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Extensive research has shown that Inferior Temporal (IT) cortex is a key brain area underlying invariant object 
recognition.  More recently, it has been uncovered that position is also coded in IT and human LOC.  Here we 
show that IT neurons support robust readout of a variety of object parameters that characterize scene description 
in the central visual field. 

We recorded neural responses in IT and V4 to set of 5760 images of photorealistic objects in a variety of 
categories, placed in complex realistic scenes, with significant variation in object position, size, and in-plane and 
out-of-plane rotation.  Consistent with known results, IT achieves high invariant categorization and identification 
performance for these images.  We also find that the IT representation of object position is highly robust, with units 
that encode location accurately across the full range of tested positions — even across widely varying object 
geometries, pose and size variation, and cluttered backgrounds that make this task very challenging for lower-level 
visual representations.   We find similarly robust IT encodings for a variety of additional object parameters, 
including size, pose, perimeter, and aspect ratio, for which lower-level representations appear to have effectively no 
decoding power.  While IT exhibits the ability to discount identity-preserving variation to solve categorization tasks, 
it simultaneously encodes a suite of “identity-orthogonal” dimensions, that, combined with category and object 
identity encodings, form a basis for a full scene description.  

Moreover, while the representation of object identity and category is highly distributed across IT sites, the 
representations for these other properties (e.g. position) is typically more sparsely encoded, with a small 
proportion of highly responsive sites responsible for much of the decoding capacity.  Taken together, these results 
suggest that IT contains a general representation of the visual environment in which key object parameters have 
been extracted and factored.   

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
 

Fig. 1: We measured multi-unit neural responses to briefly presented (RSVP) images from 168 IT and 128 V4 sites in two 
passively fixating macaques using chronically implanted electrode arrays.  We recorded 5760 images of a variety of 
photorealistic 3D objects in each of 8 natural categories.  Objects were shown within the central 8o of the retina on complex 
background scenes at a broad range of position, scale, and pose views.  By choosing different neural decoding rules for 
interpreting IT output, information relevant to a wide variety of natural tasks can be read out from the neurons.  These 
decoding rules are simple weighted sums of neural units.  The sparseness of these weightings corresponds to how 
distributed the task-relevant data is in the neural population.  We assessed performance for a wide variety of tasks including 
basic-level categorization (e.g. animals vs. boats vs. cars etc.) and subordinate-level identification (e.g. face 1 vs. face 2 vs. 
face 3 etc.), as well as continuous-valued tasks like object position, size, pose, and aspect-ratio estimation.  In the 
categorical cases, we used linear classifiers to find the optimal weightings; for the continuous estimation tasks, we used 
linear regression.	
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Fig. 2 (above): (a) Neural decoding performance on 8-way basic category and subordinate 
identification tasks.  Results were obtained by training L2-regularized SVM classifiers with 
75/25% train/test splits with 10-fold cross-validation.  (b) Neural prediction accuracy for 
estimation tasks including object position, size, perimeter, aspect ratio, and pose.  Results 
were obtained by L2-regularized linear regression with the same cross-validation protocol 
as for the classifiers.   For both classification and estimation tasks, the population of sampled 
IT multi-units (n = 168, blue bars) is able to achieve high performance, while the intermediate 
visual area V4 population (n = 128, green bars) does not perform as well.  Comparison to a 
V2-like Gabor-conjunction model [1] (red bars), a V1-like Gabor-based model (yellow bars) 
and image pixels (white bars) show that simpler lower-level representations fail to capture 
these properties for the complex images used here.  Fig. 3 (right): Extrapolating position-
estimation performance as a function of neural sample size suggests that IT neurons reach 
human level at ~1200 multi-units, while V4 would require ≳ 107.  Human performance was 
measured in an online crowd-sourced behavioral experiment (n = 97).  Fig. 4 (below): (a) Evoked responses of the most discriminative 
IT sites for each category (red: elevated, blue: baseline). Response average is shown for each of eight category exemplars (y-axis) 
taken over three pose, position and size parameter ranges (x-axis). (b) Spatially-binned response averages for the most position-

responsive IT units. These units have poor 
category selectivity, but show position tuning: 
access to these allows effective estimation of x-y 
position by e.g. triangulation.  It is unknown if 
these units are retinotopically arranged. 
Crosshairs denote the screen center the animals 
fixated at. (c) Tuning curves for units that robustly 
encode object size.  Similar tuning curves are 
also observed for the other estimation tasks we 
measured, e.g. pose, aspect ratio, and perimeter. 
(d) Distribution of weights for category and 
position tasks.  Insets show spatial layout of 
weightings (green: high weights, black: low 
weights, white: not recorded).  (e) The encoding 
for estimation properties is on average much 
sparser than for the categorical tasks. 
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