Local tuning of photonic crystal cavities using chalcogenide glasses

Andrei Faraon,1,a) Dirk Englund,1 Douglas Bulla,2 Barry Luther-Davies,2 Benjamin J. Eggleton,3 Nick Stoltz,4 Pierre Petroff,4 and Jelena Vučković5

1Department of Applied Physics, Stanford University, Stanford, California 94305, USA
2Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), Laser Physics Centre, Australian National University, Canberra, ACT 0200, Australia
3Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
4Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, USA
5E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA

(Received 5 November 2007; accepted 8 January 2008; published online 31 January 2008)

We demonstrate a method to locally change the refractive index in planar optical devices by photodarkening of a thin chalcogenide glass layer deposited on top of the device. The method is used to tune the resonance of GaAs-based photonic crystal cavities by up to 3 nm at 940 nm. The method has broad applications for postproduction tuning of photonic devices. © 2008 American Institute of Physics. [DOI: 10.1063/1.2839308]

On-chip integration of optical components promises to greatly enhance speed and reduce costs in optical communication applications, such as interconnects and optical logic. Photonic crystal (PC) devices are one of the most promising platforms for on-chip integration, as they can combine optical waveguides, resonators, dispersive devices, lasers, or modulators.1–4 Such devices can be patterned with existing semiconductor lithographic techniques. However, they are highly sensitive to fabrication imperfections5 and a practical method to locally tune their optical properties is needed. In this paper, we present a method for tuning GaAs PC devices based on chalcogenide glasses. Chalcogenide glasses change their optical properties when illuminated with light above their band gap and have been used to tune optical devices as quantum cascade lasers.6 The tuning of PC devices directly their band gap and have been used to tune optical devices as their optical properties when illuminated with light above this paper, we present a method for tuning GaAs PC devices based on chalcogenide glasses. Chalcogenide glasses change their optical properties when illuminated with light above their band gap and have been used to tune optical devices as quantum cascade lasers.

One such application is quantum information with InAs QDs, as described in Ref. 15. Arsenic trisulphide films with thickness between 30 and 100 nm were deposited onto the photonic crystals using thermal evaporation from a temperature controlled baffled boat in a chamber pumped to a base pressure of $3 \times 10^{-7}$ torr. The deposition geometry was chosen to ensure that the flux of material struck the sample close to normal incidence to prevent coating the inside of the holes. To improve film adhesion, the sample surfaces were cleaned using 50 eV Ar ions prior to deposition.

Thermal evaporation results in films with substantially different bond structure from the bulk glass. The films have been found to contain disconnected molecular cagelike structures7 that form in the vapor phase and are then frozen into the deposited film. These cagelike structures are, however, metastable and can “open” with optical excitation near the band edge or by heating that allows rebonding to occur which results in polymerization of a more extended glass network. This rebonding process is accompanied by an increase in the refractive index and a small decrease of the material volume.8 This change is permanent unless the glass is annealed above the glass transition temperature which can potentially reset the initial refractive index.6 The thermally evaporated films had an index (at 1550 nm) of $\sim 2.31$ compared with the bulk glass whose index is 2.43. After deposition, the films were partially polymerized by annealing at 130 °C for 24 h prior to use, which increased the refractive index to $\sim 2.38$. Subsequent irradiation of the films with actinic light at high fluence can increase the film index to the bulk value.

The experiment was performed at cryogenic temperature (less than $\sim 60$ K) to obtain luminescence from the embedded InAs quantum dots, as needed for quantum information processing applications. This illustrates that the method works at low temperatures, though we stress that it is applicable to room temperature nanophotonic circuits. The sample was placed inside a continuous-flow liquid helium cryostat at 10 K and the QD photoluminescence was used to measure the cavity resonance. A confocal microscope setup and a laser tuned at 780 nm excited quantum dot luminescence while a spectrometer monitored the signal. A 543 nm HeNe laser (1 μW) focused to $\sim 1$ μm$^2$ through the same confocal setup.
was used for photodarkening of the As₂S₃ layer (Fig. 1). This wavelength was chosen because it is close to the 527 nm bandgap of As₂S₃. The thickness of the As₂S₃ influences both the quality factor of the cavity and the maximum tuning range. For this reason, we experimented with three different thicknesses: 30, 60, and 100 nm (samples S30, S60, and S100). For each sample, the spectrum of the cavities was recorded before and after the deposition of the chalcogenide layer. For sample S60 (S30), the deposition caused the quality factor to degrade by ~5% (30%) from an average value of ~8500 (10 000) while the resonant wavelength shifted by ~40 nm (28 nm). The starting values for Q are different because of fluctuations in the fabrication process. Even though the starting value for Q is different for S30 and S60, after the deposition, Q drops to a similar value for both samples (~8000 and ~7000). We think that after the deposition, Q becomes limited by surface roughness of the glass layer. For sample S100, the Q degradation was more severe, from ~6500 to ~1000, and for this reason we mainly concentrate on samples S30 and S60.

With the chips mounted in the cryostat, we focused the 543 nm laser on the PC cavities for a fixed time and recorded the cavity spectrum. For sample S60, the cavity resonance shifted by up to 3 nm, as shown in Fig. 2(a). For 1 µW of green laser power focused on a spot size of ~1 µm², the cavity tuning rate levels off after about 20 min, as shown in Fig. 2(b). We observed that this saturation time decreases with increasing power of the 543 nm laser. During the tuning process, Q degraded to 4650. The maximum tuning range depends on the thickness of the chalcogenide layer. For 30 and 100 nm, tunings of 1 nm [Fig. 2(b)] and 4 nm were observed, respectively. Similar to S60, the quality factor for S30 also degraded to Q ~ 4650. We suspect that this is a limiting value given by a loss mechanism in the glass layer. It is possible that during the tuning process, there are dislocations in between the glass layer and the GaAs substrate which induce scattering loss. The change of the cavity resonance was stable after the green laser was turned off.

Illumination of As₂S₃ with light at 543 nm causes changes both in the refractive index and in the density of the material. Experiments at room temperature with films of As₂S₃ show that the increase in the refractive index is accompanied by a ~1.5% decrease in the film thickness. The decrease in thickness should result in a blueshift of the cavity resonance. The redshift observed experimentally implies that the dominant effect responsible for the shift of the cavity resonance is the change in the refractive index.

The behavior of the QDs during the tuning process is important for applications where QDs need to be spectrally aligned. In Fig. 3, we show the tuning of a cavity that has several QD lines weakly coupled to it. For this data set, we used a sample with 50 nm of As₂S₃. Early in the exposure, these lines shift in the characteristic fashion shown in Fig. 3: QDs first rapidly redshift then relax to a constant frequency. As coupled QDs tune across the cavity spectrum, they become bright due to the enhanced emission rate and outcoupling efficiency. The cavity itself steadily redshifts even with increasing power of the 543 nm laser. During the tuning process, Q degraded to 4650. The maximum tuning range depends on the density of the chalcogenide layer. For 30 and 100 nm, tunings of 1 nm [Fig. 2(b)] and 4 nm were observed, respectively. Similar to S60, the quality factor for S30 also degraded to Q ~ 4650. We suspect that this is a limiting value given by a loss mechanism in the glass layer. It is possible that during the tuning process, there are dislocations in between the glass layer and the GaAs substrate which induce scattering loss. The change of the cavity resonance was stable after the green laser was turned off.

Illumination of As₂S₃ with light at 543 nm causes changes both in the refractive index and in the density of the material. Experiments at room temperature with films of As₂S₃ show that the increase in the refractive index is accompanied by a ~1.5% decrease in the film thickness. The decrease in thickness should result in a blueshift of the cavity resonance. The redshift observed experimentally implies that the dominant effect responsible for the shift of the cavity resonance is the change in the refractive index.
the compressive pressure exceeds the material’s tensile strength. Once the strain is relaxed, only the cavity continues to redshift. In applications where QDs must be tuned independently of the cavity, it might be necessary to first relax the strain or induce fracturing of the chalcogenide layer in some other way. However, we note that this ability to induce local strain may actually be useful for other applications, such as creating locally strained quantum wells, quantum dots, or impurities.

For our experiment, the smallest area that can be locally tuned is a few square microns, limited by the size of the laser beam focus, and the propagation of the structural changes in the glass layer. The locality of the technique allows for independent tuning of interconnected optical components on photonic crystal chips. The method is not only suitable for GaAs devices but can possibly be implemented with any other material, including silicon nanophotonic circuits. Also, the As$_2$S$_3$ can be easily replaced by other types of chalcogenide glasses or other photosensitive materials depending on the specific application.

In conclusion, we have shown that As$_2$S$_3$ can be combined with semiconductor photonic crystals to create nanophotonic devices whose optical properties can be independently fine tuned on the same chip. This technique is relevant for fabrication of integrated nanophotonic circuits for classical and quantum information processing, including applications such as filtering, multiplexing, optical storage, fine tuning of modulators and lasers, and local tuning of distinct PC cavities on GaAs/InAs chips for quantum optics.

Financial support was provided by ONR Young Investigator Award, the MURI Center for photonic quantum information systems (ARO/DTO Program No. DAAD19-03-1-0199), and NSF Grant No. CCF-0507295. Work was performed in part at the Stanford Nanofabrication Facility of NNIN supported by the National Science Foundation under Grant No. ECS-9731293. CUDOS is an Australian Research Council Centre of Excellence.

19. We estimate that without fracture, the chalcogenide layer would reach a tensile stress of $\sigma = Y_m \Delta L/L = 0.3$ GPa, where $Y_m = 20$ GPa is Young’s modulus, and $\Delta L/L = 0.015$ is the shrinkage. $\sigma$ exceeds the glass’s tensile strength of $\sim 0.1$ GPa (Refs. 22 and 23), so we expect material fracture. Because of electron charging of the glass layer during scanning electron microscopy, we could not observe fracture lines, but placed a bound of less than 15 nm on their width.
22. VITRON Spezialwerkstoffe, see http://cvdmaterials.de/chalcogenide_glasses.htm, 2007.