Ulrike Kraft

From Murmann Mixed-Signal Group

Jump to: navigation, search
Ukraft.jpg








Ph.D: 2015 in Chemistry at the Max Planck Institute for Solid State Research, Organic Electronics Research Group in Stuttgart, Germany (Dr. Hagen Klauk) and at the TU Bergakademie Freiberg, Germany (Prof. Edwin Weber)


Email: ukraft AT stanford DOT edu


Research Interests: Flexible and stretchable electronics, organic transistors and conductors

In the future, a large variety of electronic devices will be wearable and operate in close contact with the skin. Possible applications are health monitoring devices that can be directly mounted onto the skin, wearable electronics or even artificial skin on prosthetics. To accommodate deformations such as twisting and elongation, these devices should ideally be stretchable. One viable approach toward stretchable electronics is the development of intrinsically stretchable electronic materials, devices and circuits. Recently, the first intrinsically stretchable transistors have been demonstrated [1-6]. However, for the realization of stretchable circuits, stretchable interconnects are equally important.

For the deployment of highly stretchable materials as interconnects and electrodes, patterning is crucial. Therefore, we developed a process for inkjet printing of intrinsically stretchable PEDOT:PSS-based interconnects and conductors. The advantages of these intrinsically stretchable interconnects are the lower area occupation (e.g. in comparison to meander structures) and the direct patterning due to the ink-jet printing process The printed interconnects have a conductivity of 700 S/cm, sustain strains above 100% and show good stability in 1000-cycle stretching experiments.


[1] A. Chortos, J. Lim, J. W. F. To, M. Vosgueritchian, T. Dusseault, T. H. Kim, S. Hwang, Z. Bao,  Adv. Mater., 25, 4253, 2014.
[2] A. Chortos, G. I. Koleilat, R. Pfattner, D. Kong, P. Lin, R. Nur, T. Lei, H. Wang, N. Liu, Y.-C. Lai, M.-G. Kim, J. W. Chung, S. Lee, Z. Bao, Adv. Mater., vol. 28, pp. 4441, 2015.
[3] L. Cai, S. Zhang, J. Miao, Z. Yu, C. Wang, ACS Nano vol. 10, pp. 11459, 2016.
[4] J. Y. Oh, S. Rondeau-Gagné, Y.-C. Chiu, A. Chortos, F. Lissel, G.-J. N. Wang, B. C. Schroeder, T. Kurosawa, J. Lopez, T. Katsumata, J. Xu, C. Zhu, X. Gu, W.-G. Bae, Y. Kim, L. Jin, J. W. Chung, J. B.-H. Tok, Z. Bao, Nature, vol. 539, pp. 411, 2016.
[5] J. Xu, S. Wang, G.-J. N. Wang, C. Zhu, S. Luo, L. Jin, X. Gu, S. Chen,V R. Feig, J. W. F. To, S. Rondeau-Gagné, J. Park, B. C. Schroeder, C. Lu, J. Young Oh, Y. Wang, Y.-H. Kim, H. Yan, R. Sinclair, D. Zhou, G. Xue, B. Murmann, C. Linder, W. Cai, J. B.-H. Tok, J. W. Chung, Z. Bao, Science vol. 355, pp.59, 2017.
[6] Y. Qian, X. Zhang, L. Xie, D. Qi, B. K. Chandran, X. Chen, W. Huang, Adv. Mater. vol. 28, pp.9243, 2016.


Personal tools