An Adaptive Forward/Backward Greedy Algorithm
for Learning Sparse Representations

Tong Zhang

Statistics Department
Rutgers University, NJ

Learning with large number of features

e Consider learning problems with large number of features

e Sparse target

— linear combination of small number of features

e This talk: how to solve sparse learning problem

— directly solve L regularization: approximate path following
— provably effective under appropriate conditions

Notations

Basis functions fi, ..., f; € R™; Observationy € R"

d>n

Cost function R(-):

— e.g., least squares problem: R(f) = ||f — y||3/n

Given w € R4, linear prediction function f(w) = >

Empirical risk minimization:

R(f(w)).

J

Wt

Sparse Regularization

d > n: ill-posed

— what if only a few relevant features.
Learning method: L, regularization
wrs = argmin R(f(w)), subjectto ||w|o < k.

lwllo = {7 : w; # 0}]

Combinatorial problem: find k£ < n features with smallest prediction error.

— C* possible feature combinations: exponential in & (NP-hard).

This talk: how to solve Ly using greedy algorithm.

Statistical model for sparse least squares regression
e Linear prediction model: Y =), w;f; + €
— € € R™ are n independent zero-mean noise with variance < 2.

e Assumption: sparse model achieves good performance

— w has only k£ nonzero components: £ < n < d.
— or approximately sparse: w can be approximated by sparse vector.

e Compressed sensing is special case: noise o = 0 with least squares loss.

Efficient Sparse Learning and Feature Selection Methods

e T[raditional Methods:

— convex relaxation: Lq-regularization.
— simple greedy algorithms:
x forward (greedy) feature selection: boosting.
+ backward (greedy) feature selection.
— provably effective only under restrictive assumptions.

e A new method: adaptive forward/backward greedy algorithm: FoBa

— solve Ly directly: remedy problems in traditional methods.
— theoretically: better statistical behavior under less restrictive assumptions.

Some Assumptions
e sub-Gaussian noise: o is noise level
e basis are normalized: ||f;|lo=1(j =1,...,d)

e sparse-eigenvalue conditions: any small number of basis functions are

linearly independent for small & (f(w) = >, w;f;)

1
p(k) = inf { L) 3/ [< vl < { >0,

and for all F c {1,...,d}, let

ACF) = sup { LILFwIB/ w3 : support(w) € F}.

L,-regularization and its Problems

e Closest convex relaxation of Ly-regularization (feature selection):

wr, = argmin R(w), subjectto ||wl; < k.

w

replace Ly-regularization ||w| < k.
e Practical: not good approximation to Lq regularization

e Theoretical: analysis exists

— requires relatively strong conditions
— inferior sparse learning method when noise is present: bias

Forward Greedy Algorithm

Initialize feature set F* = atk =0

lterate

— find best feature j to add to F'* with most significant cost reduction
— k4 +and FF = F&=1 U {5}

Problem of Forward Greedy Feature Selection

e Can make error in early stage that cannot be corrected.

— correct basis functions: f; and f,, but f5 closer to y
— forward greedy algorithm output: f3, f1, fo,. ..

Backward Greedy Algorithm

Initialize feature set F* = {1,...,d}atk =d

lterate

— find best feature j € F'* to remove with least significant cost increase
— FFl=Fk _fivandk — —

10

Problems of Backward Greedy Feature Selection

e Computationally very expensive.

e The naive version overfits the data when d > n: R(F%) = 0.
— fails if R(F'? — {;j}) = 0for all j € F}.
— cannot effectively eliminate bad features

e Works only when n > d (insignificant overfitting).

— when n < d: have to regularize the naive version to prevent overfitting
— how to regularize?

11

Idea: Combine Forward/Backward Algorithms

e Forward greedy

— pros: computationally efficient; doesn’t overfit
— cons: error made in early stage doesn’t get corrected later

e Backward greedy
— pros: can correct error by looking at the full model
— cons: need to start with sparse/non-overfited model
e Combination: adaptive forward/backward greedy

— computationally efficient; doesn’t overfit; error made in early stage can be

corrected by backward greedy step later
— key design issue: when to take a backward step?

12

Greedy method for Direct L, minimization

Optimize objective function greedily:
min|R(w) + Al|wl|o]-

Two types of greedy operations to reduce L, regularized objective

— feature addition (forward): R(w) decreases, \||w||o increases by A
— feature deletion (backward): R(w) increases, \||w||, decreases by A

First idea: alternating with addition/deletion to reduce objective
— “local” solution: a fixed point of the procedure

— problem: ineffective deletion with small \: overfitting like backward greedy

Key modification: track a sparse solution path
— Ly path-following: A\ decreases from oo to 0.

13

FoBa (conservative): Adaptive Forward/Backward Greedy
Algorithm

o |terate

— forward step
x find best feature ;5 to add
x+ k++and F* = Fc=1u {j}
* 0 = forward step square error reduction
x if (0 < €) terminate the loop.
— backward step
« find best feature j € F* to remove
+ If (backward square error increase < 0.50)
. Fk_lek—{j}andk——
- repeat the backward step.

e [path-following: replace 0.5 by a shrinkage factor v — 1

14

Computational Efficiency

Assume R(w) > 0 for all w ¢ R?

Given stopping criterion ¢ > 0

— ¢: should be set to noise level
FoBa terminates after at most 2R(0) /e forward iterations.

The algorithm approximately follows an L, local solution path

— statistically as effective as global Ly under appropriate conditions.

15

Forward Greedy Failure Example Revisited

e FoBa can correct errors made in early forward stages

— correct basis functions: f; and f,, but f5 is closer to y
— FoBa OUtpUt: f3, fl, f2, —f3 .

16

Learning Theory: FoBa with Sparse Target

Theorem 1. Assume also that the target is sparse: there exists w € R® such
that wi'x; = Ey; fori = 1,...,n, and F = support(w). Letk = |F|, and
assume that for some s > 0, we have k < 5sp(s)?(32+5p(s)?)~ . Givenanyn €
(0,1/3), and choose ¢ that satisfies the condition ¢ > 64p(s) ?c*In(2d/n)/n. If

min;esupport(w) |[W5|° > Sep(s) %€, then with probability larger than 1 — 3n:

o When the algorithm terminates, we have F* = support(w), and the solution

[w* = wlle < o/ B/ (np(k) [1+ /20T (1)

o | || 2
e The algorithm terminates after at most p(s)?rfﬂnv;n|2w-|2
€ J
iterations. J

forward-backward

17

Approximate Sparse Target for FoBa

Let € > 64p(s)20°1n(2d/n)/n.

k = |F|: F = support(w)

— w: approximate target parameter

k(e) = [{j € F: |w;> < 12¢/p(s)*}

— k(e) can be much smaller than &

— features with small weights that cannot be reliably selected by any
algorithm (up to a constant in threshold)

Learning Theory Bounds

— Optimal feature selection and parameter estimation accuracy

18

— Feature selection:
max(|[F — FW|, |F® — F|) = O(k(e) + | By — f(W)]|2/(ne€))

— Estimation error bound of ||w*) — w||5: (better than L,)

0 awn“/”)ww«e)/ + [By — (%))

n _J/
O(parametnc) \ /k(g) apprOX|mat|on error

— Compare to L;: needs stronger condition for feature selection, and gives
error

o[k n(d/n)/n + By — f(%)]2/n

] Vl
approximation error

19

Artificial data experiment: feature selection/parameter

estimation

e d =500, n = 100, noise o = 0.1, moderately correlated design matrix

e exact sparse weight with k£ = 5 and weights uniform 0 — 10

e 50 random runs, resulting results for top five features

FoBa-conservative | forward-greedy L4
least squares training error 0.093 £ 0.02 0.16 =£0.089 | 0.254+0.14
parameter estimation error 0.057 £ 0.2 0.52 £ 0.82 1.1+1

feature selection error 0.76 £ 0.98 1.8+1.1 3.24+0.77

20

Real data experiment: Boston Housing

least squares regression: 13 features + 1 constant feature,
506 data points: random 50 as training, remaining as test data (n > d)

Example forward-greedy steps:

-6134823101 7 11

Example FoBa (conservative) steps:

- 61348-4243-4410-4-3417

Example L, steps (lars):
-62134810311712591-3143

21

training error

50

40

30

20

Training error

—e— FoBa-conservative
- - FoBa-aggressive
N -+ forward—-greedy
\AA -\ Ll
.\4
\\ \A
\o \\+ \.\
So e '_
\o\\\+«,"“~AA
NSNS
o .. . ﬁ}:\
-, ~_ g
~ L] RN
o o\\o \t
-~ - o k. \.\‘t
R \
I I I I
4 6 8 10

sparsity

22

test error

65 70

55 60

40 45 50

35

Test error

FoBa-conservative
FoBa—aggressive
forward—greedy

L1

: + AT
, . .) A,,
-3 i/ﬂs?- N
| | | |
4 6 8 10
sparsity

23

Training error (additional comparisons)

training error

50

40

30

20

FoBa—-conservative
Forward—-Backward (SAS)

- forward—-greedy

backward—-greedy

' Ri::;ﬁ'__
T~a ¥
\4\ +
| | |
6 8 10
sparsity

24

Test error (additional comparisons)

o | —— FoBa-conservative

~ - - Forward-Backward (SAS)
-+ forward—greedy
--A- backward—greedy

2 -

test error
50

R _—" Té—:‘-‘:‘rﬂ'

’4',__4"4- A A
,q_ 4/‘/

AT

40
|

~ K
NN
SN
\
\

I I I I I
2 4 6 8 10

sparsity

Summary

e Traditional approximation methods for L, regularization

— L relaxation (bias: need non-convexity)
— forward selection (not good for feature selection)
— backward selection (cannot start with overfitted model)

e FoBa: combines the strength of forward backward selection

— approximate path-following algorithm to directly solve L
— theoretically: more effective than earlier algorithms
— practically: closer to L, than forward-greedy and L

e A Final Remark: L, (sparsity) does not always lead to better prediction
performance in practice (unstable for certain problems)

26

