An Adaptive Forward/Backward Greedy Algorithm for Learning Sparse Representations

Tong Zhang

Statistics Department
Rutgers University, NJ
Learning with large number of features

- Consider learning problems with large number of features

- Sparse target
 - linear combination of small number of features

- This talk: how to solve sparse learning problem
 - directly solve L_0 regularization: approximate path following
 - provably effective under appropriate conditions
Notations

- Basis functions $f_1, \ldots, f_d \in \mathbb{R}^n$; Observation $y \in \mathbb{R}^n$

- $d \gg n$

- Cost function $R(\cdot)$:
 - e.g., least squares problem: $R(f) = \|f - y\|^2_2/n$

- Given $w \in \mathbb{R}^d$, linear prediction function $f(w) = \sum_j w_j f_j$

- Empirical risk minimization: $R(f(w))$.
Sparse Regularization

• $d \gg n$: ill-posed
 – what if only a few relevant features.

• Learning method: L_0 regularization

$$\hat{w}_{FS} = \arg\min_{w} R(f(w)), \quad \text{subject to } \|w\|_0 \leq k.$$

$$\|w\|_0 = |\{j : w_j \neq 0\}|$$

• Combinatorial problem: find $k \ll n$ features with smallest prediction error.
 – C_d^k possible feature combinations: exponential in k (NP-hard).

• This talk: how to solve L_0 using greedy algorithm.
Statistical model for sparse least squares regression

- Linear prediction model: \(Y = \sum_j \bar{w}_j f_j + \epsilon \)
 - \(\epsilon \in \mathbb{R}^n \) are \(n \) independent zero-mean noise with variance \(\leq \sigma^2 \).

- Assumption: sparse model achieves good performance
 - \(\bar{w} \) has only \(k \) nonzero components: \(k \ll n \ll d \).
 - or approximately sparse: \(\bar{w} \) can be approximated by sparse vector.

- Compressed sensing is special case: noise \(\sigma = 0 \) with least squares loss.
Efficient Sparse Learning and Feature Selection Methods

- Traditional Methods:
 - convex relaxation: L_1-regularization.
 - simple greedy algorithms:
 - forward (greedy) feature selection: boosting.
 - backward (greedy) feature selection.
 - provably effective only under restrictive assumptions.

- A new method: adaptive forward/backward greedy algorithm: FoBa
 - solve L_0 directly: remedy problems in traditional methods.
 - theoretically: better statistical behavior under less restrictive assumptions.
Some Assumptions

- sub-Gaussian noise: σ is noise level
- basis are normalized: $\|f_j\|_2 = 1$ ($j = 1, \ldots, d$)
- sparse-eigenvalue conditions: any small number of basis functions are linearly independent for small k ($f(w) = \sum_j w_j f_j$)

$$\rho(k) = \inf \left\{ \frac{1}{n} \|f(w)\|_2^2 / \|w\|_2^2 : \|w\|_0 \leq k \right\} > 0,$$

and for all $\bar{F} \subset \{1, \ldots, d\}$, let

$$\lambda(\bar{F}) = \sup \left\{ \frac{1}{n} \|f(w)\|_2^2 / \|w\|_2^2 : \text{support}(w) \subset \bar{F} \right\}.$$
\textbf{L_1-regularization and its Problems}

- Closest convex relaxation of L_0-regularization (feature selection):

$$\hat{w}_{L_1} = \arg \min_w R(w), \quad \text{subject to } \|w\|_1 \leq k.$$

replace L_0-regularization $\|w\|_0 \leq k$.

- Practical: not good approximation to L_0 regularization

- Theoretical: analysis exists

 - requires relatively strong conditions

 - inferior sparse learning method when noise is present: bias
Forward Greedy Algorithm

- Initialize feature set $F^k = \emptyset$ at $k = 0$

- Iterate
 - find best feature j to add to F^k with most significant cost reduction
 - $k++$ and $F^k = F^{k-1} \cup \{j\}$
Problem of Forward Greedy Feature Selection

- Can make error in early stage that cannot be corrected.
 - correct basis functions: f_1 and f_2, but f_3 closer to y
 - forward greedy algorithm output: f_3, f_1, f_2, \ldots
Backward Greedy Algorithm

• Initialize feature set $F^k = \{1, \ldots, d\}$ at $k = d$

• Iterate
 – find best feature $j \in F^k$ to remove with least significant cost increase
 – $F^{k-1} = F^k - \{j\}$ and $k --$
Problems of Backward Greedy Feature Selection

- Computationally very expensive.

- The naive version overfits the data when \(d \gg n \): \(R(F^d) = 0 \).

 - fails if \(R(F^d - \{j\}) = 0 \) for all \(j \in F_t \).

 - cannot effectively eliminate bad features

- Works only when \(n \gg d \) (insignificant overfitting).

 - when \(n \ll d \): have to regularize the naive version to prevent overfitting

 - how to regularize?
Idea: Combine Forward/Backward Algorithms

- **Forward greedy**
 - pros: computationally efficient; doesn’t overfit
 - cons: error made in early stage doesn’t get corrected later

- **Backward greedy**
 - pros: can correct error by looking at the full model
 - cons: need to start with sparse/non-overfitted model

- **Combination:** adaptive forward/backward greedy
 - computationally efficient; doesn’t overfit; error made in early stage can be corrected by backward greedy step later
 - key design issue: **when to take a backward step?**
Greedy method for Direct L_0 minimization

• Optimize objective function greedily:

$$\min_w [R(w) + \lambda \|w\|_0].$$

• Two types of greedy operations to reduce L_0 regularized objective
 – feature addition (forward): $R(w)$ decreases, $\lambda \|w\|_0$ increases by λ
 – feature deletion (backward): $R(w)$ increases, $\lambda \|w\|_0$ decreases by λ

• First idea: alternating with addition/deletion to reduce objective
 – "local" solution: a fixed point of the procedure
 – problem: ineffective deletion with small λ: overfitting like backward greedy

• Key modification: track a sparse solution path
 – L_0 path-following: λ decreases from ∞ to 0.
FoBa (conservative): Adaptive Forward/Backward Greedy Algorithm

• Iterate
 – forward step
 * find best feature j to add
 * $k++$ and $F^k = F^{k-1} \cup \{j\}$
 * $\delta_k =$ forward step square error reduction
 * if ($\delta_k < \epsilon$) terminate the loop.
 – backward step
 * find best feature $j \in F^k$ to remove
 * if (backward square error increase $\leq 0.5\delta_k$)
 · $F_{k-1} = F_k - \{j\}$ and $k--$
 · repeat the backward step.

• L_0 path-following: replace 0.5 by a shrinkage factor $\nu \rightarrow 1$
Computational Efficiency

• Assume $R(w) \geq 0$ for all $w \in \mathbb{R}^d$

• Given stopping criterion $\epsilon > 0$
 – ϵ: should be set to noise level

• FoBa terminates after at most $2R(0)/\epsilon$ forward iterations.

• The algorithm approximately follows an L_0 local solution path
 – statistically as effective as global L_0 under appropriate conditions.
Forward Greedy Failure Example Revisited

- FoBa can correct errors made in early forward stages
 - correct basis functions: f_1 and f_2, but f_3 is closer to y
 - FoBa output: $f_3, f_1, f_2, -f_3 \ldots$
Learning Theory: FoBa with Sparse Target

Theorem 1. Assume also that the target is sparse: there exists $\bar{w} \in \mathbb{R}^d$ such that $\bar{w}^T x_i = \mathbb{E}y_i$ for $i = 1, \ldots, n$, and $\bar{F} = \text{support}(\bar{w})$. Let $\bar{k} = |\bar{F}|$, and assume that for some $s > 0$, we have $\bar{k} \leq 5s \rho(s)^2(32 + 5\rho(s)^2)^{-1}$. Given any $\eta \in (0, 1/3)$, and choose ϵ that satisfies the condition $\epsilon \geq 64\rho(s)^{-2}\sigma^2 \ln(2d/\eta)/n$. If $\min_{j \in \text{support}(\bar{w})} |\bar{w}_j|^2 \geq \frac{64}{25} \rho(s)^{-2} \epsilon$, then with probability larger than $1 - 3\eta$:

- When the algorithm terminates, we have $F^k = \text{support}(\bar{w})$, and the solution

\[\|w^k - \bar{w}\|_2 \leq \sigma \sqrt{\frac{\bar{k}}{n \rho(\bar{k})} \left[1 + \sqrt{20 \ln(1/\eta)} \right]} .\]

- The algorithm terminates after at most $\frac{7\lambda(\bar{F})\|\bar{w}\|_2^2}{\rho(s)^2 \min_{j \in \bar{F}} |\bar{w}_j|^2}$ forward-backward iterations.
Approximate Sparse Target for FoBa

• Let $\epsilon \geq 64\rho(s)^{-2}\sigma^2 \ln(2d/\eta)/n$.

• $\bar{k} = |\bar{F}|$: $\bar{F} = \text{support}(\bar{w})$

 – \bar{w}: approximate target parameter

• $k(\epsilon) = |\{j \in \bar{F} : |\bar{w}_j|^2 \leq 12\epsilon/\rho(s)^2\}|$

 – $k(\epsilon)$ can be much smaller than \bar{k}
 – features with small weights that cannot be reliably selected by any algorithm (up to a constant in threshold)

• Learning Theory Bounds

 – Optimal feature selection and parameter estimation accuracy
– Feature selection:

\[
\max(|\bar{F} - F^{(k)}|, |F^{(k)} - \bar{F}|) = O(k(\epsilon) + \|E_y - f(\bar{w})\|_2/(n\epsilon))
\]

– Estimation error bound of \(\|w^{(k)} - \bar{w}\|_2\): (better than \(L_1\))

\[
O\left(\frac{\sigma \sqrt{k \ln(1/\eta)}}{n} + \frac{\sigma \sqrt{k(\epsilon) \ln(d/\eta)/n}}{\sqrt{k(\epsilon)\epsilon}} + \frac{\|E_y - f(\bar{w})\|_2/n}{\text{approximation error}}\right).
\]

– Compare to \(L_1\): needs stronger condition for feature selection, and gives error

\[
O\left(\frac{\sigma \sqrt{k \ln(d/\eta)/n}}{n} + \frac{\|E_y - f(\bar{w})\|_2/n}{\text{approximation error}}\right).
\]
Artificial data experiment: feature selection/parameter estimation

- \(d = 500, n = 100, \text{ noise } \sigma = 0.1, \) moderately correlated design matrix
- exact sparse weight with \(\bar{k} = 5 \) and weights uniform \(0 - 10 \)
- 50 random runs, resulting results for top five features

<table>
<thead>
<tr>
<th></th>
<th>FoBa-conservative</th>
<th>forward-greedy</th>
<th>(L_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>least squares training error</td>
<td>0.093 ± 0.02</td>
<td>0.16 ± 0.089</td>
<td>0.25 ± 0.14</td>
</tr>
<tr>
<td>parameter estimation error</td>
<td>0.057 ± 0.2</td>
<td>0.52 ± 0.82</td>
<td>1.1 ± 1</td>
</tr>
<tr>
<td>feature selection error</td>
<td>0.76 ± 0.98</td>
<td>1.8 ± 1.1</td>
<td>3.2 ± 0.77</td>
</tr>
</tbody>
</table>
Real data experiment: Boston Housing

- least squares regression: 13 features + 1 constant feature,

- 506 data points: random 50 as training, remaining as test data \(n \gg d \)

- Example forward-greedy steps:
 - 6 13 4 8 2 3 10 1 7 11

- Example FoBa (conservative) steps:
 - 6 13 4 8 -4 2 4 3 -4 4 10 -4 -3 4 1 7

- Example \(L_1 \) steps (lars):
 - 6 2 13 4 8 10 3 11 7 12 5 9 1 -3 14 3
Training error

![Graph showing training error vs sparsity for different methods: FoBa-conservative, FoBa-aggressive, forward-greedy, L1.](image)
Test error

![Graph showing test error against sparsity for different algorithms: FoBa-conservative, FoBa-aggressive, forward-greedy, and L1. The graph indicates the performance of each algorithm across varying levels of sparsity.](image-url)
Training error (additional comparisons)
Test error (additional comparisons)
Summary

- Traditional approximation methods for L_0 regularization
 - L_1 relaxation (bias: need non-convexity)
 - forward selection (not good for feature selection)
 - backward selection (cannot start with overfitted model)

- FoBa: combines the strength of forward backward selection
 - approximate path-following algorithm to directly solve L_0
 - theoretically: more effective than earlier algorithms
 - practically: closer to L_0 than forward-greedy and L_1

- A Final Remark: L_0 (sparsity) does not always lead to better prediction performance in practice (unstable for certain problems)