online convex optimization (with partial information)

Elad Hazan @ IBM Almaden

Joint work with

Jacob Abernethy and Alexander Rakhlin

@ UC Berkeley

Edge weights
(congestion) – not known
in advance.
Can change arbitrarily
between 0-10 (say)

Iteratively:
Pick path (not knowing network congestion),
then see length of path.

Iteratively:
Pick path (not knowing network congestion),
then see length of path.

Iteratively:
Pick path (not knowing network congestion),
then see length of path.

desimation

This talk: efficient and optimal algorithm for online routing

Why is the problem hard?

- Three sources of difficulty:
 - 1. Prediction problem future unknown, unrestricted
 - 2. Partial information performance of other decisions unknown
 - 3. Efficiency: exponentially large decision set
- Similar situations arise in Production, web retail, Advertising, Online routing...

Technical Agenda

- 1. Describe classical general framework
- 2. Where classical approaches come short
- 3. Modern, Online convex optimization framework
- 4. Our new algorithm, and a few technical details

Multi-armed bandit problem

Iteratively, for time t=1,2,...:

- 1. Adversary chooses payoffs on the machines r_t
- 2. Player picks a machine i_t
- 3. Loss is revealed $r_t(i_t)$

Process is repeated T times! (with different, unknown, arbitrary losses every round)

Goal:

Minimize the regret

Regret = cost(ALG) - cost(smallest-cost fixed machine)= $\sum_{t} r_{t}(i_{t}) - min_{j} \sum_{t} r_{t}(j)$

Online learning problem - design efficient algorithms with small regret

Multi-armed bandit problem

Studied in game theory, statistics (as early as 1950's), more recently machine learning.

- Robbins (1952) (statistical setting),
- Hannan (1957) game theoretic setting, full information.
- [ACFS '98] adversarial bandits:

Multi-armed bandit problem

[ACFS '98] – adversarial bandits:

Regret = O(√T K) for K machines, T game iterations.

Optimal up to the constant.

Exponential regret & run time for routing (K = # of paths in the graph)

Our result: Efficient algorithm with \sqrt{T} n Regret (n = # of edges in graph)

Online Distribution over paths = flow in the graph

The set of all flows = $P \subseteq R^n$ = polytope of flows

This polytope has a compact representation, as the number of facets = number of constraints for flows in graphs is small. (The flow constraints, flow conservation and edge capacity)

atior

- Convex bounded/
- ctions (for this talk, linear functions)
- Total loss = $\sum_{t} (x_t)$
- Can express online routing as OCO over polytope in Rⁿ with O(n) constraints (despite exp' large decision set)

Online performance metric - regret

- Loss of our algorithm = Σ_t f_t(x_t)
- Regret = Loss(ALG) Loss(OPT point) = Σ_t f_t(x_t) Σ_t f_t(x*)

Existing techniques

- Adaboost, Online Gradient Descent, Weighted Majority, Online Newton Step, Perceptron, Winnow...
- All can be seen as special case of "Follow the regularized leader"
 - At time t predict:

$$x_t = \arg\min_{x \in K} \left\{ \sum_{\tau=1}^{t-1} f_{\tau}(x) + R(x) \right\}$$

Requires complete knowledge of cost functions

Our algorithm - template

Two generic parts:

- Compute the "Regularized leader" $x_t = \arg\min_{x \in K} \left\{ \sum_{\tau=1}^{t-1} g_\tau(x) + R(x) \right\}$
- In order to make the above work, estimate functions g_t such that
 E[g_t] = f_t.

Note: we would prefer to use
$$x_t = \arg\min_{x \in K} \left\{ \sum_{\tau=1}^{t-1} f_{\tau}(x) + R(x) \right\}$$

But we do not have access to f,!

Our algorithm - template

Compute the current prediction x_t based on previous observations.

$$x_t = \arg\min_{x \in K} \left\{ \sum_{\tau=1}^{t-1} g_\tau(x) + R(x) \right\}$$
 Play random variable y_t, taken from a distribution such that

- - Distribution is centered at prediction: $E[y_t] = x_t$
 - From the information $f_t(y_t)$, we can create a random variable g_t , such that $E[g_t] = f_t$
 - 3. The variance of the random variable g_t needs to be small

Simple example: interpolating the cost function

Want to compute & use:
 what is f_t ? (we only see f_t(x_t))

Convex set = 2-dim simplex (dist on two endpoints)

Simple example: interpolating the cost function

Want to compute & use:
 what is f_t ? (we only see f_t(x_t))

Convex set = 2-dim simplex (dist on two endpoints)

Simple example: interpolating the cost function

Unbiased estimate of f_t is just as good

The algorithm – complete definition

- Let R(x) be a self concordant barrier for the convex set
- Compute current prediction center:

$$x_t = \arg\min_{x \in K} \left\{ \sum_{\tau=1}^{t-1} g_{\tau}(x) + R(x) \right\}$$

- $x_t = \arg\min_{x \in K} \left\{ \sum_{\tau=1}^{t-1} g_\tau(x) + R(x) \right\}$ Compute eigenvectors of Hessian at current point. Consider the intersection of eigenvectors and the Dikin ellipsoid
- Sample uniformly from eigendirections, to obtain unbiased estimates $E[g_t] = f_t$

Remember that we need the random variables y,,g, to satisfy:

- 1. $E[y_t] = x_t$
- 2. $E[g_t] = f_t$
- 3. The variance of the random variable g_t needs to be small

This is where self-concordance is crucial

An extremely short survey: IP methods

- Probably most widely used algorithms today "IP polynomial algorithms in convex programming" [NN '94]
- To solve a general optimization problem: minimize convex function over a convex set (specified by constraints), reduce to unconstrained optimization via a self concordant barrier function

$$\begin{array}{c} \text{min } f(x) \\ A_1 \cdot x - b_1 \leq 0 \\ \dots \\ A_m \cdot x - b_m \leq 0 \\ x \in R^n \end{array}$$

$$\begin{array}{c} \text{min } f(x) - \alpha \times \sum_i \log(b_i - A_i \ x) \\ x \in R^n \end{array}$$

$$\begin{array}{c} \text{Barrier} \\ \text{function} \end{array}$$

The geometric properties of self concordant functions

- Let R be self concordant for convex set K, then at each point x, the hessian of R at x defines a local norm.
- The Dikin ellipsoid $D_1(x) = \{y \text{ such that } ||y-x||_x \le 1\}$
- Fact: for all x in the set, D_R(x) ⊆ K
- The Dikin ellipsoid characterizes "space to the boundary" in every direction
- It is tight:

$$D_2(x) \not\subseteq K$$

Unbiased estimators from selfconcordant functions

- Eigendirections of Hessian: create unbiased gradient estimator in each direction
- Orthogonal basis complete estimator
- Self concordance is important for:
 - Capture the geometry of the set (Dikin ellipsoid)
 - Control the variance of the estimator

Online routing – the final algorithm

Summary

- 1. Online optimization algorithm with limited feedback
 - Optimal regret $O(\sqrt{T} n)$
 - Efficient (n³ time per iteration)
 - More efficient implementation based on IP theory

Open Questions:

- Dependence on dimension is not known to be optimal
- Algorithm has large variance $T^{2/3}$, reduce the variance to \sqrt{T} ?
- Adaptive adversaries