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Linear Compression
• High-dimensional data: x
• Low-dimensional sketch: Ax
• Goal: design A so that given Ax we can recover an

“approximation” x* of x
– Sparsity parameter k
– Want x* such that ||x*-x||p≤ C ||x’-x||q
       over all x’ that are k-sparse (at most k non-zero entries)
– The best x’ contains k coordinates of x with the largest

abs value
• Short history:

– Learning (Fourier coefficients)
• Fourier matrices, algebraic methods

– Streaming (Heavy hitters)
• Mostly sparse binary matrices, combinatorial

methods
– Compressed sensing

• Dense matrices (Gaussian, Fourier), geometric
methods



Application I: Monitoring
Network Traffic

• Router routs packets
     (many packets)

– Where do they come from ?
– Where do they go to ?

• Ideally, would like to maintain a traffic
     matrix x[.,.]

– Easy to update: given a (src,dst) packet, perform
xsrc,dst++

– Requires way too much space!
    (232 x 232 entries)
– Need to compress  x, increment easily

• Using linear compression we can:
– Maintain sketch Ax under increments to x, since

A(x+Δ) = Ax + AΔ
– Recover x* from Ax
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Other applications

• Single pixel camera

• High throughput screening
(Anna, Sat, 3:30 pm)

• …



Parameters

• Given: dimension n, sparsity k
• Parameters:

– Sketch length m
– Time to compute/update Ax
– Time to recover x* from Ax
– Randomized/Deterministic/Explicit matrix A
– Measurement noise, universality, …



Results
(best known in blue)
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General approach

• Dichotomy:
– Sparse matrices: faster algorithms
– Dense metrices: shorter sketches

• Approach:
– Unify
– Best of both worlds



Dense matrices: ideas
• Restricted Isometry Property [Candes-Tao]:

– A satisfies (k,C)-RIP if for all k-sparse vectors x
||x||2≤ ||Ax||2 ≤ C ||x||2

• Examples:
– Random Gaussian: m=O(k log (n/k))
– Random Fourier: m=O(k logO(1) n)

• Recovery algorithms:
– Linear Programming :

• Find x* such that Ax=Ax* and ||x*||1 minimal
– Orthogonal Matching Pursuit:

• Iteratively find large coordinates of the residual x-x*
• Update x*

• Both rely on RIP



Dealing with Sparsity
• Consider “random” m x n adjacency

matrices of d-regular bipartite graphs
• Do they satisfy RIP ?

– No, unless m=Ω(k2) [Chandar’07]
• However, they do satisfy the following

RIP-1 property: for any k-sparse x
d (1-2ε) ||x||1≤ ||Ax||1 ≤ d||x||1

    if  the graph is a ( k, d(1-ε) )-expander
     [Berinde-Gilbert-Indyk-Karloff-Strauss’08]

– Randomized: m=O(k log (n/k))
– Explicit: m=k quasipolylog n

• What is the use of RIP-1 ?
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A satisfies RIP-1 ⇒ LP works
[Berinde-Gilbert-Indyk-Karloff-Strauss’08]

• Compute a vector x* such that Ax=Ax*
and ||x*||1 minimal

• Then we have, over all k-sparse x’
||x-x*||1 ≤ C minx’ ||x-x’||1

– C→2 as the expansion parameter ε→0
• Can be extended to the case when Ax

is noisy



A satisfies RIP-1 ⇒ OMP works
[Indyk-Ruzic’08]

• Algorithm I: Expander Matching Pursuit
– Very fast running time O(n log(n/k))
– Uses multiple parameters

• Algorithm II (new): “Sparse Matching Pursuit”
   (influenced by [Needell-Tropp’08] )

– Slower running time of O(n log D log(n/k))
– Only one parameter k



“Sparse Matching Pursuit”

• Algorithm:
– x*=0
– Repeat T times

• Let c’=Ax-Ax* = A(x-x*)
• Compute z such that zi is the median of

its neighbors in c
• x*=x*+z
• Sparsify x*
   (set all but k largest entries of x*  to 0)

• After T=O(log D) steps we have,
over all k-sparse x’

||x-x*||1 ≤ C minx’ ||x-x’||1
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Experiments

Countmin
[Cormode-Muthukrishnan’04]

Sparse Matching
Pursuit (20 iterations)

Linear Programming

• Probability of recovery of random  k-sparse
+1/-1 signals from m measurements
– Sparse matrices with d=20 1s per column
– Signal length n=20,000

Same as for Gaussian matrices!



Conclusions
• Sparse approximation possible with sparse

matrices:
– RIP-1 vs. expansion
– Unify geometric and combinatorial view

• State of the art: can do 2 out of 3:
– Near-linear encoding/decoding
– O(k log (n/k)) measurements
– Approximation guarantee with respect to L2 norm

• Open problems:
– 3 out of 3 ?
– Precise understanding ?
– Further applications ?
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