Sequential Algorithms for Generating Random Graphs

Amin Saberi
Stanford University
Outline

- Generating random graphs with given degrees
 (joint work with M Bayati and JH Kim)

- Generating random graphs with large girth
 (joint work with M Bayati and A Montanari)
Problem

Given integers \(d_1, \ldots, d_n \) \[m = \frac{1}{2} \sum_{i=1}^{n} d_i \]

Generate a simple graph with that degree sequence chosen uniformly at random

Example

\((d_1, \ldots, d_6) = (4, 3, 2, 2, 2, 1)\)
Application

Generating large sparse graphs, with sparse (typically power-law) degree sequence

- Simulating Internet topology (e.g. Inet)
- Biological Networks (motif detection)
 motif: sub-networks with higher frequency than random

- Coding theory: bipartite graphs
 with no small stopping sets
Existing methods (Theory)

Markov Chain Monte Carlo method

- The switch chain

It is "Rapidly mixing":

- [Kannan-Tetali-Vampala 99]
- [Cooper-Dyer-GreenHill 05]
- [Feder-Guetz-S.-Mihail 07]

- Jerrum-Sinclair chain
 (Walk on the self-reducibility tree)

Running time at least $O(n^7)$

Running time at least $O(n^4)$

A month on Pentium 2 for $n = 1000$
Existing methods (Practice)

Lots of heuristics: INET, PEG, …

- Example: Milo et al., Science 2002; Kashtan et al. 2004 on Network Motifs

- The heuristic used for generating random graphs has a substantial bias
New method: Sequential Importance Sampling

Very successful in practice:
Knuth’76: for counting self-avoiding random walks
estimating the running time of heuristics

More recently for random graph generation:
Chen-Diaconis-Holmes-Liu’05, Blitzstein-Diaconis’05

No analysis! (with the exception of this work and
Blanchet 06)
Our Algorithm

Repeat

Add an edge between (i,j) with probab. $p_{ij} \propto d_i \tilde{d}_j (1 - \frac{d_i d_j}{4m})$.

Until $m = \sum_{i=1}^{n} d_i / 2$ edges are added

or there are no valid choices left

remaining degree

failure

Same calculation in 10 microseconds
Analysis of the Algorithm

Theorem 1 (Bayati-Kim-S. 07):
The running time of the algorithm is $O(m d_{\max})$.

Furthermore, if $d_{\max} = O(m^{0.25-\tau})$
Or if the degree sequence is regular and $d = O(n^{0.5-\tau})$

Algorithm is successful with probability $1 - o(1)$

The probability of generating any graph is $\frac{1}{L} (1 \pm o(\frac{1}{\log m}))$
where L is the number of graphs
Basic Idea: $p_{ij} \propto \tilde{d}_i \tilde{d}_j (1 - \frac{d_i d_j}{4m})$.

The tree of execution

Choosing the kth edge

The empty graph

the prob. of choosing a sub-tree should be proportional to the number of valid leaves
Basic Idea of

\[p_{ij} \propto \tilde{d}_i \tilde{d}_j \left(1 - \frac{d_i d_j}{4m}\right). \]

The empty graph

The tree of execution

Choosing the k th edge

the prob. of choosing a sub-tree should be proportional to the number of valid leaves
Basic Idea of \(p_{ij} \propto \widehat{d}_i \widehat{d}_j \left(1 - \frac{d_i d_j}{4m} \right) \).

The tree of execution

The empty graph

Choosing the k-th edge

the prob. of choosing a sub-tree should be proportional to the number of valid leaves

Technical ingredient: concentration results on the distribution of leaves in each sub-tree (improving Kim-Vu 06, McKay-Wormald 91)

7/3/2008
Analysis of the Algorithm

Theorem 1 (Bayati-Kim-S. 07):
The running time of the algorithm is $O(m d_{\text{max}})$. Furthermore, if $d_{\text{max}} = O(m^{0.25-\tau})$ or if the degree sequence is regular and $d = O(n^{0.5-\tau})$.

Algorithm is successful with probability $1 - o(1)$.

The probability of generating any graph is $\frac{1}{L} \left(1 \pm o\left(\frac{1}{\log m}\right) \right)$, where L is the number of graphs.
Sequential Importance Sampling

Consider a run of the algorithm

Let P_r be the probability of the edge chosen in step r

Define

$$X = \begin{cases} \frac{1}{\prod_{r=1}^{m} p_r} & \text{if Alg. is successful} \\ 0 & \text{if Alg. fails} \end{cases}$$

Crucial observation: $\mathbb{E}(X) = L$

X is an unbiased estimator for the number of graphs
Using SIS to get an FPRAS

By taking several samples of X, we can have a good estimate of L
Then using the right rejection sampling:

Theorem 2 (Bayati-Kim-S. ’07):

Can generate any graph with probability \(1 \pm \epsilon \) of uniform.

In time \(O\left(\epsilon^{-2} m d_{\text{max}}\right) \).

An FPRAS for counting and random generation
Outline

- Generating random graphs with given degrees
 (joint work with M Bayati and JH Kim)

- Generating random graphs with large girth
 (joint work with M Bayati and A Montanari)
Graphs with large girth

\[(0, 1, 0, 1) (0, 1, 0, 1, 0, 1, 0)\]

Check bits

\[
x_1 + x_4 + x_5 + x_6 = 0
\]

\[
x_2 + x_4 + x_5 = 0
\]

\[
x_3 + x_4 + x_6 + x_7 = 0
\]

Challenge:
Construct graphs with given degrees with no short cycles
Amraoui-Montanari-Urbanke’06.
Example: Triangle free graphs.

Consider all graphs with n vertices and m edges.

Let G be one such graph chosen uniformly at random.

Can think of G as Erdös-Renyi graph $G(n,p)$ where $p = \frac{m}{\binom{n}{2}} \approx \frac{2m}{n^2}$.

$n_3(G) =$ number of triangle sub-graphs of G.

$$\Pr(n_3(G) = 0) \approx e^{-n_3(G)} = e^{-\binom{n}{3}p^3} \rightarrow \begin{cases} 1 & \text{if } np \rightarrow 0 \\ 0 & \text{if } np \rightarrow +\infty \end{cases}$$

Same phase transition holds when we need graphs of girth k. 7/3/2008
Our Algorithm

Initialize G by an empty graph with vertices $V = (v_1, \ldots, v_n)$.

Repeat

Choose a pair (v_i, v_j) with probability P_{ij} from the set of suitable pairs and set $G = G \cup \{(v_i, v_j)\}$.

Until m edges are added or

there are no suitable pair available (failure)
Theorem (Bayati, Montanari, S. 07)

- For a suitable P_{ij} and $m = O\left(n^{1 + \frac{1}{2k(k+3)}}\right)$ the output distribution of our algorithm is asymptotically uniform. i.e.

$$\lim_{n \to \infty} d_{TV}(P_A, P_U) = 0.$$

Furthermore, the algorithm is successful almost surely.

Remark: can be extended to degree sequences applicable to LDPC codes...
What is P_{ij}

- Consider the partially constructed graph G with t edges.
- Let S be the $n \times n$ matrix of all suitable pairs.
- Let A, A^c be adjacency matrix of G and its complement.

$$P \propto S \odot \sum_{\ell=1}^{k} \left(A + \frac{m - t}{\binom{n}{2} - t} A^c \right)^{\ell}$$

- P can be calculated quickly (e.g. with MATLAB)
Where does h come from?

The execution tree:

Problem: estimate the number of valid leaves of each subtree

In other words
estimate the number of extensions of the partial graph that do not have short cycles
Where does h come from?

add the remaining $m - k$ edges uniformly at random, and compute the expected number of small cycles Y.

Assuming the distribution of small cycles is Poisson, the probability of having no small cycles is e^{-Y}.
Summary

- Random simple graphs with given degrees
- Random bipartite graphs with given degrees and large girth
- More extensive analysis of SIS?