
1

online convex optimization

(with partial information)

Elad Hazan @ IBM Almaden

Joint work with

Jacob Abernethy and Alexander Rakhlin

@ UC Berkeley

2

Online routing

source

destination

Edge weights

(congestion) – not known

in advance.

Can change arbitrarily

between 0-10 (say)

3

Online routing

source

destination

3

Iteratively:

Pick path (not knowing

network congestion),

then see length of path.

4

Online routing

source

destination

5

Iteratively:

Pick path (not knowing

network congestion),

then see length of path.

5

Online routing

source

destination

Iteratively:

Pick path (not knowing

network congestion),

then see length of path.

This talk: efficient and optimal algorithm for online routing

6

• Three sources of difficulty:

1. Prediction problem – future unknown, unrestricted

2. Partial information – performance of other decisions

unknown

3. Efficiency: exponentially large decision set

• Similar situations arise in

Production, web retail, Advertising, Online routing…

Why is the problem hard ?

7

1. Describe classical general framework

2. Where classical approaches come short

3. Modern, Online convex optimization framework

4. Our new algorithm, and a few technical details

Technical Agenda

8

Multi-armed bandit problem

Iteratively, for time t=1,2,… :

1. Adversary chooses payoffs on the machines rt

2. Player picks a machine it

3. Loss is revealed rt(it)

Process is repeated T times ! (with different,

unknown, arbitrary losses every round)

Goal:

Minimize the regret

Regret = cost(ALG) – cost(smallest-cost fixed machine)

= t rt(it) - minj t rt(j)

Online learning problem - design efficient

algorithms with small regret

1

5

-3

5

9

Multi-armed bandit problem

Studied in game theory, statistics (as early as

1950’s), more recently machine learning.

• Robbins (1952) (statistical setting),

• Hannan (1957) – game theoretic setting, full

information.

• [ACFS ’98] – adversarial bandits:

1

5

-3

5

10

Multi-armed bandit problem

[ACFS ’98] – adversarial bandits:

Regret = O(√ T √ K) for K machines, T

game iterations.

Optimal up to the constant.

1

5

-3

5

What‟s left to do ?

Exponential regret & run time for routing

(K = # of paths in the graph)

Our result: Efficient algorithm with √ T n

Regret (n = # of edges in graph)

11

Online convex optimization

• Convex bounded functions (for this talk, linear functions)

– Total loss = t ft(xt)

• Can express online routing as OCO over polytope in Rn

with O(n) constraints (despite exp‟ large decision set)

x1

x2

xT

f1

f2

fT

f1(x1)

f2(x2)

fT(xT)

Distribution over paths = flow in the

graph

The set of all flows = P µ Rn =

polytope of flows

This polytope has a compact

representation, as the number of

facets = number of constraints for

flows in graphs is small.

(The flow constraints, flow

conservation and edge capacity)

12

Online performance metric - regret

• Loss of our algorithm = t ft(xt)

• Regret = Loss(ALG) – Loss(OPT point) = t ft(xt) - t

ft(x*)

x*

f1 f2 fT

minima for t ft(x)

(fixed optimum in hindsight)

13

Existing techniques

• Adaboost, Online Gradient Descent,

Weighted Majority, Online Newton Step,

Perceptron, Winnow…

• All can be seen as special case of

“Follow the regularized leader”

– At time t predict:

Requires complete knowledge of cost functions

14

Our algorithm - template

Two generic parts:

• Compute the “Regularized leader”

• In order to make the above work, estimate functions gt such that

E[gt] = ft.

Note: we would prefer to use

But we do not have access to ft !

15

Our algorithm - template

1. Compute the current prediction xt based on previous observations.

2. Play random variable yt, taken from a distribution such that

1. Distribution is centered at prediction: E[yt] = xt

2. From the information ft(yt), we can create a random variable gt, such

that

E[gt] = ft

3. The variance of the random variable gt needs to be small

16

Simple example: interpolating

the cost function

• Want to compute & use:

what is ft ? (we only see ft(xt))

Convex set =

2-dim simplex

(dist on two

endpoints)

17

Simple example: interpolating

the cost function

• Want to compute & use:

what is ft ? (we only see ft(xt))

ft(1)

ft(2)

x1

x2

x1 * ft(1) + x2 * ft(2)

Convex set =

2-dim simplex

(dist on two

endpoints)

18

Simple example: interpolating

the cost function

Unbiased estimate of ft is just as good

ft(1)

ft(2)

With prob. x1

x2

Expected value remains

x1 * ft(1) + x2 * ft(2)

With prob. x2

Note that E[gt] = ft

x1

19

The algorithm – complete

definition
• Let R(x) be a self concordant barrier for the convex set

• Compute current prediction center:

• Compute eigenvectors of Hessian at current point. Consider the

intersection of eigenvectors and the Dikin ellipsoid

• Sample uniformly from eigendirections, to obtain unbiased estimates

E[gt] = ft

Remember that we need the random

variables yt,gt to satisfy:

1. E[yt] = xt

2. E[gt] = ft
3. The variance of the random

variable gt needs to be small

This is where self-concordance is

crucial

20

An extremely short survey:

IP methods

• Probably most widely used algorithms today

“IP polynomial algorithms in convex programming” [NN

„94]

• To solve a general optimization problem: minimize

convex function over a convex set (specified by

constraints), reduce to unconstrained optimization via a

self concordant barrier function

min f(x)
A1 ¢ x - b1 ·0
…
Am¢ x - bm · 0
x 2 Rn

min f(x) - £ i log(bi - Ai x)
x 2 Rn

R(x)
Barrier

function

21

The geometric properties of self

concordant functions

• Let R be self concordant for convex set K, then at each point x, the

hessian of R at x defines a local norm.

• The Dikin ellipsoid

• Fact: for all x in the set, DR(x) µ K

• The Dikin ellipsoid characterizes “space to the boundary” in every

direction

• It is tight:

22

Unbiased estimators from self-

concordant functions
• Eigendirections of Hessian: create unbiased gradient estimator in

each direction

• Orthogonal basis – complete estimator

• Self concordance is important for:

– Capture the geometry of the set (Dikin ellipsoid)

– Control the variance of the estimator

23

Online routing – the final algorithm

Guess path,

Observe length

Flow decomposition for yt

Obtain path pt

yt

xt Xt+1

3

24

1. Online optimization algorithm with limited feedback

• Optimal regret – O(√T n)

• Efficient (n3 time per iteration)

• More efficient implementation based on IP theory

Summary

The End

Open Questions:

• Dependence on dimension is not known to be optimal

• Algorithm has large variance – T2/3 , reduce the variance

to √T ?

• Adaptive adversaries

