Defects and doping in oxides: What we have learned so far

Anderson Janotti
Materials Department, University of California Santa Barbara

Tuesday, February 23, 2010
Collaborators

J. Varley, J. Lyons, J. Weber, C. G. Van de Walle (Materials Dept., UCSB)
P. Rinke, M. Scheffler (MPI-Berlin, UCSB)
S. Limpijumnnong, P. Reunchan (Suranaree Univ. of Tech. Thailand)
G. Kresse, University of Vienna
T. Ive, O. Bierwagen, J. Speck (Materials Dept., UCSB)
M. McCluskey (Washington State University)
G. D. Watkins (Lehigh University)
L. Halliburton (West Virginia University)
S. Chambers (Pacific Northwestern Nat. Lab)
Oxide semiconductors

Variety of crystal structures and band gaps

<table>
<thead>
<tr>
<th>Material</th>
<th>Crystal structure</th>
<th>Band gap (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnO</td>
<td>wurtzite</td>
<td>3.4</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>Anatase, rutile</td>
<td>3.0 - 3.4</td>
</tr>
<tr>
<td>SnO$_2$</td>
<td>rutile</td>
<td>3.6</td>
</tr>
<tr>
<td>In$_2$O$_3$</td>
<td>bixbyte</td>
<td>2.7</td>
</tr>
</tbody>
</table>

Possible applications
- light emitting diodes and laser diodes
- transparent electronics
- electronic “noses” (gas sensors)
- photocatalysis, water splitting
- transparent electrodes, smart windows

Available as large single crystals

ZnO-based “Invisible” electronics

ZnO transparent electrode: Mega cone

Vision

• **Multifunctional materials**
 – Novel high-k dielectrics/Nonlinear optics
 – Ferroelectricity/Chemical sensors/Nanotechnology

• **Reach new levels of performance**
 – Conventional preparation methods (sputtering, laser ablation):
 » levels of stoichiometry and purity on the order of 0.1 – 1% (~ 10^{20} cm$^{-3}$)
 » Still: high mobility, low resistivity!
 – Semiconductor standards of purity and crystalline quality:
 » impurity and point defect concentrations in ppm range (< 10^{17} cm$^{-3}$)

• **Semiconducting binary oxides**
 – ZnO, SnO$_2$, In$_2$O$_3$ (and ITO), Ga$_2$O$_3$, TiO$_2$, ...

• **Vision:**
 – Enhanced control over impurities and defects will enable unprecedented performance and new science, leading to new applications
Controlling the conductivity is a major problem

• High levels of unintentional n-type conductivity
 – traditionally attributed to native point defects: oxygen vacancies and/or cation interstitials
 – conductivity varies inversely with oxygen partial pressure

• Difficult to make p-type
 – valence band is low in energy in an absolute scale
 – stability and reproducibility are main issues (p-ZnO)

Goal: understand the effects of native defects and impurities by performing first-principles calculations (DFT-LDA and beyond)

Hartnagel and Dawar, Semiconducting Transparent Thin Films, (IOP, Bristol, 1995)
First-principles formalism

Formation energies

Determine concentrations/solubility

\[
c = N_0 e^{-\beta E_f}
\]

Ex.: Oxygen vacancy in ZnO

\[
E_f^f (V_O^q) = E_t (V_O^q) - E_t (\text{ZnO}) + \frac{1}{2} E_t (\text{O}_2) + \mu_O + q\epsilon_F
\]

\[
\mu_{\text{Zn}} + \mu_O = \Delta H_f (\text{ZnO}) \quad \text{O-rich, Zn-rich conditions}
\]

\[
\epsilon_{\text{VBM}} \leq \epsilon_F \leq \epsilon_{\text{CBM}} \quad \text{p-type, n-type}
\]

Transition levels (shallow/deep donor/acceptor)

Migration barriers (stability)

Optical transitions - configuration coordinate diagrams

Frequencies of local vibration modes

VASP: periodic boundary conditions, plane-wave basis set, special k points, projector augmented potentials (PAW)
Oxygen vacancy in ZnO cannot be described by DFT-LDA

- Electrically active - introduces levels in the gap
- Possible charge states: 0, +1, +2,
- Optically active - sub band-gap transitions
- Cannot be described in DFT-LDA/GGA?

The band gap is drastically underestimated in DFT-LDA/GGA
0.8 eV (LDA/GGA) vs. 3.4 eV (Expt.)
Approaches to overcome the band gap problem

LDA+U
- \(U \) applied to semicore \(d \) states \(\rightarrow \) partial correction of band gaps
 - extrapolation from LDA and LDA+\(U \) calculations
 - ex: ZnO, InN, GaN, SnO\(_2\), In\(_2\)O\(_3\)

Screened hybrid functional (Heyd, Scuseria, Einzernhof)
- mix of Hartree-Fock and GGA/LDA exchange \(\rightarrow \) removes self-interaction
- band gaps in agreement with experiments (by tuning mixing parameter)
 - more general, can be applied to any semiconductor/material
 - ex: ZnO, InN, TiO\(_2\), SrTiO\(_3\)

GW
- correct band gaps
- combined with LDA \(\rightarrow \) correct formation energies and transition levels
- ex: Si, MgO

Tuesday, February 23, 2010
Combining LDA and LDA+U to overcome the band gap problem

LDA+U

- U applied to semicore d states \rightarrow partial correction of band gaps
 - extrapolation from LDA and LDA+U calculations
 - ex: ZnO, InN, GaN, SnO$_2$, In$_2$O$_3$

LDA+U: d bands are lowered with respect to VBM
The band gap is partially corrected: LDA: 0.8; LDA+U 1.5; Exp. 3.4 eV
Combining LDA and LDA+\(U\) to overcome the band gap problem

LDA+\(U\)
- \(U\) applied to semicore \(d\) states \(\Rightarrow\) partial correction of band gaps
 - extrapolation from LDA and LDA+\(U\) calculations
 - ex: ZnO, InN, GaN, SnO\(_2\), In\(_2\)O\(_3\)

\(p-d\) repulsion

\(d\) states

VBM (O \(p\) states)

CBM (Zn \(s\) states)

LDA+\(U\): affects both valence band and conduction band

\(E_c\)

\(E_v\)

\(ZnO(\text{LDA})\)

\(ZnO(\text{LDA+U})\)

\(E_c\)

\(E_v\)

\(Zn\) 3\(d\)-band

\(\text{VBM (O } p\text{ states)}\)

\(\text{CBM (Zn } s\text{ states)}\)

\(\text{\(p-d\) repulsion}\)

\(\text{\(d\) states}\)

\(\text{\(p-d\) repulsion}\)

\(\text{\(d\) states}\)
Correcting transition levels and formation energies based on LDA/LDA+U calculations

\[\varepsilon(q/q') = \varepsilon(q/q')^{\text{LDA}+U} - \varepsilon(q/q')^{\text{LDA}} \left(E_g^{\text{exp}} - E_g^{\text{LDA}+U} \right) + \varepsilon(q/q')^{\text{LDA}+U} \]

Take into account valence vs. conduction band character of the defect state in the gap

Oxygen vacancy in ZnO

- Deep donor (2+/0) at 1 eV below CBM cannot cause conductivity
- +1 charge state unstable
 - EPR active, need light excitation to see +1
- High formation energy in n-type
 - Low concentrations in equilibrium conditions
 - In agreement with Watkins & Vlasenko, Phys. Rev. B 71, 125210 (2005): +1 only observed after irradiation

![Diagram showing formation energy vs. Fermi level (eV)](image)
Oxygen vacancy in ZnO

Electronic properties strongly coupled with local lattice relaxations
V_0 in ZnO: comparison with experiment

V_0 created by irradiation

2.1 eV threshold for $V_0^0 \rightarrow V_0^+ + e$

Need to **create** V_0 by irradiation!
No V_0 observed in as-grown material.
Consistent with high formation energy.

FIG. 4. Wavelength dependence of changes in charge state while illuminating at 30 K. The monitored EPR signals are (a) Fe$^{3+}$ ions, (b) singly ionized oxygen vacancies (V_0^+), and (c) zinc vacancies with a OH$^-$ ion at an adjacent oxygen site, i.e., (V_{Zn}^{2-}H$^+$)$^{3+}$ centers.
Native point defects in ZnO

- V_{O}, V_{Zn}: dominant defects

- V_{O}: deep donor
 - Also high formation energy in n-type ZnO

- V_{Zn}: deep acceptor
 - Cause of green luminescence

- Zn_{i}: high formation energy
 - unstable, migration barrier 0.57 eV
Native defects vs. impurities

- Native defects cannot explain n-type doping
- Impurities: donors?
Interstitial hydrogen in ZnO

\[\text{Formation energy (eV)} \]

\[E_F (\text{eV}) \]

\[\text{H}^+ \]

\[\text{H}^+ \text{ is the only stable charge state} \Rightarrow \text{hydrogen acts as shallow donor} \]

Unexpected! In other semiconductors hydrogen reduces the conductivity

Hydrogen is a likely candidate for unintentional incorporation

• But: highly mobile

\(\Rightarrow \) unstable at temperatures where \(n \)-type conductivity is known to persist (>500°C)

Also cannot explain dependence of conductivity on oxygen partial pressure…
Substitutional hydrogen in ZnO

- Forced to reconsider the role of hydrogen...
 - ... and in the process some interesting new physics/chemistry emerged!

- Substitutional hydrogen
 - Hydrogen on a substitutional oxygen site
 - Formation energy: **low**
 - Ionization energy: small; **shallow donor**

- Consistently explains dependence of *n*-type conductivity on oxygen partial pressure
Diffusion of substitutional hydrogen

How does H₀ move?

► Dissociation:
H₀⁺ → Hᵢ⁺ + V₀⁰ costs 3.8 eV!
Diffusion of substitutional hydrogen

How does H_0 move?

- **Dissociation:**

 $H_0^+ \rightarrow H_i^+ + V_0^0$ costs 3.8 eV!

- **Migration:**
 - Concerted exchange of H and neighboring O
 - Barrier: 2.5 eV
 - \Rightarrow becomes mobile above 500 ºC

- Consistent with experimental observations

Hydrogen multicenter bonds

- Hydrogen equally bonds to four atoms
- Truly multicoordinated configuration

Nitrogen doping in ZnO

- In principle, the most promising p-type dopant in ZnO
- Experimental results are highly controversial
- Stability and reproducibility are main issues
ZnO: Hybrid functional calculations

ZnO band structure
No in ZnO

- Deep acceptor
- Will not lead to p-type conductivity

Lyons, Janotti, and Van de Walle,
Appl. Phys. Lett. 95, 252105 (2009)
\(N_0 \) in ZnO – theory vs. experiment

Lyons, Janotti, and Van de Walle,
Appl. Phys. Lett. 95, 252105 (2009)

Garces et al.,
No in ZnO: theory vs. experiment

Lyons, Janotti, and Van de Walle, Appl. Phys. Lett. 95, 252105 (2009)

Anisotropy in the spin density
Oxygen vacancy in TiO$_2$

- **Is DFT-LDA/GGA enough?**
- **LDA/GGA functionals can describe only +2 charge state**
- **Electrons from 0 and +1 charge states go to the conduction band**

Tuesday, February 23, 2010
TiO$_2$: Hybrid functional calculations

<table>
<thead>
<tr>
<th>functional</th>
<th>a (Å)</th>
<th>c/a</th>
<th>u/a</th>
<th>E_g</th>
<th>ΔH_f (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBE</td>
<td>4.65</td>
<td>0.639</td>
<td>0.305</td>
<td>1.77</td>
<td>-9.33</td>
</tr>
<tr>
<td>HSE</td>
<td>4.59</td>
<td>0.642</td>
<td>0.305</td>
<td>3.05</td>
<td>-9.73</td>
</tr>
<tr>
<td>Exp.</td>
<td>4.59</td>
<td>0.644</td>
<td></td>
<td>3.1</td>
<td>-9.74</td>
</tr>
</tbody>
</table>
TiO$_2$: GGA vs. Hybrid functional (HSE)

V_O in TiO$_2$: GGA vs. HSE

relaxed V_O^0 and V_O^+ can be described in HSE

V_0^0 and V_0^+ charge distributions

gap states have strong contributions from the two out-of-plane Ti atoms

V_O in TiO$_2$: HSE results

- shallow donor - can cause conductivity
- low formation energy only in extreme O-poor conditions

Summary

LDA/LDA+U scheme
- Limited to systems with semicore d states
- Computationally inexpensive, large systems (>200 atoms)

Hybrid functionals (HSE)
- Mixing parameter and screening length
- Can be applied to any semiconductor
- Computationally demanding (~100 atoms, few k-points)
Summary

ZnO

- Native defects are not the cause of unintentional n-type conductivity
- Impurities are the likely cause (hydrogen)
- Nitrogen doping not lead to p-type ZnO

TiO$_2$

- Oxygen vacancy is a shallow donor
- Low formation energy only in extreme O-poor
- Need to relate μ_O to realistic conditions
LDA/LDA+\(U\) vs. HSE

Janotti & Van de Walle
PRB 76, 165202 (2007)

Oba et al.,
PRB 77, 245202 (2008)
Diffusion of point defects

- Relevant for …
 - growth
 » Defects ‘frozen in’ or not
 - Ion implantation
 » Anneal damage
 - Degradation
 - Irradiation
- Zinc interstitial:
 - $E_m = 0.57$ eV
Annealing temperature of point defects

\[\Gamma = \Gamma_0 \exp \left(-\frac{E_b}{kT} \right) \]

- \(\Gamma_0 \approx 10^{13} \text{s}^{-1} \)
- \(\Gamma \approx 1 \text{s}^{-1} \)

<table>
<thead>
<tr>
<th>Defect</th>
<th>(E_b) (eV)</th>
<th>(T) annealing (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Zn}_i^{2+})</td>
<td>0.57</td>
<td>219</td>
</tr>
<tr>
<td>(V_{\text{Zn}}^{2-})</td>
<td>1.40</td>
<td>539</td>
</tr>
<tr>
<td>(V_{\text{O}}^{2+})</td>
<td>1.70</td>
<td>655</td>
</tr>
<tr>
<td>(V_{\text{O}}^0)</td>
<td>2.36</td>
<td>909</td>
</tr>
<tr>
<td>(O_{i}^0\text{(split)})</td>
<td>0.87</td>
<td>335</td>
</tr>
<tr>
<td>(O_{i}^{2-}\text{(oct)})</td>
<td>1.14</td>
<td>439</td>
</tr>
</tbody>
</table>

Si and Ge in ZnO

- Si and Ge are shallow donors
- [Si] of up to 10E17 cm-3 observed in as grown single crystals

Phys. Rev. B 80, 205113 (2009)