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ABSTRACT
BACKGROUND: Multiple studies have examined functional and structural brain alteration in patients diagnosed with
major depressive disorder (MDD). The introduction of multivariate statistical methods allows investigators to utilize
data concerning these brain alterations to generate diagnostic models that accurately differentiate patients with MDD
from healthy control subjects (HCs). However, there is substantial heterogeneity in the reported results, the
methodological approaches, and the clinical characteristics of participants in these studies.
METHODS: We conducted a meta-analysis of all studies using neuroimaging (volumetric measures derived from T1-
weighted images, task-based functional magnetic resonance imaging [MRI], resting-state MRI, or diffusion tensor
imaging) in combination with multivariate statistical methods to differentiate patients diagnosed with MDD from HCs.
RESULTS: Thirty-three (k 5 33) samples including 912 patients with MDD and 894 HCs were included in the meta-
analysis. Across all studies, patients with MDD were separated from HCs with 77% sensitivity and 78% specificity.
Classification based on resting-state MRI (85% sensitivity, 83% specificity) and on diffusion tensor imaging data
(88% sensitivity, 92% specificity) outperformed classifications based on structural MRI (70% sensitivity, 71%
specificity) and task-based functional MRI (74% sensitivity, 77% specificity).
CONCLUSIONS: Our results demonstrate the high representational capacity of multivariate statistical methods to
identify neuroimaging-based biomarkers of depression. Future studies are needed to elucidate whether multivariate
neuroimaging analysis has the potential to generate clinically useful tools for the differential diagnosis of affective
disorders and the prediction of both treatment response and functional outcome.
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Major depressive disorder (MDD) has a lifetime prevalence of
14.6%, making it one of the most common psychiatric
disorders worldwide (1). Reliable diagnosis of MDD is a
primary prerequisite for effective pharmacological and psy-
chological interventions (2). Currently, the diagnosis of depres-
sion is based on the phenomenological evaluation of
symptoms and behavior by trained clinicians. Scientists have
posited that neuroimaging holds “diagnostic potential” given
findings in multiple studies of significant anomalies in brain
structure (3–5), function (6–8), and neurochemistry (9,10) in
patients with depression. Even though these meta-analyses
indicate that brain changes are replicable across studies, the
alterations are often small and do not allow a reliable differ-
entiation between patients and control subjects (11). Thus,
neuroimaging markers are not included in clinical practice to
guide decisions concerning psychiatric diagnosis (12,13). This
might result from the higher costs associated with neuro-
imaging examinations. Moreover, most of the previous neuro-
imaging studies in MDD have taken a univariate approach,
which has important consequences in terms of the clinical
& 2016 Society of Biological Psychiatry. Published by Elsevier Inc
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applicability of the obtained results. For example, univariate
approaches neglect the highly interconnected nature of the
brain and, consequently, the statistical dependency of the
given units of analysis (e.g., voxels or regions of interest) (14).
Moreover, even if two groups (e.g., patients with depression
and healthy control subjects [HCs]) differ at a statistically
significant level with respect to a target variable (e.g., hippo-
campal volume), there is typically substantial overlap of
the two distributions, hindering reliable differentiation of
depressed from nondepressed individuals.

To address these limitations, investigators have begun to
apply multivariate statistical methods to the analysis of neuro-
imaging data (15,16). By focusing on patterns of brain changes
that are distributed across multiple regions, these methods
allow for the generation of statistical models with high
diagnostic or predictive power. In this context, a recent
meta-analysis showed that patients with schizophrenia can
be accurately differentiated from healthy volunteers in 80% of
the cases using only neuroimaging-based diagnostic models
(17). Moreover, these methods may facilitate the development
. All rights reserved.
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of neuroimaging tools to distinguish among different psychi-
atric disorders (18–21) or to predict clinical outcomes (22–24).
Indeed, multiple proof-of-concept studies have successfully
used multivariate statistical methods to guide the diagnosis of
depression based on structural magnetic resonance imaging
(sMRI) data (19,21,25–27), resting-state functional MRI (rsfMRI)
data (26,28–34), and task-based functional MRI (fMRI) data
(35–39). The sensitivity and the specificity reported in these
studies both range from 70% to 90%. This variable diagnostic
performance may be due to methodological differences
among these studies with respect to the neuroimaging data
modality, preprocessing protocol, classification algorithm, or
the cross-validation (CV) procedure used. In addition, these
studies differ with respect to demographic and clinical charac-
teristics of depressed patients. Differences in performance and
study heterogeneity make it difficult to evaluate the potential of
neuroimaging to identify diagnostic biomarkers for depression.
Here, we report the results of a meta-analysis conducted on
studies that used multivariate statistical methods to differentiate
patients with depression from HCs. This meta-analytic
approach allows us to quantify the ability of multivariate
methods to identify depression-related patterns in neuroimag-
ing data. In this way, we investigate the neurobiological
construct validity of the current clinical definition of MDD.

METHODS AND MATERIALS

Search and Study Selection Strategy

We searched the electronic PubMed database from January 1,
1950, up to June 31, 2015 (see the Supplement for details).
Subsequently, we screened studies according to the following
criteria: To be included in the meta-analysis, a paper needed
to report results of a neuroimaging-based, supervised, multi-
variate two-group classification model separating MDD
patients from HCs. Studies were included if the following
measures of classification performance were available or if
data allowed for the calculation of the following parameters:
true positives (TP), true negatives (TN), false positives (FP),
false negatives (FN). In cases in which insufficient data were
reported, the authors were asked to provide additional infor-
mation regarding their published reports. The results of the
literature search are presented in a flowchart following the
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines (40) (see the Supplement and
Supplemental Figure S1).

Data Extraction

The main outcome was the diagnostic accuracy of the multi-
variate diagnostic models when applied to patients with MDD
and HCs as indicated by sensitivity [5 TP / (TP 1 FN)] and
specificity [5 TN / (TN 1 FP)]. Additional information was
extracted from the selected studies as follows: names of the
authors, year of publication, demographic characteristics of
HC and patient groups [group size, age, sex, medication
status, symptoms as measured by the Hamilton Depression
Rating Scale (HAMD) (41) or the Beck Depression Inventory
(42)], neuroimaging modality (volumetric measures derived of
T1-weighted MRI images sMRI, task-based fMRI, rsfMRI,
positron emission tomography, single photon emission
Biological Psych
computed tomography, diffusion tensor imaging [DTI], scanner
type, image resolution), characteristics of the neuroimaging
preprocessing, configuration of the classification algorithm,
and type of the cross-validation procedure (e.g., leave-one-
out, k-fold cross-validation). To ensure accuracy of data
extraction, two authors separately performed extraction and
disagreements were resolved in a consensus conference.

Data Analysis

In the present analysis we implemented a random-effects,
bivariate meta-analytical model as introduced by Reitsma et al.
(43). Results of the meta-analysis are presented in forest plots
separately for sensitivity and specificity. Summary estimates
for sensitivity and specificity are provided separately for sMRI,
task-based fMRI, rsfMRI, or DTI studies, and for all studies
combined. The robustness of the results and the effects of
potentially confounding variables (e.g., age, sex ratio, year of
publication) were investigated by adding moderator variables
to the bivariate regression model. Furthermore, we tested for
differences between studies in the clinical variables using
univariate analysis of variance. Publication bias was assessed
by creating funnel plots by plotting log diagnostic odds ratios
(logDORs) for all studies against
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by ESS (44). As an exploratory analysis, we generated a
multivariate regression model using the elastic net algorithm
to predict logDOR of individual studies based on 23 clinical
and methodological variables (see the Supplement for details).
All computations were performed using the R statistical
programming language version 3.3.1 (45) with the packages
mada (46) and glmnet (47).
RESULTS

Meta-analysis

The initial literature search identified 641 studies of interest.
After screening all studies and applying the inclusion criteria,
608 studies were excluded (see the Supplement and
Supplemental Figure S1 for a flowchart of the literature
search). The final sample consisted of 33 studies with a total
of 912 patients (mean age: 34.27 years) and 894 HCs (mean
age: 32.81 years). From those studies, 14 samples
used sMRI (19–21,25–27,48–54), 9 samples used rsfMRI
(26,29,31,33,54–58), 9 samples used fMRI (35–37,39,59–63),
and 6 samples used DTI (26,64–67) to build predictive models
(see the Supplement and Supplemental Table S1 for an
overview of the characteristics of the studies; please note that
some studies provide more than one sample). There were no
studies available using single photon emission computed
tomography methodology. One study reported 85% classi-
fication accuracy using [18]

fluorodeoxyglucose positron emis-
sion tomography but was excluded from further analysis due
to the small number of available studies (68).
iatry September 1, 2017; 82:330–338 www.sobp.org/journal 331
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Meta-analysis of all studies indicated a sensitivity of
76.66% (95% confidence interval [CI]: 71.95%–80.80%)
and a specificity of 77.7% (95% CI: 73.7%–81.35%) (see
Figures 1 and 2). Visual inspection of funnel plots and
regression test for funnel plot asymmetry (p 5 .69) did not
indicate the presence of a publication bias (see the
Supplement and Supplemental Figure S2). Moreover, there
was no relationship between size of the investigated samples
and sensitivity of specificity (p . .1, see the Supplement and
Supplemental Figure S4). Different neuroimaging modalities
(sMRI, fMRI, DTI, rsfMRI) were compared using a moderator
analysis. Resting-state MRI studies, compared with sMRI
studies, showed higher sensitivity (p 5 .007) and specificity
(p 5 .017). There were no significant differences compared with
DTI or fMRI studies (all p . .05). DTI studies showed a higher
sensitivity (p 5 .017) and specificity (p 5 .006) than did sMRI
studies, but not fMRI studies (p . .05, see Figure 3A).

Subanalysis for every neuroimaging modality showed the
following results (see Table 1, Figures 1 and 2). For the
subsample of sMRI studies, there was a sensitivity of
332 Biological Psychiatry September 1, 2017; 82:330–338 www.sobp.
69.85% (95% CI: 61.81%–76.83%) (Figure 1) and a specificity
of 71.13% (95% CI: 65.41%–76.25%) (see Figure 2). For the
subsample of task-related fMRI studies, there was a sensitivity
of 74.06% (95% CI: 67.17%–79.94%) (see Figure 1) and a
specificity of 77.20% (95% CI: 69.92%–83.15%) (see
Figure 2). For the subsample of rsfMRI studies, there was a
sensitivity of 85.39% (95% CI: 74.75%–92.02%) (see Figure 1)
and a specificity of 82.59% (95% CI: 74.64%–88.43%) (see
Figure 2). For the subsample of DTI studies, there was
sensitivity of 88.16% (95% CI: 74.18%–95.07%) (see
Figure 1) and a specificity of 91.51% (95% CI: 97.15%–

77.32%) (see Figure 2). Visual inspection of funnel plots and
regression tests for funnel plot asymmetry did not indicate
presence of publication bias in the meta-analysis of studies
using sMRI (p 5 .97), DTI (p 5 .68), fMRI (p 5 .64), or rsfMRI
(p 5 .25).

There was no significant effect of HAMD score on sensitivity
or specificity (p . .80) (Figure 3C). There was no effect of
participants’ age on sensitivity (p5 .112) or specificity (p5 .476)
(see Figure 3B) in the whole sample including all neuroimaging
Figure 1. Forest plot of sensitivities
and specificities. Summary estimates
for sensitivity are computed using the
approach described by Reitsma et al.
(43). CI, confidence interval; DTI, diffu-
sion tensor imaging; fMRI, functional
magnetic resonance imaging; RE, ran-
dom effects; rsfMRI, resting-state
functional magnetic resonance ima-
ging; sMRI, structural magnetic reso-
nance imaging.
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Figure 2. Summary receiver operating characteristic curve of the
Reitsma model with the summary sensitivity and false positive rate
indicated in black as well as color-coded sensitivity and false positive rates
of the individual studies of different imaging modalities. DTI, diffusion tensor
imaging; fMRI, functional magnetic resonance imaging; rsfMRI, resting-
state functional magnetic resonance imaging; sMRI, structural magnetic
resonance imaging.
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modalities. Similarly, there was no effect of participants’ age in
the fMRI or sMRI studies. There was a significant effect of age
on sensitivity in the DTI studies (p 5 .014) and in the rsfMRI
studies (p 5 .015) but not on specificity (p . .05). Sex ratio of
patients and of HCs was not related to sensitivity (p 5 .414
and p 5 .302, respectively) or specificity (p 5 .582 and
p 5 .776, respectively).

There were heterogeneous methodological approaches
in the studies included in the present meta-analysis.
When comparing diagnostic accuracies between different
cross-validation schemes, there was a higher sensitivity in
studies employing twofold CV as compared with leave-
one-out and leave-one-subject-per-group-out CV (p 5 .035
and p 5 .020, respectively), but no differences in specificity
(see the Supplement and Supplemental Figure S5). Because of
the heterogeneous methodological approaches of the studies
included in the present meta-analysis, we could not make a
statistically valid comparison to test the effects of different
classification algorithms on classification accuracy. Thus, we
provide a descriptive overview of classification performance
Table 1. Results from Bivariate Meta-analyses Applying the Ap

Data Control Subjects (n) Patients (n) Sensitivity Sp

sMRI 482 450 69.85 (61.81–76.83) 71.13

fMRI 179 183 74.06 (67.17–79.94) 77.2

rsfMRI 237 243 85.39 (74.75–92.02) 82.59

DTI 162 135 88.16 (74.18–95.07) 91.51

All combined 1060 1011 76.66 (71.95–80.8) 77.76

Values are summary estimates of random-effects models (95% confidenc
via Markov chain Monte Carlo (89).

DTI, diffusion tensor imaging; fMRI, functional magnetic resonance imag
magnetic resonance imaging; sMRI, structural magnetic resonance imagin

Biological Psych
associated with different algorithms (see the Supplement and
Supplemental Figure S2).

As an exploratory analysis, we tested whether model perform-
ance (logDOR) could be predicted on the basis of clinical and
methodological variables of the individual studies. Our results
indicate that predicted logDOR correlated with true logDOR with
r5 .44 (p5 .002). The five most important variables in this meta-
learning model (as measured by the absolute value of their
coefficient averaged across outer-CV folds) were “depression
severity: severe,” “feature selection: filter,” and “patients (age)”
(all associated with higher logDOR), as well as “data: sMRI” and
“feature selection: none” (all associated with lower logDOR; see
the Supplement for further details).

DISCUSSION

We present meta-analyses of a total of 33 studies with a total
of 912 patients diagnosed with MDD and 894 HCs. Across all
studies, neuroimaging-based diagnostic models were able to
differentiate patients from HCs with 77% sensitivity and 78%
specificity. These results were robust with respect to potential
confounding variables such as age of patients and control
subjects, sex ratio, and year of publication. There was no
evidence for a publication bias. Resting-state fMRI studies
(85% sensitivity, 83% specificity) and DTI studies (88%
sensitivity, 92% specificity) outperformed sMRI (70% sensi-
tivity, 71% specificity) and task-based fMRI studies (74%
sensitivity, 77% specificity).

Different Neuroimaging Modalities

Our results suggest superior classification accuracy of diag-
nostic models based on rsfMRI or DTI data, compared with
sMRI or task-based fMRI data. It is noteworthy that in a
previous analysis, we found rsfMRI to outperform other neuro-
imaging modalities in differentiating patients with schizo-
phrenia from HCs (17). We should note, however, that a
limited number of studies were available using these neuro-
imaging modalities, so the results need to be interpreted with
caution. If this pattern can be confirmed in future analyses, it
suggests that rsfMRI and DTI data are the most informative
neuroimaging metrics when classifying patients with psychi-
atric diagnoses versus HCs. On one hand, there might be
factors driving this effect that are related to technical details of
the neuroimaging methodology. For example, DTI and rsfMRI
use scan sequences that typically take longer amounts of time
to acquire than do structural MRI sequences and, therefore,
might be more susceptible to motion artifacts (69–71).
proach by Reitsma et al. (43 )

ecificity Positive LR Negative LR Diagnostic OR

(65.41–76.25) 2.44 (1.85–3.14) 0.428 (0.312–0.566) 5.93 (3.31–9.87)

(69.92–83.15) 3.29 (2.41–4.45) 0.339 (0.256–0.436) 10.00 (5.77–16.2)

(74.64–88.43) 5.03 (3.07–7.76) 0.186 (0.0925–0.326) 31.90 (9.79–78.2)

(77.32–97.15) 12.30 (3.42–32.8) 0.145 (0.0513–0.32) 133.00 (11.2–573)

(73.7–81.35) 3.47 (2.79–4.26) 0.302 (0.24–0.374) 11.70 (7.57–17.4)

e interval). Positive LR, negative LR, and diagnostic ORs are estimated

ing; LR, likelihood ratio; OR, odds ratio; rsfMRI, resting-state functional
g.
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If motion is related to psychiatric diagnosis, then these
artifacts might in turn be informative for psychiatric classifica-
tion and could be picked up by the multivariate classification
algorithm. The lower performance of classifiers based on task-
based fMRI data compared with DTI and rsfMRI data might be
caused by the lower test-retest reliability of this method (72),
the dependency on cognitive performance on this task,
habituation while performing the task, or variable degree of
validity of the employed paradigms for the pathology of MDD.
Depending on the preprocessing and the feature selection
procedures employed in the task-based fMRI studies, these
effects might add noise to the recorded data, which, in turn,
might reduce the discriminative power of extracted measures
for the subsequent classification. Alternatively, rsfMRI and DTI
may capture brain alterations that are more predictive in the
context of classifying MDD. It is noteworthy that whereas both
modalities are often used to investigate brain connectivity,
rsfMRI is a functional measure and DTI is structural.
This inherent difference suggests that these modalities cap-
ture complementary aspects of the neuropathology of MDD
and, thus, that they could be combined in a multimodal
classification model to improve performance. To date, there
is only one study that compared unimodal with multimodal
classification approaches for MDD (26). In that study, multi-
modal classification (70% accuracy) was outperformed by
unimodal classification based on DTI (77%), rsfMRI (77%), and
T2 images (77%). Of note, Patel et al. (26) assessed a sample
of subjects with late-life depression, and thus these results
may not generalize to individual subjects with first depressive
episodes that usually occur at age 30 (73). Moreover, there is
evidence from studies of other psychiatric disorders such as
schizophrenia indicating that multimodal classification, when
compared with unimodal approaches, improves accuracy
(74,75).

Different Classification Algorithms and CV Schemes

The vast majority of studies in the present analysis used a
support-vector machine (SVM) algorithm to classify patients
(�60%). Looking at neuroimaging modalities separately, SVM
was the most frequently used algorithm for DTI (�83%), fMRI
(57%), rsfMRI (75%), and sMRI studies (�76%). Some studies
used a Gaussian-process classifier (19,36), neural networks
(30), random forests (50), k-means (50), random trees (50), or
decision trees (26). Only two studies systematically inves-
tigated different classification algorithms within the same
sample (19,26). Redlich et al. (19) reported higher accuracy
when classifying patients with depression or bipolar disorder
using a SVM classifier than using a Gaussian-process algo-
rithm. Patel et al. (26) found that a decision tree algorithm
(75%) outperformed linear SVMs (70%) and radial bias
function-SVMs (68%). Interestingly, to date there are
no systematic investigations of different algorithms in
neuroimaging-based classification in psychiatry. It is note-
worthy that choice of classification algorithm did not appear to
affect performance in the classification of individuals
diagnosed with schizophrenia (17). However, it needs to be
noted that in the current meta-analysis all studies were of
limited sample size so that potential differences between
classification algorithms might not have manifested. Moreover,
334 Biological Psychiatry September 1, 2017; 82:330–338 www.sobp.
some algorithms require more extensive training samples and
might not have been employed due to the limited amount of
available training data. Another important factor in the context
of our analysis is the embedding of feature selection, classifier
optimization and the estimation of the models’ generalizability
in a CV scheme. We should note that in three papers that were
included in the present meta-analysis, a feature selection
procedure was implemented outside of the cross-validation
(20,31,64). However, it is critical to avoid information leakage
between the training and the test samples to avoid overfitting
and biased estimates of classification accuracy. Moreover,
even in the case of correct embedding, different cross-
validation schemes might lead to different results. In our
analysis, two-fold CV was associated with higher diagnostic
accuracy than were 10-fold or leave-one-out CV.

Limitations of the Current Meta-analysis: Effect of
Clinical Symptoms and Antidepressant Medication

One study suggested that the degree of functional and structural
brain abnormalities found in depression is related to the severity of
clinical symptomatology (76). In effect, neuroimaging-based clas-
sification models should perform better in more severely ill
subjects. Mwangi et al. (76) reported a correlation between scores
on the Beck Depression Inventory II and the Spielberger State and
Trait Anxiety Inventory with individual SVM decision weights. In the
present univariate analysis, we found no effect of clinical symp-
toms as measured by HAMD. It is possible that the clinical and
methodological heterogeneity present in our meta-analysis obfus-
cated a potential relation between accuracy and clinical symp-
toms. On the other hand, using a multivariate meta-learning model,
we found some evidence that depression severity as measured
by the HAMD scale is an important predictor of classification
accuracy. There are other clinical variables besides severity that
may influence brain anomalies in patients with depression and that
may affect the accuracy of neuroimaging-based classification.
These variables include age of onset or illness duration and
comorbidities such as anxiety, obsessive symptoms, or substance
abuse. Unfortunately, few studies assessed in the current analysis
reported this information. Thus effects of these variables could not
be investigated in the present meta-analysis.

A potential confounding factor in the context of our analysis is
antidepressant medication. Multiple studies reported changes
in brain structure (77) and function (78–80) following chronic
antidepressant treatment. If such effects are present in
neuroimaging-based classification experiments, the brain pat-
terns identified might be associated with drug effects rather than
with effects specific to the pathology of depression. In our recent
analysis in schizophrenia, we demonstrated that antipsychotic
medication represents such potential bias (17). Because few
studies in the present analysis reported treatment status, it was
not possible to assess the potential impact of this factor.

Future Challenges for Neuroimaging-Based
Classification of Depression

It is noteworthy that a substantial proportion of subjects
included in the current meta-analysis (�25%) were not clas-
sified correctly. Multiple factors might drive misclassification
using neuroimaging-based models. For example, the pattern
org/journal
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Figure 3. Results from the moderator analysis: (A) effect of age,
(B) differences in sensitivity and specificity between imaging modalities,
and (C) clinical symptoms as measured by HAMD. DTI, diffusion tensor
imaging; fMRI, functional magnetic resonance imaging; HAMD, Hamilton
Depression Rating Scale; rsfMRI, resting-state functional magnetic reso-
nance imaging; sMRI, structural magnetic resonance imaging. *p , .05;
**p , .01.
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of brain changes associated with depression might have
limited discriminative power. Alternatively, there might be
one or more subgroups within individuals diagnosed with
MDD that showed specific patterns of brain changes that
are not shared by the majority of patients with depression.
To explicitly test this hypothesis, a more detailed investigation
of potential moderator variables on the basis of the data of
individual subjects is required. Moreover, future studies that
focus on unsupervised classification methods would be better
suited to identify such subgroups. This approach to classi-
fication might account for heterogeneity and improve diag-
nostic accuracy. Finally, the performance of neuroimaging-
based diagnostic models is limited by the reliability of the
diagnostic labels. For example, the recent investigation of the
test-retest reliability of the diagnostic categories of the DSM-5
indicated that MDD was diagnosed with limited accuracy (81).
Similarly, MDD and bipolar disorder might frequently be
confused (82). In effect, misclassification in the initial psychi-
atric assessment might have contributed to reductions in
classification performance.
Biological Psych
An important consideration in the context of neuroimaging-
based disease classification is the differentiation between
diagnoses. Rather than distinguishing patients from HCs, a
substantial part of clinical practice involves laborious and
error-prone differential diagnostic processes to distinguish
different patient groups from each other rather than from
HCs. To date, few studies have investigated the potential of
neuroimaging-based diagnostic models to differentiate among
diagnostic groups. For example, Redlich et al. (19) studied two
independent samples in which they were able to differentiate
depressed from bipolar patients with 79.3% and 65.5%
accuracy based on sMRI data, whereas Sacchet et al. (20)
reported a lower classification accuracy of 59.5%. Similarly, in
our recent work, we could demonstrate that patients with
schizophrenia can be separated from depressed patients with
76% accuracy based on sMRI data (18). However, Serpa et al.
(21) reported only 54% accuracy when differentiating psy-
chotic bipolar patients from psychotic depressed patients,
suggesting that these patient groups are harder to separate
using brain-based features. In summary, differential-
diagnostics represent an interesting potential application of
neuroimaging-based models in clinical practice and a way to
validate the current diagnostic categories in psychiatry.

Another important challenge for the application of
neuroimaging-based diagnostics involves the generalizability
of diagnostic models across different sites and populations.
Redlich et al. (19) demonstrated that neuroimaging-based
classifiers can be trained on data acquired at one site and
then be applied to data from a different site. Similarly,
Koutsouleris et al. (83) have also demonstrated the feasibility
of such cross-site neuroimaging-based classification for
patients with schizophrenia. However, it needs to be noted
that all studies included in the present meta-analysis were of
small or modest sample size and that recent analyses suggest
that larger samples are required for reliable estimates (84).
A large-scale investigation of the generalizability of
neuroimaging-based models (e.g., in the form of an individual
patient data meta-analysis or mega-analysis) is still missing
and the clinical and methodological factors that influence
generalization are not clear.

We should note that whereas the present analyses support
the hypothesis that multivariate methods are able to identify
biological signatures of MDD in neuroimaging data, the current
accuracy of �75% does not allow direct clinical application
of these models. Moreover, neuroimaging-based diagnostic
models must be evaluated critically with respect to cost
efficiency. For example, self-rated screening questionnaires
such as the nine-item Patient Health Questionnaire provide
an estimated sensitivity of 77% and a specificity of 85% in
identifying MDD (85). Moreover, clinical questionnaires can be
administered at substantially lower costs compared with neuro-
imaging investigations. Therefore, the main potential of
neuroimaging-based diagnostic models might be to predict
response to treatment interventions or to predict the course of
the disorder. Generally subjects receiving pharmacological or
psychotherapeutic interventions show large heterogeneity with
respect to improvement or side effects (86). Patel et al. (26)
showed that response to treatment with a selective serotonin
reuptake inhibitor could be predicted with up to 89% accuracy
using neuroimaging. Relatedly, Fu et al. (59) used brain
iatry September 1, 2017; 82:330–338 www.sobp.org/journal 335
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activation from a fMRI scan before treatment initiation to predict
partial response to antidepressant treatment with 75% and full
response with 62% accuracy. In another study, Siegle et al. (87)
found that brain activation in response to negative words
predicts response to cognitive-behavioral therapy with 75%
and remission with 70% of accuracy. Using DTI data, Korgaon-
kar et al. (66) reported the prediction of treatment response in
major depression with 74% accuracy. Relatedly, Lythe et al.
(88) reported that neuroimaging-based models allow the pre-
diction of recurrence risk of medication-free patients with MDD
with 75% accuracy. In summary, neuroimaging-based classi-
fication represents a promising approach for classification of
subjects with depression. Moreover, this approach might be of
benefit to other endeavors, such as the prediction of disease
course or treatment outcome. Current limitations include the
generalizability of the models across research centers and the
identification of methodological and clinical variables that
moderate classification success.
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