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Below we give details of materials and methods, and algorithms for analyzing and inter-
preting DNA conformational fluctuations. Throughout, we index quantities both by their

time of measurement, ¢, and their measurement number, k.

I. SAMPLE PREPARATION

Double-stranded \-DNA was dissolved in a buffer of 10 mM Tris-HCI, 10 mM NaCl,
1 mM EDTA, pH 8.0. The fluorescent dye YOYO-1 (Molecular Probes) was added at a
concentration of 1 dye:10 base pairs of DNA. Imaging was performed in the presence of an
anti-adsorption polymer (POP-6, without denaturant, Applied Biosystems) and a molecu-
lar oxygen scavenger.[1] The ABEL trap cell was placed on an inverted optical microscope
(TE300, Nikon), and epifluorescence images were acquired on a fast EMCCD camera (Cas-

cade 512B, Roper Scientific) using an oil-immersion objective with a numerical aperture of

1.3.

II. IMAGE ACQUISTION AND PRE-PROCESSING

The video images were formatted for data analysis as follows. Each frame was 32 x 32
pixels, with a pixel width corresponding to 118 nm in the sample plane. The small image size
was chosen to allow a fast video frame-rate. A background image (acquired under identical
conditions to the data, except with no DNA in the field of view) was subtracted from each
frame. In a small fraction of the frames (~ 5%) a second DNA molecule was seen floating
through the field of view. In these frames, the pixels affected by the second molecule were
manually set to the background level. When the images were shifted to align the center
of mass between frames, shifts by a fraction of a pixel were accomplished with a bicubic
interpolation. The total intensity of each frame was normalized to account for the slow rate
of photobleaching of the YOYO-1 during the trapping period. For the present analysis, the

data from all 21 molecules was aggregated.



A. Determination of center of mass

The CCD registered roughly 1000 photons per frame (calibrated by comparing the CCD
signal with the counts from an APD subject to the same illumination). The localization
accuracy of each photon is limited by the point-spread function of the microscope to 250 nm.
Collecting N photons improves the accuracy of localization of the center of mass by a factor of
N'/2_s0 the shot-noise limit is 8 nm. In addition to the shot noise, the center of mass diffuses
an r.m.s. distance of 55 nm during the 4.5 ms exposure time. Both of these uncertainties
are much less than the pixel size (118 nm) or the optical resolution (250 nm). Since we
do not consider features smaller than 250 nm, the errors introduced by uncertainty in the
position of the center of mass are small. Furthermore, localization errors are expected to be
uncorrelated between successive video frames. Thus these errors do not affect correlation

functions between quantities measured at unequal times

B. Correspondence between fluorescence intensity and molecular density

There are two sources of error in mapping fluorescence intensity into molecular density:
a) the stochastic incorporation of dye molecules in the DNA backbone and b) the stochastic
generation of photons from each dye molecule. Process (b) is uncorrelated from frame to
frame, so all correlations between quantities taken from different frames are insensitive to
photon shot-noise. We labeled the DNA with 1 dye:10 base pairs, or ~ 5000 dyes/molecule.
The DNA images had an average area of 2 um?, corresponding to 32 diffraction-limited spots.
Thus on average there were ~ 156 dye molecules/diffraction-limited spot, corresponding to

an error in determining the density of 156712 ~ 8%.

III. ROUSE SIMULATION OF DYNAMICS

Our minimal model of the DNA consisted of a chain of 150 beads joined by linear springs.
Each bead experienced the same thermal and viscous forces it would have experienced in
isolation from the rest of the chain (i.e. no hydrodynamic interactions). The only other force
was from the springs joining nearest neighbors. The motion of the chain was simulated using
Brownian dynamics. At each time-step the entire chain was translated to keep the center of

mass fixed at the origin. The conformation of the chain was then projected as an intensity



distribution on a 2-D array. We simulated the dynamics of this chain for 10* relaxation times.

Simulations were performed in MATLAB. The simulated data was analyzed in exactly the

same way as the real data. For comparison to experiment, the overall chain relaxation time

and the radius of gyration were matched to the values for A-DNA.

IV. PSEUDO-FREE TRAJECTORIES

The technique of pseudo-free trajectories mathematically undoes the effect of the feed-

back, to recreate a center of mass trajectory statistically similar to the one the particle would

have followed had it not been trapped. One extracts the mobility u from a least-squares fit

of dx/dt vs. E. The residuals from this fit are the Brownian displacements £(¢). Two facts

complicate this task:

1. The electric field E is related to the voltage V by a 2 x 2 matrix, C, which is a function

of the location of the target position for the molecule. The off-diagonal elements of C

are typically small and arise when the target position is not exactly in the geometrical

center of the trap: due to fringing fields, E may not be parallel to V. While C may

be estimated from finite-element simulations of the electric field, these simulations do

not take into account imperfections in the sample cell and other experiment-specific

factors. Thus it is best to treat the matrix C as an a priori unknown quantity:.

2. The feedback voltage V[k] switches to V[k+ 1] at a time intermediate between t; and
ti+1. Thus x[k + 1] — x[k] depends on both V[k] and V[k + 1].

The above considerations lead to a multivariate linear model with 8 free parameters,
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For a trapped particle, one knows V[k] and x[k]. One can use multivariate least squares fit-

ting to extract the 8 unknown coefficients. The cumulative sum of the residuals, (,[k], §,[k]),

yields the pseudo-free trajectory.
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FIG. 1: Two-time autocorrelation of the displacements in the measured and pseudo-free trajec-
tories. The slow overshoot in the measured trajectories is due to the finite response time of the
feedback: at the settings used in this experiment, the feedback was slightly underdamped. Calcu-

lating the pseudo-free trajectory undoes the effects of the feedback.

Pseudo-free trajectories for trapped DNA molecules were calculated as outlined above.
Fig. 1 shows the autocorrelation functions of the measured x-displacements and of the recon-
structed pseudo-free trajectory. The negative autocorrelation in the pseudo-free displace-

ments at lag = 1 is due to localization noise.|2]

V. FLUCTUATING TRANSPORT COEFFICIENTS

In the simplest model of a rigid, non-interacting particle in the ABEL trap, the para-
(0,1)
J

meters a; ; ~ are independent of time and the Brownian displacements {[k] are statistically

independent and identically distributed. These conditions may be violated if the particle un-

dergoes conformational fluctuations, ionization events, or binding and unbinding with other
(0,1)

objects in the solution. Fluctuations in «; ;" or in the variance of { lead to heteroskedas-

ticity in the measured trajectories, which can be detected in the residuals from the fit to

Eq. 1.



A. Fluctuating mobility

First we consider fluctuations in the mobility. Theory predicts that the free-solution
mobility of DNA should be independent of conformation,[3] but it is worth checking whether
this prediction is supported by the data. A simplified 1-D version of Eq. 1 is:

Az[k] = (a + dalk])VIK] + E[k], (2)

where « is related to the time-average mobility, da k] is related to the fluctuations in mobility,
and £ is Gaussian white noise with variance 02. A least-squares fit of Ax against V' yields
a, with residuals (i.e. pseudo-free hops) Q[k] = da[k]V [k] + £[k]. Assuming the fluctuations

da are uncorrelated with the voltage V', the autocovariance of the residuals is

(QIK]*) = (V[K]*) (6a[k]*) + of
(QIKIQk + hl) = (VIKV[E + h]) (dalk]oalk + h]) (3)

Thus fluctuations in the mobility show up in the autocorrelation of the steps of the pseudo-
free trajectory. Fig. 1 shows that in our data the autocovariance is a d-function, except for
the noise-induced bounce at lag = 1. Thus we detect no fluctuations in the electrokinetic

mobility of A-DNA.

B. Fluctuating diffusion coefficient

Now we consider a fluctuating diffusion coefficient. Assume that the mobility is constant.

Then the pseudo-free trajectory obeys

Az[k] = /2D[K]5tN(0, 1) (4)

where N(0, 1) is Gaussian white noise with mean 0 and variance 1 and D[k] is the fluctuating

diffusion coefficient. Now consider the 4* order correlation,

CW[h] = corr (Az[k + h]?, Az[k]?)

(Azlk + hPAx(k]?) — (Az[k]?)

- 4 2\2 ' (5)
(Az[k]*) — (Az[k]?)




The normalization is chosen so that CY[0] = 1. Each of the ingredients of Eq. 5 can be
expressed in terms of correlation functions of D:
(Ax[k + h*Ax[k]*) = 45t*(1 + 26[h]) (D[k + h]Dl[k])
(Aafk?) = 25t (D[R]
(Az[k]*) = 126¢* (D[k]?), (6)

where we used the fact that (N(0,1)?) =1 and (N(0,1)*) = 3. Making the above substitu-
tions into Eq. 5 yields

CWIh) =

(1+ 26[h]) (D[k + hIDIK]) — (D[k))* (7)
)

3(D[k]2) — (D[k])"
Thus the 4" order correlation C[h] is sensitive to fluctuations in the diffusion coefficient
of the particle which might arise, for instance, from conformational fluctuations that change

its hydrodynamic radius.

C. Spherical cow model of fluctuating D

Here we describe the “spherical cow” model (black line in Fig. 5), which models the
diffusion as a sphere with fluctuating radius Rg[k]. The 2-D radius of gyration, Rg[k], at
video frame k, is:

1/2
Rglk] = (Z(ri —YCM)ZIz[k]> : (8)
where the index ¢ runs over all pixels in the image, r; is the position of pixel 7, r¢yy is the
position of the center of mass, and I; is the intensity at pixel i (recall that the images are
normalized so ), I;[k] = 1).

In the Zimm model, the translational diffusion coefficient is:

kgT
ViR
where 7 is the viscosity of the medium. We calculated a time-dependent diffusion coefficient,

DIk], by substituting Rg[k] of Eq. 8 for Rg in Eq. 9.

D = 0.196 9)

The 1-D diffusion of a particle with changing radius, sampled at discrete intervals dt,
obeys:

[k + 1] = z[k] + /2D[k]6tN (0, 1), (10)

7



where N (0, 1) is Gaussian white noise with mean 0 and variance 1. Multiplication of the
simulated trajectory by a constant factor does not affect the value of CW[k]. Thus we

simulated trajectories according to the rule:

zlk + 1) = z[k] + N(0,1)/+/ Rck], (11)

which uses the instantaneous radius of gyration to set the diffusion coefficient and hence the
next displacement at each time step. From the simulated trajectories we extracted C[k] in
the same manner as for the pseudo-free trajectories. We simulated 1000 trajectories, each of
length 58,421 (the same length as the data). This approach avoids the problem of performing
a full simulation of the polymer dynamics, which would have required us to assume a model
for the internal dynamics. It is remarkable that this very crude approximation is in such
good agreement with the data.

It is also possible to calculate C™[k] directly from the time-varying radius of gyration.
Inserting the displacements of Eq. 11 into Eq. 5 and assuming the fluctuations in Rg are

small, yields:
cov(Rg[k + h], Rg[k])

2 (Rg)?

i.e. CW[K] is a direct probe of the conformational fluctuations. The value of limy_.q C'Y[K]

CWIk] = : (12)

can be estimated from a random walk model of the polymer conformation, without making
assumptions about the internal dynamics. We simulated 10 polymer conformations, where
each conformation was a Gaussian 3-D random walk of N = 100 steps, and then extracted
R¢ from each conformation. From Eq. 12 we obtained limy_.o C[k] =~ 0.0278. This result is
independent of N for N > 50 and is somewhat larger than our experimental result, implying
that the molecule exists in between the non-draining and freely draining limits. Based on a
calculation using only the dominant conformational mode, Dubois-Violette and de Gennes

estimated limy_o C™[k] ~ 0.017.
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