Stream Warehousing

Theodore Johnson
AT&T Labs – Research
johnsont@research.att.com
Outline

• What is Stream Warehousing?
• Case Study: Darkstar
• Technical Issues
 – Update propagation
 – Temporal consistency
 – Scheduling
What is Stream Warehousing

• Data Stream Management System
 – Fast processing in main memory
 • Small data windows, 1-pass processing
 – Data reduction and alerting

• Data Warehouse
 – Long-term data storage
 – Curated data sets
 – Fuse data from many sources
 – Derived data products, complex analytics

• Data Stream Warehouse
 – A data warehouse with continual real-time updates.
Data Transformation in the Warehouse
Building Application in the Warehouse
Application: Darkstar

- AT&T Labs – Research project.
- Collect diverse and large-scale data feeds from network elements
- Use for
 - networking research,
 - data mining (e.g. correlate network events with failures),
 - alerting,
 - troubleshooting
- The network is a large and complex system
 - Not just IPV4.
- Argus
 - He Yan, Zihui Ge
- Ptolemy
 - Zihui Ge, Don Caldwell, Bill Beckett
Darkstar: Mining Vast Amounts of Data

Ethernet Access

IPTV

IP Backhaul

Enterprise IP, VPNs

Route monitors

(OSPFmon, BGPmon)

Authentication/ logging (tacacs)

Config

Syslog

SNMP Polling (router, link)

Netflow

Deep Packet Inspection (DPI)

Device service monitoring

(CIQ, MTANet, STREAM)

Active service and connectivity monitoring

Customer feedback – IVR, tickets, MTS

Layer one

Tickets

Alarms

Mobility

Authentication/ logging (tacacs)
ARGUS: Detecting Service Issues...

- **Goal:** detect and isolate *actionable* anomaly events using comprehensive end-to-end performance measurements (e.g. GS tool)
 - Sophisticated anomaly detection and heuristics
 - Spatial localization
 - Accurately accounts for service performance that varies considerably by time-of-day and location
- **Impact:**
 - Reduced detection time from days to approx. 15 mins for detecting data service issues
 - Operational nation-wide monitoring data service performance for 3G and LTE (TCP retransmission, RTT, throughput from GS Tool)
Approach: Mobility Localization Hierarchy

Collect end-to-end Performance Data

SITE
RNC
SITE
RNC
SITE
RNC
SITE
RNC
SITE
RNC

SGSN

GGSN

Market
Sub-Market
Sub-Market
SGSN
SGSN
RNC
RNC
SITE
SITE

SITE
SITE
SITE
SITE
SITE
SITE
SITE
SITE
SITE
SITE
Case Example: Silent CE Overload Condition

- **ARGUS detected event:** 2 Columbia 3G Ericsson SGSN’s impacting RNC’s in West Virginia, Norfolk, and Richmond
- No other indication of issue
- Topology highlighted CE used by only impacted SGSNs

ARGUS alarm: clmamdorpnn2
(TCP retransmissions)

CE Utilization flattening

- **RCA:** “6148 48 port 1gig card is limited to a shared 1 gig bus for each set of 8 gig ports”
ARGUS As A General Capability...

RTT anomalies (SGSN level)

Spike in call drop rate on MSC hndvacxca1

Social media (Twitter) NY outage

Node metrics, active measurements (CBB, IPAG WIPM delay)
Ptolemy

Use network visualization and convenient data exploration to help network operators with network health monitoring and service problem troubleshooting

• **1.** At-a-glance view of network topology and state

![Network Map](image)

• Visualization to summarize important information on network health
 - Color-coded

• Complimentary to ticketing system – reporting issues below “alarming” status

http://ptolemy.research.att.com/
http://ptolemy.research.att.com/mobility
Example 1: Japan Earthquake, March 11th 2011

Assess damage, identify remaining capacity

Loss of many links out of Japan. What’s left?
Example 1: Japan Earthquake, March 11th 2011

Identify traffic shifts, no congestion

Increase in link load as traffic re-routed

Link load
DataDepot

• Data warehousing system developed for stream warehousing
 – (Relatively) independent of the underlying database.

• Technologies for pushing updates through a warehouse
 – Update Propagation
 – Temporal consistency
 – Real-time scheduling in a stream warehouse
 – Lukasz Golab, Vladislav Shkapenyuk
Managing a Stream Warehouse

- Continually arriving data
Managing a Stream Warehouse

- Continually arriving data
- Is loaded into temporally partitioned base tables
Managing a Stream Warehouse

• Continually arriving data
• Is loaded into temporally partitioned base tables
• Updates propagate to higher level data products.
Incremental Updates

- Only propagate the increment.
- Update only those partitions whose sources have new data.
- How can we determine if a source partition has more recent data?
“make” doesn’t work
“make” doesn’t work
“make” doesn’t work
Update Propagation

• We can build complex apps if we’re confident that all updates get propagated.
• 1st version of DD: used \textit{make}-style algorithm
 – Not correct for complex configurations
• Developed update propagation theory
• 2nd version : has scheduling restrictions (read/write locks)
 – Led to poor real-time responsiveness
• 3rd version : no scheduling restrictions
 – Uses a small amount of additional metadata.
 – Similar to a vector timestamp.
 – SSDBM 2011
Effects of Scheduling Restrictions

Update propagation from CPU_RAW to CPU

Starting-timestamp update protocol

Interval-timestamp update protocol
Consistency in a Stream Warehouse

- Traditional notion of consistency: a snapshot of the system.
- In a big, complex system, you can’t take a NOW snapshot.
- In most cases, you eventually reach a point where you are reasonably confident about the state of the system in the recent past.
- CIDR 2011
Data Arrives in a Smear Over Time

- Partially filled partition
- Late arriving data
- Very late data
Number of windows per package

<table>
<thead>
<tr>
<th>Time (seconds)</th>
<th>Number of Windows</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>100000</td>
<td>0</td>
</tr>
<tr>
<td>200000</td>
<td>2</td>
</tr>
<tr>
<td>300000</td>
<td>4</td>
</tr>
<tr>
<td>400000</td>
<td>6</td>
</tr>
<tr>
<td>500000</td>
<td>8</td>
</tr>
<tr>
<td>600000</td>
<td>10</td>
</tr>
<tr>
<td>700000</td>
<td>12</td>
</tr>
</tbody>
</table>
Many Data Feeds

• The value of a warehouse is the ability to correlate different streams of information.
 – Correlate periods of high packet loss on the active measurement probes with the router CPU and Memory utilization on the routers on the path between the measurement probes.

• Different feeds have different time lags
 – Active measurements: 45 minutes, SNMP: 15 minutes

• Darkstar
 – Warehouse of network performance, configuration, and alert data
 – Used for research, billing, network troubleshooting
 – 100 data feeds, 700 tables as of December 2010.
Query Stability

• How do I know when the data is stable enough to query?

• What is stable enough?
 – Data will never change
 – Data won’t change much.
 – I’ll take whatever is there.
Consistency Levels

• Punctuations on partitions that indicate completeness.
• Vagueness of real-life means that they are best guesses.
• We use the following in our running examples
 – *Open*: The partition should have some data in it.
 – *Closed*: The partition will not change.
 – *Complete*: The partition will not change, and all data has been received.
 • E.g. we know that there are five packages per window, and they will arrive at most 1 hour late.
 • Motivated by specific needs of DataDepot users.

• *Closed* is a guess
 – *WeaklyClosed, StronglyClosed*
• Label each base table partition with a temporal consistency level.

• Use source-specific information to infer how certain we can be that all data for a partition has arrived.
 – Tends to be a hazy notion.

• Sometimes we have a hierarchy
 – Complete > StronglyClosed > Closed > Open
 – But not in general.
• Infer on a partition-wise basis, for each consistency level separately
• **Simple rule**: a partition has consistency level C if all source partitions have consistency level C.
• Can make use of the properties of the defining query to improve the inference.
Update Consistency

• We might know that some tables naturally require their partitions to have a particular consistency (update consistency) to be useful.
 – Router alerts: Open
 – Per-day usage summaries: Closed

• We can reduce update cost by only updating a partition if it would achieve a particular level of consistency
 – Per-day summary fed by 5-minute updates: 288 updates when only 1 is needed.

• Labeling all tables in the warehouse is an excessive burden on the DBA.
 – Label important final-result tables, and infer the update consistency for the others.
Consistency Levels

- Many consistency levels are possible.
- Closed is a guess.
 - WeaklyClosed: probably stable.
 - StronglyClosed: almost certainly stable.
- Other levels
 - MostlyClosed: Few values will change
 - MostlyFull: Most expected records have arrived.
- The consistency levels might not form a hierarchy
Scheduling

• Need to schedule updates to avoid resource thrashing.

• Real Time scheduling problem: some very long jobs, some very short jobs.
 – Global scheduling is the most efficient
 – But, it is easy to generate infeasible task sets with low resource utilization using global scheduling.

• Catch-up processing can generate temporary overloads
 – Due to broken feeds, data quality debugging, etc.
 – Can’t discard updates during overload (unlike DSMS)
 – Need to perform catch-up without affecting real-time tasks.
Conclusions

• Optimization, service quality, and security of large-scale, complex systems require a stream monitoring infrastructure.

• Data Stream Warehousing enables near real-time applications
 – Alerting and troubleshooting using near real-time and historical data

• Next steps:
 – Moving to cloud infrastructure