
An Adaptive Forward/Backward Greedy Algorithm
for Learning Sparse Representations

Tong Zhang

Statistics Department
Rutgers University, NJ

Learning with large number of features

• Consider learning problems with large number of features

• Sparse target

– linear combination of small number of features

• This talk: how to solve sparse learning problem

– directly solve L0 regularization: approximate path following
– provably effective under appropriate conditions

1

Notations

• Basis functions f1, . . . , fd ∈ Rn; Observation y ∈ Rn

• d � n

• Cost function R(·):

– e.g., least squares problem: R(f) = ‖f − y‖22/n

• Given w ∈ Rd, linear prediction function f(w) =
∑

j wjfj

• Empirical risk minimization:
R(f(w)).

2

Sparse Regularization

• d � n: ill-posed

– what if only a few relevant features.

• Learning method: L0 regularization

ŵF S = arg min
w

R(f(w)), subject to ‖w‖0 ≤ k.

‖w‖0 = |{j : wj 6= 0}|

• Combinatorial problem: find k � n features with smallest prediction error.

– Ck
d possible feature combinations: exponential in k (NP-hard).

• This talk: how to solve L0 using greedy algorithm.

3

Statistical model for sparse least squares regression

• Linear prediction model: Y =
∑

j w̄jfj + ε

– ε ∈ Rn are n independent zero-mean noise with variance ≤ σ2.

• Assumption: sparse model achieves good performance

– w̄ has only k nonzero components: k � n � d.
– or approximately sparse: w̄ can be approximated by sparse vector.

• Compressed sensing is special case: noise σ = 0 with least squares loss.

4

Efficient Sparse Learning and Feature Selection Methods

• Traditional Methods:

– convex relaxation: L1-regularization.
– simple greedy algorithms:
∗ forward (greedy) feature selection: boosting.
∗ backward (greedy) feature selection.

– provably effective only under restrictive assumptions.

• A new method: adaptive forward/backward greedy algorithm: FoBa

– solve L0 directly: remedy problems in traditional methods.
– theoretically: better statistical behavior under less restrictive assumptions.

5

Some Assumptions

• sub-Gaussian noise: σ is noise level

• basis are normalized: ‖fj‖2 = 1 (j = 1, . . . , d)

• sparse-eigenvalue conditions: any small number of basis functions are
linearly independent for small k (f(w) =

∑
j wjfj)

ρ(k) = inf
{

1
n
‖f(w)‖22/‖w‖22 : ‖w‖0 ≤ k

}
> 0,

and for all F̄ ⊂ {1, . . . , d}, let

λ(F̄) = sup
{

1
n
‖f(w)‖22/‖w‖22 : support(w) ⊂ F̄

}
.

6

L1-regularization and its Problems

• Closest convex relaxation of L0-regularization (feature selection):

ŵL1 = arg min
w

R(w), subject to ‖w‖1 ≤ k.

replace L0-regularization ‖w‖0 ≤ k.

• Practical: not good approximation to L0 regularization

• Theoretical: analysis exists

– requires relatively strong conditions
– inferior sparse learning method when noise is present: bias

7

Forward Greedy Algorithm

• Initialize feature set F k = ∅ at k = 0

• Iterate

– find best feature j to add to F k with most significant cost reduction
– k + + and F k = F k−1 ∪ {j}

8

Problem of Forward Greedy Feature Selection

• Can make error in early stage that cannot be corrected.

– correct basis functions: f1 and f2, but f3 closer to y
– forward greedy algorithm output: f3, f1, f2, . . .

f5

y

f1

f2

f3f4

9

Backward Greedy Algorithm

• Initialize feature set F k = {1, . . . , d} at k = d

• Iterate

– find best feature j ∈ F k to remove with least significant cost increase
– F k−1 = F k − {j} and k −−

10

Problems of Backward Greedy Feature Selection

• Computationally very expensive.

• The naive version overfits the data when d � n: R(F d) = 0.

– fails if R(F d − {j}) = 0 for all j ∈ Ft.
– cannot effectively eliminate bad features

• Works only when n � d (insignificant overfitting).

– when n � d: have to regularize the naive version to prevent overfitting
– how to regularize?

11

Idea: Combine Forward/Backward Algorithms

• Forward greedy

– pros: computationally efficient; doesn’t overfit
– cons: error made in early stage doesn’t get corrected later

• Backward greedy

– pros: can correct error by looking at the full model
– cons: need to start with sparse/non-overfited model

• Combination: adaptive forward/backward greedy

– computationally efficient; doesn’t overfit; error made in early stage can be
corrected by backward greedy step later

– key design issue: when to take a backward step?

12

Greedy method for Direct L0 minimization

• Optimize objective function greedily:

min
w

[R(w) + λ‖w‖0].

• Two types of greedy operations to reduce L0 regularized objective

– feature addition (forward): R(w) decreases, λ‖w‖0 increases by λ
– feature deletion (backward): R(w) increases, λ‖w‖0 decreases by λ

• First idea: alternating with addition/deletion to reduce objective

– “local” solution: a fixed point of the procedure
– problem: ineffective deletion with small λ: overfitting like backward greedy

• Key modification: track a sparse solution path

– L0 path-following: λ decreases from ∞ to 0.

13

FoBa (conservative): Adaptive Forward/Backward Greedy
Algorithm

• Iterate

– forward step
∗ find best feature j to add
∗ k + + and F k = F k−1 ∪ {j}
∗ δk = forward step square error reduction
∗ if (δk < ε) terminate the loop.

– backward step
∗ find best feature j ∈ F k to remove
∗ if (backward square error increase ≤ 0.5δk)
· Fk−1 = Fk − {j} and k −−
· repeat the backward step.

• L0 path-following: replace 0.5 by a shrinkage factor ν → 1

14

Computational Efficiency

• Assume R(w) ≥ 0 for all w ∈ Rd

• Given stopping criterion ε > 0

– ε: should be set to noise level

• FoBa terminates after at most 2R(0)/ε forward iterations.

• The algorithm approximately follows an L0 local solution path

– statistically as effective as global L0 under appropriate conditions.

15

Forward Greedy Failure Example Revisited

• FoBa can correct errors made in early forward stages

– correct basis functions: f1 and f2, but f3 is closer to y
– FoBa output: f3, f1, f2,−f3 . . .

f5

y

f1

f2

f3f4

16

Learning Theory: FoBa with Sparse Target

Theorem 1. Assume also that the target is sparse: there exists w̄ ∈ Rd such
that w̄Txi = Eyi for i = 1, . . . , n, and F̄ = support(w̄). Let k̄ = |F̄ |, and
assume that for some s > 0, we have k̄ ≤ 5sρ(s)2(32+5ρ(s)2)−1. Given any η ∈
(0, 1/3), and choose ε that satisfies the condition ε ≥ 64ρ(s)−2σ2 ln(2d/η)/n. If
minj∈support(w̄) |w̄j|2 ≥ 64

25ρ(s)−2ε, then with probability larger than 1− 3η:

• When the algorithm terminates, we have F k = support(w̄), and the solution

‖wk − w̄‖2 ≤ σ
√

k̄/(nρ(k̄))
[
1 +

√
20 ln(1/η)

]
.

• The algorithm terminates after at most 7λ(F̄)‖w̄‖2
2

ρ(s)2 minj∈F̄ |w̄j|2
forward-backward

iterations.

17

Approximate Sparse Target for FoBa

• Let ε ≥ 64ρ(s)−2σ2 ln(2d/η)/n.

• k̄ = |F̄ |: F̄ = support(w̄)

– w̄: approximate target parameter

• k(ε) =
∣∣{j ∈ F̄ : |w̄j|2 ≤ 12ε/ρ(s)2}

∣∣
– k(ε) can be much smaller than k̄
– features with small weights that cannot be reliably selected by any

algorithm (up to a constant in threshold)

• Learning Theory Bounds

– Optimal feature selection and parameter estimation accuracy

18

– Feature selection:

max(|F̄ − F (k)|, |F (k) − F̄ |) = O(k(ε) + ‖Ey − f(w̄)‖2/(nε))

– Estimation error bound of ‖w(k) − w̄‖2: (better than L1)

O

σ

√
k̄ ln(1/η)

n︸ ︷︷ ︸
O(parametric)

+σ
√

k(ε) ln(d/η)/n︸ ︷︷ ︸√
k(ε)ε

+ ‖Ey − f(w̄)‖2/n︸ ︷︷ ︸
approximation error

 .

– Compare to L1: needs stronger condition for feature selection, and gives
error

O

σ
√

k̄ ln(d/η)/n + ‖Ey − f(w̄)‖2/n︸ ︷︷ ︸
approximation error

 .

19

Artificial data experiment: feature selection/parameter
estimation

• d = 500, n = 100, noise σ = 0.1, moderately correlated design matrix

• exact sparse weight with k̄ = 5 and weights uniform 0− 10

• 50 random runs, resulting results for top five features

FoBa-conservative forward-greedy L1

least squares training error 0.093± 0.02 0.16± 0.089 0.25± 0.14
parameter estimation error 0.057± 0.2 0.52± 0.82 1.1± 1

feature selection error 0.76± 0.98 1.8± 1.1 3.2± 0.77

20

Real data experiment: Boston Housing

• least squares regression: 13 features + 1 constant feature,

• 506 data points: random 50 as training, remaining as test data (n � d)

• Example forward-greedy steps:

– 6 13 4 8 2 3 10 1 7 11

• Example FoBa (conservative) steps:

– 6 13 4 8 -4 2 4 3 -4 4 10 -4 -3 4 1 7

• Example L1 steps (lars):

– 6 2 13 4 8 10 3 11 7 12 5 9 1 -3 14 3

21

Training error

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

20
30

40
50

sparsity

tr
ai

ni
ng

 e
rr

or

●

●

●

●

●

●

●

●

●
●

●

●

FoBa−conservative
FoBa−aggressive
forward−greedy
L1

22

Test error

●

●

● ● ●

●

●

● ● ●

2 4 6 8 10

35
40

45
50

55
60

65
70

sparsity

te
st

 e
rr

or
●

● ●

● ●

●

●

● ●
●

●

●

FoBa−conservative
FoBa−aggressive
forward−greedy
L1

23

Training error (additional comparisons)

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

20
30

40
50

sparsity

tr
ai

ni
ng

 e
rr

or

●

●

●

●

●

●

●
●

●
●

●

●

FoBa−conservative
Forward−Backward (SAS)
forward−greedy
backward−greedy

24

Test error (additional comparisons)

●

●

● ● ●

●

●

● ● ●

2 4 6 8 10

40
50

60
70

sparsity

te
st

 e
rr

or
●

●

●

●
●

●

●

●
●

●

●

●

FoBa−conservative
Forward−Backward (SAS)
forward−greedy
backward−greedy

25

Summary

• Traditional approximation methods for L0 regularization

– L1 relaxation (bias: need non-convexity)
– forward selection (not good for feature selection)
– backward selection (cannot start with overfitted model)

• FoBa: combines the strength of forward backward selection

– approximate path-following algorithm to directly solve L0

– theoretically: more effective than earlier algorithms
– practically: closer to L0 than forward-greedy and L1

• A Final Remark: L0 (sparsity) does not always lead to better prediction
performance in practice (unstable for certain problems)

26

