with the same properties
 - Multiply by a \(k \times m \) matrix of random \(\pm 1 \), or of Gaussians
 - Use a matrix with a fast multiply [AC]
- Obliviousness: the random projection is chosen without looking at the data at all
 - ...and so is called “universal feature reduction”
 - Feature reduction without “feedback”: no loops
- Brain may work this way; a recent model of the brain [SOP]:
 - Is a “feedforward” neural network
 - Uses randomness for feature reduction in a similar way

6. **From one point to many**

- Point *isometrizing*: for one vector (point) \(v \), the probability of failure is
 \[
 \delta \leq \exp(-k\varepsilon^2/C)
 \]
- Finite set *isometrizing*: for set \(S \) of \(n \) points, probability of failure for all points is
 \[
 \delta \leq n\exp(-k\varepsilon^2/C)
 \]
- Finite set *embedding*: for \(S - S := \{ x - y \mid x, y \in S \} \),
 \[
 \delta \leq n^2\exp(-k\varepsilon^2/C)
 \]
 - \(k = O(\varepsilon^{-2}\log(n/\delta)) \)
 - That is, preserving distances

7. **From many to infinite**

- Subspace JL [M][Sar]: for \(d \)-dimensional linear subspace \(F \),
 \[
 \delta = O(1)^d\exp(-k\varepsilon^2/C)
 \]
 - Hint:
 - There is a finite subset of \(F \) so that isometrizing it \(\Rightarrow \) isometrizing \(F \)
 - It helps that if \(x, y \in F \), so is \(x - y \), and so is \(ax \)
- "Doubling" JL [AHY][IN]: Embedding bounds for sets in \(\mathbb{R}^m \) of bounded doubling dimension
 - Mostly, additive approximation bounds on distance approximation, not relative
 - Doubling dimension [L67][A83] is a kind of "intrinsic dimensionality"; applied e.g. to NN searching [C99][KL04]
- Manifold JL [BW], here: embedding a \((\text{smooth, connected})\) \(d \)-dimensional manifold,
 \[
 \delta = O(1/e^\delta)\exp(-k\varepsilon^2/C)
 \]

8. **When is the input to a program infinite?**
9. **NB: Embedding and embedding**

- Embedding a manifold here means preserving *Euclidean* distances
- This implies also preserving geodesic distances and other local properties
- If only geodesic distances are of interest, results here simplify a bit

10. "**All d-manifolds are not the same**"

- The leading term for k, here and [BW], is $k = O(\varepsilon^{-2}(d\log(1/\varepsilon) + \log(1/\delta)))$
- Improvement here is for lower-order terms, but they matter:

11. **Manifold JL**

- Baraniuk and Wakin result has additional term for k of (roughly): $O(\varepsilon^{-3}(d\log(m\mu_f(M)/\rho)))$
 - is enough for failure probability δ, where:
 - m is (as before) the ambient dimension
 - $\mu_f(M)$ is the surface area of M
 - ρ is the *reach* [F59], the minimum distance of any point of M to its medial axis, and $1/\rho$ is an upper bound for curvature at any point of M
- My result has additional term (roughly): $O(\varepsilon^{-2}(\log(\mu_f(M)) / \tau^d + \mu_{III}(M))))$
 - where:
 - $\mu_{III}(M)$ is the total absolute curvature of M
 - $\tau(M)$ is a low-torsion-path threshold: if $a, b \in M$ have $\|a - b\| \leq \tau$ then there is a low-curvature or low-torsion path between them
 - If a path has zero torsion, it is planar; if very low total torsion, = planar
12. Why is this an improvement or interesting?

- Removed dependence on ambient dimension m entirely
 - Sometimes $m = \infty$
- $1/\tau$ plays a role similar to $1/\rho$, but can be much more smaller
 - If M is a pure quadric, then $1/\tau$ is zero
- Also showed: can use curvature measure $\mu_\perp(M)$ instead of surface area $\mu_\parallel(M)$
 - $\mu_\perp(M)$ can be $\ll \mu_\parallel(M)$
- Places "JL complexity" among other properties of M bounded by integral measures $\mu_\times(M)$

- As in prior work [IN][AHY], approximate the infinite set of
 all $(a - b)/\|a - b\|$, for $a, b \in M$ by a sequence of finite sets, and then apply JL Lemma to all the
 finite sets
- "Long chords", from a, b that are far apart, are easy to handle, because
 a' close to a and b' close to $b \Rightarrow$ normalized differences are close

14. The General Approach: Short Chords

- For short chords, the smoothness of the manifold is helpful:
 if $a, b \in M$ are very close together, then $a - b \approx$ a tangent vector of M

- If the max curvature is small, chords need not be very short for this to be good
Approximation for short chords becomes approximation of tangent vectors, which have total complexity $\mu_{III}(M)$

15. **Short chords, tangents, reach**

- Suppose $a, b \in M$ very close in Euclidean distance, but very far in arc length
- Then tangent at a or b has nothing to do with $a - b$
- This can happen when the reach ρ of M is small
 - As mentioned, the reach is the minimum distance of a point of M to the medial axis of M
 - Smallest distance of point $p \in \mathbb{R}^m$ to M, when p has two nearest neighbors in M
 - A.K.A., reciprocal condition number of M
- Reach is a key property, but very "local" and "worst case"

16. **Short Chords via Planar Tangents**

- How to avoid max curvature / reach?
- When $a, b \in M$ are connected by a planar curve in M, that curve has a tangent vector parallel to $a - b$
 - "Planar" := contained in a plane (2-flat).

- M is a pure quadric $\Rightarrow a, b \in M$ connected by a planar curve
- Low-torsion \Rightarrow approximately planar

17. **Concluding Remarks**
Results here give a relation of projection dimension k to standard measures

- May not be "news you can use": projection dimension guarantee relies on quantities that may not be available
- Like many results, gives an unverifiable sufficient condition
- Test for the right k statistically?

- OK for Manifold + (Gaussian) noise

- Relation to linear compression [Thurs, 4:30]
 - Both: multiply by $k \times m$ matrix, $k \ll m$
 - There: x is sparse \Rightarrow x is recovered approximately
 - Here: x's in a manifold, preserve (only) distances
 - (Could apply [S] to all d-flats of d-sparse vectors)

- Probably extendible to polyhedral manifolds

Thank you for your attention