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Online routing

source

destination

Edge weights 

(congestion) – not known 

in advance.

Can change arbitrarily 

between 0-10 (say)
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Iteratively:

Pick path (not knowing 

network congestion), 

then see length of path.
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Online routing

source

destination

Iteratively:

Pick path (not knowing 

network congestion), 

then see length of path.

This talk: efficient and optimal algorithm for online routing



6

• Three sources of difficulty:

1. Prediction problem – future unknown, unrestricted

2. Partial information – performance of other decisions 

unknown

3. Efficiency: exponentially large decision set

• Similar situations arise in

Production, web retail, Advertising, Online routing…

Why is the problem hard ?
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1. Describe classical general framework

2. Where classical approaches come short

3. Modern, Online convex optimization framework

4. Our new algorithm, and a few technical details

Technical Agenda
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Multi-armed bandit problem

Iteratively, for time t=1,2,… : 

1. Adversary chooses payoffs on the machines rt

2. Player picks a machine it

3. Loss is revealed  rt(it) 

Process is repeated T times ! (with different, 

unknown, arbitrary losses every round)

Goal:

Minimize the regret

Regret = cost(ALG) – cost(smallest-cost fixed machine)

=  t rt(it) - minj t rt(j) 

Online learning problem - design efficient

algorithms with small regret

1
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Multi-armed bandit problem

Studied in game theory, statistics (as early as 

1950’s), more recently machine learning. 

• Robbins (1952) (statistical setting), 

• Hannan (1957) – game theoretic setting, full 

information.

• [ACFS ’98] – adversarial bandits:

1
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Multi-armed bandit problem

[ACFS ’98] – adversarial bandits:

Regret = O(√ T √ K )    for K machines, T 

game iterations.

Optimal up to the constant. 

1
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What‟s left to do ?

Exponential regret & run time for routing

(K = # of paths in the graph)

Our result: Efficient algorithm with √ T n 

Regret (n = # of edges in graph)
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Online convex optimization

• Convex bounded functions (for this talk, linear functions)

– Total loss = t ft(xt)

• Can express online routing as OCO over polytope in Rn

with O(n) constraints (despite exp‟ large decision set)

x1

x2

xT

f1

f2

fT

f1(x1)

f2(x2)

fT(xT)

Distribution over paths = flow in the 

graph

The set of all flows = P µ Rn = 

polytope of flows

This polytope has a compact 

representation, as the number of 

facets = number of constraints for 

flows in graphs is small. 

(The flow constraints, flow 

conservation and edge capacity)
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Online performance metric - regret

• Loss of our algorithm = t ft(xt)

• Regret =  Loss(ALG) – Loss(OPT point) = t ft(xt) - t

ft(x*)

x*

f1 f2 fT

minima for t ft(x)

(fixed optimum in hindsight)
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Existing techniques

• Adaboost, Online Gradient Descent, 

Weighted Majority, Online Newton Step, 

Perceptron, Winnow…

• All can be seen as special case of 

“Follow the regularized leader”

– At time t predict:

Requires complete knowledge of cost functions
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Our algorithm - template

Two generic parts:

• Compute the “Regularized leader”

• In order to make the above work, estimate functions gt such that 

E[gt] = ft. 

Note: we would prefer to use

But we do not have access to ft !
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Our algorithm - template

1. Compute the current prediction xt based on previous observations.

2. Play random variable yt, taken from a distribution such that 

1. Distribution is centered at prediction:   E[yt] = xt

2. From the information ft(yt), we can create a random variable gt, such 

that

E[gt] = ft

3. The variance of the random variable gt needs to be small 
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Simple example: interpolating 

the cost function

• Want to compute & use:

what is ft ? (we only see ft(xt))

Convex set = 

2-dim simplex

(dist on two 

endpoints)
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Simple example: interpolating 

the cost function

• Want to compute & use:

what is ft ? (we only see ft(xt))

ft(1)

ft(2)

x1

x2

x1 * ft(1)  + x2 * ft(2)

Convex set = 

2-dim simplex

(dist on two 

endpoints)
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Simple example: interpolating 

the cost function

Unbiased estimate of ft   is just as good

ft(1)

ft(2)

With prob.  x1

x2

Expected value remains 

x1 * ft(1)  + x2 * ft(2)

With prob.  x2

Note that E[gt] = ft

x1
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The algorithm – complete 

definition
• Let R(x) be a self concordant barrier for the convex set

• Compute current prediction center:

• Compute eigenvectors of Hessian at current point. Consider the 

intersection of eigenvectors and the Dikin ellipsoid

• Sample uniformly from eigendirections, to obtain unbiased estimates 

E[gt] = ft

Remember that we need the random 

variables yt,gt to satisfy:

1. E[yt] = xt

2. E[gt] = ft
3. The variance of the random 

variable gt needs to be small

This is where self-concordance is 

crucial
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An extremely short survey: 

IP methods

• Probably most widely used algorithms today

“IP polynomial algorithms in convex programming” [NN 

„94]

• To solve a general optimization problem: minimize 

convex function over a convex set (specified by 

constraints), reduce to unconstrained optimization via a 

self concordant barrier function

min f(x)
A1 ¢ x  - b1 ·0
…
Am¢ x  - bm · 0
x 2 Rn

min f(x) - £ i log(bi - Ai x) 
x 2 Rn

R(x)
Barrier 

function
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The geometric properties of self 

concordant functions

• Let R be self concordant for convex set K, then at each point x, the 

hessian of R at x defines a local norm. 

• The Dikin ellipsoid

• Fact: for all x in the set, DR(x) µ K

• The Dikin ellipsoid characterizes “space to the boundary” in every 

direction

• It is tight:
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Unbiased estimators from self-

concordant functions
• Eigendirections of Hessian: create unbiased gradient estimator in 

each direction

• Orthogonal basis – complete estimator

• Self concordance is important for:

– Capture the geometry of the set (Dikin ellipsoid)

– Control the variance of the estimator
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Online routing – the final algorithm

Guess path,

Observe length

Flow decomposition for yt

Obtain path pt

yt

xt Xt+1

3
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1. Online optimization algorithm with limited feedback

• Optimal regret – O(√T n)

• Efficient (n3 time per iteration)

• More efficient implementation based on IP theory

Summary

The End

Open Questions: 

• Dependence on dimension is not known to be optimal 

• Algorithm has large variance – T2/3 , reduce the variance 

to √T ? 

• Adaptive adversaries


