Aldo Peña Perez

From Murmann Mixed-Signal Group

(Difference between revisions)
Jump to: navigation, search
Line 3: Line 3:
== Short Bio  ==
== Short Bio  ==
-
'''Aldo Peña Perez''' was born in Queretaro, Mexico, in 1981. Received the B. Sc. degree on Electronics Engineering from the Technological Institute of Queretaro, Mexico, in 2004. Received the M. Sc. degree from the National Institute of Astrophysics, Optics and Electronics (INAOE), Puebla, Mexico, in 2006 and Ph. D. degree from the University of Pavia, Italy, in 2010. During his Ph.D., he was involved on development, design and testing of low-power high-resolution sigma delta modulators. From 2010 to 2011 he joined the Integrated Micro-Systems Laboratory of the University of Pavia as postdoctoral research fellow. During 2012-2013 he worked for STMicroelectronics, Milan, Italy as analog engineer at the Body and Audio Division (BAD). He is currently a postdoctoral researcher with the Murmann Mixed-Signal Group at Stanford University, Stanford, CA. His main research activities include mixed signal design, in particular low-voltage, low-power oversampled data converters and analog amplifiers.
+
'''Aldo Peña Perez''' was born in Queretaro, Mexico, in 1981. Received the B. Sc. degree on Electronics Engineering from the Technological Institute of Queretaro, Mexico, in 2004. Received the M. Sc. degree from the National Institute of Astrophysics, Optics and Electronics (INAOE), Puebla, Mexico, in 2006 and Ph. D. degree from the University of Pavia, Italy, in 2010. During his Ph.D., he was involved on development, design and testing of low-power high-resolution sigma delta modulators. From 2010 to 2011 he joined the Integrated Micro-Systems Laboratory of the University of Pavia as postdoctoral research fellow. During 2012-2013 he worked for STMicroelectronics, Milan, Italy as analog engineer at the Body and Audio Division (BAD). He is currently a postdoctoral researcher with the Murmann Mixed-Signal Group at Stanford University, Stanford, CA. His main research activities include mixed signal design, in particular low-voltage, low-power oversampled data converters and analog amplifiers.  
 +
 
 +
<br>
 +
 
 +
<br>
 +
 
 +
<br>
 +
 
 +
<br>
 +
 
 +
<br>
 +
 
 +
== Projects  ==
 +
 
 +
'''INVERTER-BASED SIGMA-DELTA (ΣΔ) MODULATOR FOR PORTABLE 3D MEDICAL ULTRASOUND SYSTEM'''
 +
 
 +
Current trends in integrated circuits and transducer technologies push ultrasound array imaging systems in the directions of full-scale real-time volumetric (3-D) imaging using conventional 2-D arrays with thousands of elements. Design of low-cost and compact beamformers is therefore crucial for realization of such systems, where reducing the cost, size, and power consumption of the front-end is critically important.
 +
 
 +
On the other hand, recent advances in nanometer technologies have made single-bit ΣΔ ADCs more and more attractive for the design of digital beamformers since can be easily integrated onto the same chip as the processing circuitry creating the beam. Thus, interconnections, size, and power consumption are dramatically reduced. <br>Due to the large dynamic range necessary for ultrasound applications, the discrete-time ΣΔ ADC performs a third order noise shaping behavior to maintain adequate signal-to-noise ratio. The amplifier, a key analog building block in SC circuits, does not utilize classical low-voltage OTA topologies since could be replaced with inverter-based architectures. In spite of the limited performance of inverters compared with OTAs, inverters attract attention for their inherent advantages such as rail-to-rail operation, scalability with technology and capability to operate with very low supply voltages.
 +
 
 +
<br>
 +
 
 +
<br>

Revision as of 11:09, 31 July 2013

Aldo 300dpi.jpg

Short Bio

Aldo Peña Perez was born in Queretaro, Mexico, in 1981. Received the B. Sc. degree on Electronics Engineering from the Technological Institute of Queretaro, Mexico, in 2004. Received the M. Sc. degree from the National Institute of Astrophysics, Optics and Electronics (INAOE), Puebla, Mexico, in 2006 and Ph. D. degree from the University of Pavia, Italy, in 2010. During his Ph.D., he was involved on development, design and testing of low-power high-resolution sigma delta modulators. From 2010 to 2011 he joined the Integrated Micro-Systems Laboratory of the University of Pavia as postdoctoral research fellow. During 2012-2013 he worked for STMicroelectronics, Milan, Italy as analog engineer at the Body and Audio Division (BAD). He is currently a postdoctoral researcher with the Murmann Mixed-Signal Group at Stanford University, Stanford, CA. His main research activities include mixed signal design, in particular low-voltage, low-power oversampled data converters and analog amplifiers.






Projects

INVERTER-BASED SIGMA-DELTA (ΣΔ) MODULATOR FOR PORTABLE 3D MEDICAL ULTRASOUND SYSTEM

Current trends in integrated circuits and transducer technologies push ultrasound array imaging systems in the directions of full-scale real-time volumetric (3-D) imaging using conventional 2-D arrays with thousands of elements. Design of low-cost and compact beamformers is therefore crucial for realization of such systems, where reducing the cost, size, and power consumption of the front-end is critically important.

On the other hand, recent advances in nanometer technologies have made single-bit ΣΔ ADCs more and more attractive for the design of digital beamformers since can be easily integrated onto the same chip as the processing circuitry creating the beam. Thus, interconnections, size, and power consumption are dramatically reduced.
Due to the large dynamic range necessary for ultrasound applications, the discrete-time ΣΔ ADC performs a third order noise shaping behavior to maintain adequate signal-to-noise ratio. The amplifier, a key analog building block in SC circuits, does not utilize classical low-voltage OTA topologies since could be replaced with inverter-based architectures. In spite of the limited performance of inverters compared with OTAs, inverters attract attention for their inherent advantages such as rail-to-rail operation, scalability with technology and capability to operate with very low supply voltages.



Personal tools