Scalable K-Means++

Bahman Bahmani
Stanford University
K-means Clustering

- Fundamental problem in data analysis and machine learning
- “By far the most popular clustering algorithm used in scientific and industrial applications” [Berkhin ’02]
- Identified as one of the top 10 algorithms in data mining [Wu et al ’07]
Problem Statement

• A scalable algorithm for K-means clustering with theoretical guarantees and good practical performance
K-means Clustering

Input:
- A set \(X=\{x_1, x_2, \ldots, x_n\} \) of \(n \) data points
- Number of clusters \(k \)

For a set \(C=\{c_1, c_2, \ldots, c_k\} \) of cluster “centers” define:

\[
\varphi_X(C) = \sum_{x \in X} d(x,C)^2
\]

where \(d(x,C) = \) distance from \(x \) to closest center in \(C \)

Goal: To find a set \(C \) of centers that minimizes the objective function \(\varphi_X(C) \)
K-means Clustering: Example

K = 4
Lloyd Algorithm

- Start with k arbitrary centers $\{c_1, c_2, \ldots, c_k\}$ (typically chosen uniformly at random from data points)
- Performs an EM-type local search till convergence
- Main advantages: Simplicity, scalability
What’s wrong with Lloyd Algorithm?

- Takes many iterations to converge
- Very sensitive to initialization
- Random initialization can easily get two centers in the same cluster
 - K-means gets stuck in a local optimum
Lloyd Algorithm: Initialization
Lloyd Algorithm: Initialization

Figure credited to David Arthur
Lloyd Algorithm: Initialization

Figure credited to David Arthur
Lloyd Algorithm: Initialization
K-means++ [Arthur et al. ’07]

- Spreads out the centers
- Choose first center, \(c_1 \), uniformly at random from the data set
- Repeat for \(2 \leq i \leq k \):
 - Choose \(c_i \) to be equal to a data point \(x_0 \) sampled from the distribution:
 \[
 \frac{d(x_0, C)^2}{\varphi_X(C)} \propto d(x_0, C)^2
 \]
- **Theorem:** \(O(\log k) \)-approximation to optimum, right after initialization
K-means++ Initialization
K-means++ Initialization
K-means++ Initialization
K-means++ Initialization
K-means++ Initialization
What’s wrong with K-means++?

- Needs K passes over the data
- In large data applications, not only the data is massive, but also K is typically large (e.g., easily 1000).
- Does not scale!
Intuition for a solution

- K-means++ samples one point per iteration and updates its distribution
- What if we **oversample** by sampling each point independently with a larger probability?
- Intuitively equivalent to updating the distribution much less frequently
 - Coarser sampling
- Turns out to be sufficient: K-means||
K-means Initialization

$K=4$,
Oversampling factor = 3
K-means | Initialization

K=4,
Oversampling factor = 3
K=4,
Oversampling factor =3
K-means || Initialization

K=4,
Oversampling factor =3
K-means || Initialization

K=4,
Oversampling factor = 3

Cluster the intermediate centers
K-means|| [Bahmani et al. ’12]

- Choose $l > 1$ [Think $l = \Theta(k)$]
- Initialize C to an arbitrary set of points
- For R iterations do:
 - Sample each point x in X independently with probability $p_x = ld^2(x,C)/\varphi_x(C)$.
 - Add all the sampled points to C
- Cluster the (weighted) points in C to find the final k centers
K-means\|\|: Intuition

- An interpolation between Lloyd and K-means++

Number of iterations (R)

$R=0$: Lloyd \rightarrow No guarantees

$R=k$: Simulating K-means++ ($l=1$) \rightarrow Strong guarantee

Small R: K-means\|\| \rightarrow Can it possibly give any guarantees?
Theorem

- **Theorem:** If ϕ and ϕ' are the costs of the clustering at the beginning and end of an iteration, and OPT is the cost of the optimum clustering:

 $$E[\phi'] \leq O(OPT) + \frac{k}{el} \phi$$

- **Corollary:**
 - Let $\psi = \text{cost of initial clustering}$
 - K-means|| produces a constant-factor approximation to OPT, using only $O(\log (\psi / OPT))$ iterations
 - Using K-means++ for clustering the intermediate centers, the overall approximation factor = $O(\log k)$
Experimental Results: Quality

<table>
<thead>
<tr>
<th></th>
<th>Clustering Cost Right After Initialization</th>
<th>Clustering Cost After Lloyd Convergence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>NA</td>
<td>22,000</td>
</tr>
<tr>
<td>K-means++</td>
<td>430</td>
<td>65</td>
</tr>
<tr>
<td>K-means</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GAUSSMIXTURE: 10,000 points in 15 dimensions

K=50
Costs scaled down by 10⁴

- K-means|| much harder than K-means++ to get confused with noisy outliers
Experimental Results: Convergence

- K-means|| reduces number of Lloyd iterations even more than K-means++

<table>
<thead>
<tr>
<th></th>
<th>Number of Lloyd Iterations till Convergence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>167</td>
</tr>
<tr>
<td>K-means++</td>
<td>42</td>
</tr>
<tr>
<td>K-means</td>
<td></td>
</tr>
</tbody>
</table>

SPAM: 4,601 points in 58 dimensions
K=50
Experimental Results

- K-means|| needs a small number of intermediate centers
- Better than K-means++ as soon as $\sim K$ centers chosen

<table>
<thead>
<tr>
<th>Method</th>
<th>Clustering Cost (Scaled down by 10^{10})</th>
<th>Number of intermediate centers</th>
<th>Tme (In Minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>6.4×10^7</td>
<td>NA</td>
<td>489</td>
</tr>
<tr>
<td>Partition</td>
<td>1.9</td>
<td>1.47×10^6</td>
<td>1022</td>
</tr>
<tr>
<td>K-means</td>
<td></td>
<td></td>
<td>1.5</td>
</tr>
</tbody>
</table>

KDDCUP1999: 4.8M points in 42 dimensions
K=1000
Algorithmic Theme

- Quickly decrease the size of the data in a distributed fashion…
- … while maintaining the important features of the data
- Solve the small instance on a single machine
Thank You!