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Soliton microcombs are self-organized pulses of light sustained in driven Kerr microresonators, intensively studied for
applications in integrated photonic technologies and for their rich nonlinear dynamics. In this work, we theoretically
study the collective dynamics of the quantum fluctuations of soliton microcombs. We find that the mean field of a dissi-
pative Kerr soliton crystal is accompanied by pulses of squeezed multimode vacuum and derives its operational stability
from the strong detuning of the below-threshold parametric process. We present a photonic architecture that enables
independent control of the above- and below-threshold states and achieves a high degree of squeezing (>15 dB) in the
output waveguide with realistic losses. Our work elucidates the quantum dynamics of formation and annihilation in dis-
sipative Kerr soliton systems, and establishes a pathway for the realization of a practical integrated source of multimode
squeezed light. © 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
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1. INTRODUCTION

Kerr soliton microcombs are phase-locked frequency combs gen-
erated in a microresonator via third-order optical nonlinearity.
Since their first demonstration in 2014 [1], soliton microcombs
have found applications in spectroscopy [2], LiDAR [3], com-
munications [4], and convolutional processing [5]. Experimental
studies of soliton microcombs have also revealed a wealth of inter-
esting nonlinear dynamics [6–9], and fundamental research on the
classical dynamics continues to date.

The optical mean field of the Kerr frequency comb (i.e., “clas-
sical” comb) has been modeled with great success by the
Lugiato–Lefever equation (LLE) [10], a nonlinear Schrödinger
equation that includes dissipation, drive, and detuning. The most
commonly studied configuration is that where a single coherent
pump laser supplies parametric gain to populate the comb lines
through stimulated four-wave mixing [11]. Spontaneous light
generation is absent from the model; to seed threshold processes
such as optical parametric oscillation (OPO), random noise must
be added into every optical mode. Thus, the LLE can reveal neither
the properties of the quantum state of the comb nor the coherent
dynamics of the threshold processes that drive the formation of the
comb itself.

The quantum state of soliton microcombs has received little
attention, and studies to date have approached it via an exten-
sion of pairwise mode analysis [12,13] which is used to describe
signal–idler quantum frequency combs [14–16]. However, the
signal–idler basis cannot be expected to reveal the structure of
the collective quantum fluctuations in a soliton microcomb due
to the extended modal coupling (Fig. 1), suggesting the need
for a multimode analysis. An example of a well-studied multi-
mode system is the synchronously pumped optical parametric

oscillator (SPOPO), where an external mode-locked classical
comb source drives a quantum comb via a second-order (χ (2))
nonlinear process: the SPOPO is naturally described in a basis
of supermodes (i.e., superpositions of frequency modes) [17,18],
and this basis reveals multimode quadrature squeezing [19,20].
Three key features distinguish the soliton microcomb from com-
monly studied squeezed light sources. First, Kerr cavity soliton
systems typically feature (and rely on) significant modal disper-
sion, which contributes strongly detuned parametric processes.
Second, the third-order (χ (3)) nonlinearity in soliton microcombs
introduces four-wave mixing nonlinear terms not present in χ (2)

systems, most notably Bragg scattering (frequency translation
of a photon). In degenerate and signal–idler squeezing schemes,
these system properties are often considered as parasitic processes
that degrade squeezing [21,22]. Finally, the quantum fluctua-
tions in a soliton microcomb are driven not by an external source
[23], but by a coherent comb that is itself generated in situ via the
same Kerr nonlinearity, intimately linking the mean-field and the
below-threshold states.

In this work, we apply a multimode quadrature squeezing
analysis to the soliton microcomb and its formation. We show that
multimode analysis is necessary to understand Kerr microcomb
threshold processes beyond the single-pump regime, and that such
analysis can predict the properties of the post-threshold mean field,
such as spatiotemporal oscillations. We find that the quantum state
of the soliton crystal microcomb is highly squeezed across the entire
range of its existence, and that the passage from a soliton crystal
to a single-soliton state is a coherent threshold process associated
with asymptotic growth in squeezing. Finally, we describe how the
soliton crystal can be engineered as a practical source of multimode
quadrature-squeezed light.
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Fig. 1. Schematic depiction of a soliton crystal state in a Kerr microres-
onator. Top: a continuous-wave pump laser is evanescently coupled
into the microring through a bus waveguide and used to generate the
soliton crystal. In the temporal domain, the below-threshold state (red)
co-propagates with the coherent soliton pulses (blue). Bottom: in the
frequency mode basis, the above- and below-threshold modes form two
subsets, allowing the quantum fluctuations to be studied in isolation.

2. SUPERMODE DECOMPOSITION

The quantum fluctuations of the soliton microcomb are described
by a many-body quartic Hamiltonian, where all resonator modes
are coupled by a four-photon interaction through the χ (3) non-
linearity of the medium. In a soliton crystal microcomb [8,24],
the resonator modes can be partitioned into two sets: (i) above-
threshold modes populated via stimulated four-wave mixing and
comprising the classical dissipative Kerr soliton state, and (ii) the
below-threshold modes populated only via spontaneous four-wave
mixing [13]. Due to this robust partition guaranteed by energy
and momentum conservation, the soliton crystal forms a unique
system for studying in isolation the quantum fluctuations of dis-
sipative Kerr solitons. To model the quantum state, the simplest
approach is to assume that the above-threshold modes are in a
classical coherent state [25] (complex amplitudes Am) and that this
coherent state drives parametric processes in the below-threshold
modes â j . This assumption constitutes the linearization of the
quartic Hamiltonian into a computationally tractable quadratic
Hamiltonian:

Ĥint =−
g 0

2

∑
m,n, j ,k

δFWM[(Am An â †
j â

†
k + h.c.)+ 4A∗k An â †

j âm],

(1)
where δFWM = δ( j+k−m−n) is the four-wave mixing mode number
matching condition, g 0 is the nonlinear coupling coefficient, and
h.c. is the Hermitian conjugate. This approximation has been used
to predict the second-order photon correlations that exist across
the below-threshold modes of a soliton crystal state, measured
pairwise in the resonator basis [13].

Starting with the linearized Hamiltonian, we obtain the
coupled-mode equation

dâµ(t)
dt
=−

(
iδµ +

κµ

2

)
âµ(t)

+ i g 0

∑
ν, j ,k

δ[µ+ ν − j − k]A j Ak â †
ν(t)

+ 2i g 0

∑
ν, j ,k

δ[µ+ j − ν − k]A∗j Ak âν(t)

−
√
κµb̂in,µ(t), (2)

where κµ is the total decay rate of modeµ [13], δµ is the detuning
from the rotating frame (set by the group velocity of the soliton),
and b̂in,µ are the bath operators. In Eq. (2), the first term accounts
for the modal detunings (dispersion); the second term represents
pair generation; the third term describes cross-phase modulation
(XPM) and Bragg scattering; and the last term is the coupling to
the bath.

From Eq. (2), it is evident that the presence of multiple pump
modes A j generates multimode coupling, resulting in collective
comb dynamics that cannot be understood through pairwise mode
analysis. An example of such a collective effect is the temporal enve-
lope of the below-threshold comb, obtained from the steady-state
solution of Eq. (2). The temporal shape of the quantum fluctua-
tions does not mimic that of the mean field, but rather has a split
shape (Fig. 1). The origin of this peculiar feature will, in a later
section, be understood through the supermode decomposition.

To calculate the maximally squeezed supermodes of the sys-
tem, we rewrite the Heisenberg equations in the basis of the
quadrature operators of each mode: r (t)= (x1(t), ..., xn(t)|
y1(t), ..., yn(t))T , where xn =

1
√

2
(a †

n + an), and yn =

i
√

2
(a †

n − an). Input–output relations can be written for the

quadrature operators as rout(t)= r in(t)+
√
0r (t), where 0 is a

diagonal matrix of the cavity decay rates κµ. In the Fourier basis,
the input and output fields are related by a transfer matrix, S(ω):

rout(ω)= S(ω)r in(ω), (3)

which can be diagonalized by Euler decomposition [26,27]:

S(ω)=U(ω)D(ω)V †(ω). (4)

The matrix D(ω) is diagonal with corresponding anti-
squeezing and squeezing levels associated with maximally squeezed
orthogonal supermodes encoded in U(ω): the columns define
the linear combination of quadratures, which can be mapped to
a local oscillator for homodyne detection of the squeezing for ω,
where U(ω) is real. This is always the case for ω= 0. For systems
with terms corresponding to detuning or Bragg scattering, the ideal
local oscillator configuration will depend on the Fourier frequency
[26,28], e.g., the ideal local oscillator configuration for measur-
ing maximum squeezing at zero Fourier frequency may measure
sub-optimal squeezing across the rest of the spectrum.

3. MULTIMODE ANALYSIS OF COMB FORMATION

We begin with the supermode analysis of the stages of the micro-
comb that precede the soliton. The mean-field Hamiltonian
coupling terms Am are obtained via an LLE simulation. We use
system parameters consistent with silicon-carbide-on-insulator
microrings [29,30] used in a recent experimental study of the
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Fig. 2. Supermode analysis of primary and secondary comb formation. (a) Intracavity comb intensity simulated via LLE. Top: spectral composition of
the comb. Bottom: integrated comb intensity. Here and onward, frequency quantities are written in units of loss rate κ . (b) Azimuthal distribution in the
rotating frame for a state at detuning of −0.7κ (left) and −0.5κ (right). (c) Squeezed supermode spectrum near the threshold of primary comb forma-
tion (detuning of−0.93κ). All supermodes are doubly degenerate. Here and onward, unless otherwise stated, squeezing eigenspectra represent minimum
uncertainty states. The maximally squeezed supermode is composed of a signal-idler pair at modes ±µ. Left inset: illustration of the highest-gain super-
mode. Right inset: maximum squeezing versus detuning, up to the primary comb threshold. (d) Squeezed supermode spectrum near the threshold of the
secondary comb (detuning of−0.60κ). Dashed (solid) lines represent non-degenerate (doubly degenerate) modes. Left inset: illustration of the detunings
in the highest-gain supermode. Right inset: spectral composition of below-threshold modes approaching secondary threshold.

quantum correlations in soliton crystals in the telecommunica-
tions C-band [13]: nonlinear coupling g 0/2π = 3.4 Hz, a free
spectral range (FSR) of D1/2π = 350 GHz, integrated quadratic
dispersion D2/2π = 30 MHz, and a loaded quality factor of
Q = 1.5 · 106 with critical coupling to the bus waveguide. The
loss rate is assumed equal for all modes, denoted as κ (i.e., κµ = κ).
We note that these parameters are similar to soliton devices in
many material platforms such as silicon nitride [8,11,24], lithium
niobate [31,32], and tantala [33]. Figure 2(a) shows the evolution
of intra-cavity mode amplitudes Am(t) under adiabatic red-tuning
of the pump laser through the formation of primary and secondary
combs. The formation of the primary comb produces a spatial
rolls pattern, and the subsequent formation of the secondary comb
generates spatiotemporal oscillations [Fig. 2(b)].

A powerful feature of supermode analysis is the ability to reveal
the multimode nature of threshold processes. Figure 2(c) illus-
trates the supermode analysis near the primary comb threshold:
here, maximally squeezed supermodes consist of signal–idler
pairs [14,15] described by supermodes 1

√
2
(â−µ + âµ) and

i
√

2
(â−µ − âµ), reflecting the amplitudes and phases of the

local oscillators that could be used for homodyne detection. The
well-known result of this single-pump Hamiltonian is that phase
matching dictates which pair reaches threshold first, and pre-
dicts the spacing of the subsequent primary comb [11]. We now
turn to the formation of the secondary comb: with the multiple
nonzero-amplitude modes of the primary comb, the connectivity

in the Hamiltonian increases beyond pairwise mode interactions.
The squeezing spectrum just before the secondary-comb thresh-
old is shown in Fig. 2(d). The maximally squeezed supermode
approaches the threshold at a nonzero Fourier frequency ω=1,
indicating the presence of detuning in the multimode paramet-
ric gain process. To understand the origin of this detuning in
the squeezing spectrum, we can examine the spectral composi-
tion 〈â †

µ(ω)âµ(ω)〉 of the below-threshold modes, which, near
threshold, is dominated by emission into the first supermode.
The spectral composition [Fig. 2(d)] reveals that the supermode
consists of two quantum subcombs of equal and opposite detuning
from the primary comb spacing. This detuning in the squeezing
spectrum predicts the RF beatnote 21 that accompanies the
formation of the secondary comb [11], giving rise to the spa-
tiotemporal oscillation [34] seen in the numeric solution of the
LLE [Fig. 2(b)]. Thus, the supermode analysis sheds light on the
formation process (contrasting the pair-wise mode analysis of
secondary-comb formation [11]), and furthermore predicts the
dynamics of the ensuing secondary comb.

4. SOLITON CRYSTAL AND ITS ANNIHILATION

After the formation of the secondary comb, the system enters
the chaotic—modulation instability (MI)—regime. We will not
discuss the MI state: the Hamiltonian is time dependent, and a
subspace of below-threshold modes cannot be clearly delineated,
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Fig. 3. Squeezed supermodes of a soliton crystal. (a) Intracavity comb intensity simulated via LLE. Inset: maximum supermode squeezing along the soli-
ton crystal step. (b) Maximally squeezed supermodes at zero Fourier frequency at the middle of the step (detuning of 5.7κ). Top: quasi-HG1 mode; bottom:
quasi-HG0 mode. (c) Complete eigenspectrum of the soliton crystal versus detuning. Black curves represent the eigenspectrum at detuning 5.7κ . Other
detunings are shown in colors matching the inset of (a). Inset: temporal shape of the squeezed vacuum 〈â †(θ)â(θ)〉, where â(θ)=

∑
µ âµ(t)e iµθ (red), as

compared with the mean field (blue), at detuning 5.7κ (see Supplement 1). (d) LLE simulation showing the annihilation of the soliton crystal in the tempo-
ral domain.

thereby complicating the quantum analysis. To induce soliton-pair
crystallization from the MI state, we introduce a −100 MHz
perturbation atµ=+2 (as described in Ref. [8]). In the LLE sim-
ulation [Fig. 3(a)], the MI state can be seen to end in a low-noise
2-FSR soliton crystal state, followed by an abrupt transition to the
single soliton.

We analyze the quadrature squeezing for the below-threshold
state as it evolves with detuning across the soliton crystal step. The
state features significant spatiotemporal precession with respect to
the resonator FSR, and care must be taken to perform the squeez-
ing analysis in the stationary frame of the mean-field solution for
each detuning. This procedure is described in Supplement 1. The
inset of Fig. 3(a) shows the evolution of maximum squeezing,
which exceeds 20 dB for all detunings. The maximally squeezed
supermodes extend across the entire comb [Fig. 3(b)] and resemble
the Hermite–Gauss (HG) modes, the eigenmodes of SPOPO [18].
This reflects the all-to-all coupling in the Hamiltonian.

The evolution of the complete supermode eigenspectrum across
the soliton crystal step is shown in Fig. 3(c). For all detunings, two
supermodes show strong and comparable levels of squeezing while
the rest have levels below 0.5 dB. This two-mode dominance of
the eigenspectrum is a unique feature of the soliton crystal, unob-
served in other multimode systems studied to date [18,23,27,35],
although HG-like squeezed supermodes have been observed in
soliton propagation through a χ (3) fiber [27]. The supermode
structure of the squeezed vacuum explains the puzzling contrast
between its temporal profile and that of the mean field, shown in
the inset of Fig. 3(c): the strong contribution of the quasi-HG1

supermode (whose Fourier transform to the time domain is also
bi-modal) induces the temporal splitting of the squeezed vacuum
pulse. Furthermore, an anti-crossing in the squeezing values of
the two dominant supermodes is observed [Fig. 3(c)], in contrast
to the signal–idler pairs preceding primary comb formation,
where no modal interaction is revealed in the squeezing spectra
[Fig. 2(c)]. The apparent interaction of the supermodes at the
anti-crossing is further evidenced by the hybridization of the super-
mode shapes. Even at zero Fourier frequency, the phase profile
of the quasi-HG0 mode [Fig. 3(b)] reveals a contribution of the
odd quasi-HG1 mode. This anti-crossing is observed universally
for higher-order soliton crystals as well (Supplement 1 Fig. 2). Its
physical significance will be investigated in a future work.

The end of the soliton crystal step is accompanied by asymp-
totic growth in the squeezing of one supermode, indicating that
the dissociation of the soliton crystal state is a coherent threshold
process. This can be anticipated from the fact that the passage from
the crystallized two-soliton state to the single soliton results in the
breaking of C2 symmetry and correspondingly the onset of OPO
in the modesµ= 1 (mod 2). In this regard, soliton crystal annihi-
lation is unique among other state transitions, such as one-by-one
disappearance of pulses in multi-soliton states [7] and transitions
between soliton crystals with defects [24], where symmetry break-
ing does not occur. The annihilation of the soliton crystal is also the
only known example (to our knowledge) of a threshold process that
results in a reduction of the mean-field intensity: according to the
LLE simulation [Fig. 3(d)], one soliton disappears without energy
transfer to the other.

https://doi.org/10.6084/m9.figshare.22770401
https://doi.org/10.6084/m9.figshare.22770401
https://doi.org/10.6084/m9.figshare.22770401
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Fig. 4. Soliton crystal stability diagram and the quantum twin comb. (a) A simulated stability chart of the LLE. Power and detuning dependence of the
maximum squeezing of the soliton crystal within its existence range is represented by the color gradient. The secondary ordinate axis shows normalized
pump amplitude f as defined in Ref. [1]. Inset: power dependence of the Fourier frequency1 of peak squeezing of the near-threshold state. (b) Spectral
composition of the near-threshold state, showing prominent light generation in a twin comb structure. (c) The second-order autocorrelation g (2)(τ ) for a
single resonator mode (µ= 1) reveals the twin-comb signature through a temporal oscillation with periodπ/1.

As shown in Fig. 4(a), the strong squeezing across the step cul-
minating in asymptotic growth is universally present across the
soliton crystal existence condition. For all powers, the threshold
is reached at a non-zero Fourier frequency 1 [inset of Fig. 4(a)],
indicating a strongly detuned threshold process. This is confirmed
through calculating the spectral composition of the squeezed
vacuum near threshold, which shows that every resonator mode
displays a strongly split spectrum [Fig. 4(b)]. The near-threshold
state is thus composed of twin quantum frequency combs offset by
1 from the soliton crystal rotating frame. Equal intensities of the
twin combs is guaranteed by energy and momentum conservation.
Twin combs would be directly observable in the second-order
autocorrelation g (2)(τ ), manifesting as a temporal oscillation
with a period of π/1 [Fig. 4(c)]. The autocorrelation peaks at
g (2)(0)= 3 and exhibits significant coherence broadening, as
expected for near-threshold OPO [13,36].

A degenerate parametric oscillator reaches parametric oscil-
lation in a continuous process in which damping precludes the
formation of a coherent cat state and instead produces a classical
mixture of coherent states [25], manifesting as random phase
selection of the above-threshold OPO. If the soliton crystal did not
exhibit quantum twin comb behavior (1= 0) at threshold, the
supermode analysis would lend itself to an analogous picture: the
post-threshold state is a classical mixture of either one of the soliton
pulses disappearing, corresponding to the modes µ= 1 (mod 2)
possessing phase of zero orπ with respect to modesµ= 0 (mod 2).
However, since1 6= 0, such a simple interpretation is not possible:
the passage through threshold must be accompanied by the spectral
collapse of the quantum twin comb into a rotating frame. This
cannot be explained within the framework of the linearized model,
which we show here to predict unbounded growth of twin combs at
non-zero1. The annihilation of the soliton crystal thus represents
a clear opportunity for experimental and theoretical exploration of
the breakdown of the linearization assumption in nonlinear Kerr
resonators.

5. SOLITON CRYSTAL SQUEEZED LIGHT SOURCE

Until now, we have considered squeezing in the absence of para-
sitic loss channels—all of the quantum light generated inside the
resonator is collected with unity efficiency. While in principle
one may realize resonators with an arbitrarily high waveguide-
coupling rate relative to the intrinsic loss, peak-efficiency Kerr
soliton devices operate near the critical coupling point, which
limits the outcoupled squeezing to 3 dB. Soliton operation in the
over-coupled regime is associated with a severe increase in power
requirements, as the OPO threshold scales quadratically with
resonator losses. For instance, the outcoupling-limited squeezing
of 10 dB (15 dB) requires an escape efficiency of 90% (96.8%),
and corresponds to an increase of the OPO threshold by 25 (250)
times, putting into question the practicality of this approach. In
this section, we present a device architecture that overcomes this
limitation.

The photonic architecture based on a 2-FSR soliton crystal
is shown in Fig. 5(a). The proposed device consists of the squeez-
ing resonator, engineered for anomalous dispersion to support
soliton formation, and critically coupled to the bus waveguide
(κi = κc = κ/2) for efficient in-coupling of the pump. The aux-
iliary resonator is designed to have an FSR twice larger than that
of the squeezing resonator, and its modes overlap in frequency
with the odd [µ= 1 (mod 2)] azimuthal modes of the squeezing
resonator. The auxiliary resonator is strongly over-coupled to the
drop waveguide (coupling rate κaux� κi ), and is coupled to the
squeezing resonator with strength J such that κaux� J > κ . This
corresponds to the regime known in cavity quantum electrody-
namics as Purcell enhancement: the odd modes of the squeezing
resonator are coupled to the auxiliary resonator and experience
a decay rate (κout) into the drop waveguide. If the magnitude of
Purcell enhancement (κout/κi ) is well below the finesse F of the
squeezing resonator (typical F is 103

−104), the even modes in
the squeezing resonator are unaffected by the auxiliary resonator.
Thus, rather than disturb the formation of the soliton crystal, the
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Fig. 5. Practical highly squeezed multimode source. (a) Schematic of the photonic architecture for squeezed light generation and measurement.
(b) Magnitude of squeezing extracted from the resonator as a function of outcoupling efficiency. The total outcoupled squeezing for the first (second)
supermode is shown in solid purple (orange). It is bounded by the intrinsic squeezing generated in the resonator (dashed purple and orange lines) as well
as the limit −10 log(1− κout/(κout + κ)) set by the extraction efficiency (dashed black line), where κ is the total loss of the resonator modes in absence
of the auxiliary ring. Gray solid (dashed) lines represent the outcoupled (intrinsic) squeezing from a near-threshold mode driven by a single-mode pump.
(c) Top: LLE simulation of soliton crystal generation for κout/κ = 50 at 100 mW input power (gray). Simulation for the case of κout = 0 with a 15 mW
pump (i.e., maximum power at which the soliton crystal capture is deterministic [8]) is shown for comparison in black. Bottom: squeezing in the waveguide
along the soliton crystal step. Dashed line represents the outcoupling limit. (d) (Anti-) squeezing spectrum in the waveguide at the end of the step. (e) Local
oscillators for the maximally squeezed supermodes, with measurable squeezing of 16.4 dB and 13.4 dB.

auxiliary ring stabilizes its formation through the suppression of
undesirable OPO processes. The choice of J and κaux thus provides
control over the outcoupling rate of the below-threshold modes
without negatively impacting the above-threshold state. The
magnitude of squeezing in the drop waveguide as a function of
κout/κ is shown in Fig. 5(b). The squeezing calculation in presence
of loss is presented in Supplement 1. In the regime of small κout,
the squeezing is limited by the outcoupling efficiency into the
drop waveguide, and increases with κout. The intrinsic squeezing,
however, drops with increasing κout, since the classical soliton
crystal state remains unchanged and thus results in weaker effective
drive and increased distance to threshold. In the regime where κout

dominates other losses, the outcoupled squeezing is limited by the
intrinsic squeezing of the system.

The same conditions responsible for the formation of the twin
quantum frequency combs near the soliton crystal annihilation
threshold also provide resilience of the squeezing strength against
the addition of the outcoupling rate κaux, rendering the soliton
crystal an attractive source of squeezed light. This is illustrated by
contrast with the squeezing of a typical, non-detuned squeezed
source [Fig. 5(b)]. Ramping up κout without altering the pump
power, the maximum outcoupled squeezing is≈ 3 dB at κout = 2κ ,
beyond which it rapidly decays. In contrast, the peak outcoupled

squeezing of the below-threshold soliton crystal state reaches its
maximum of 10 dB at κout = 20κ . The resilience of squeezing to
added losses is the consequence of the detuning of the squeezing
process: the broadening of the below-threshold modes associ-
ated with growing κout reduces the effective drive strength but
simultaneously reduces the loss-normalized detuning of the below-
threshold modes with respect to the pump modes. The detuning
thus acts as a “squeezing strength” reservoir, and the auxiliary
resonator enables the extraction of 10 dB of outcoupled squeezing
without increasing the pump power.

We have so far described the effect of the auxiliary resonator
while holding constant the power of the pump laser. Since, as noted
above, the auxiliary resonator stabilizes the soliton crystal state,
the state can be synthesized in the squeezing resonator at much
higher pump power to achieve squeezing levels limited by the
escape efficiency. We illustrate this in Fig. 5(c) for escape efficiency
η= 0.98 (κout = 50 κ), which corresponds to the outcoupling-
limited squeezing of≈ 17 dB in the waveguide. In this condition,
the soliton crystal may be captured with a 100 mW pump, over a
greatly extended detuning range. The outcoupled squeezing grows
steadily along the soliton crystal step (consistent with the growing
above-threshold comb power), asymptotically approaching the
outcoupling limit.

https://doi.org/10.6084/m9.figshare.22770401
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A few additional characteristics of the photonic molecule
architecture, as they pertain to the realization of a practical highly
squeezed multimode source, are worth noting.

Construction of the local oscillator. The photonic molecule con-
veniently separates the squeezed vacuum and the above-threshold
soliton crystal into separate waveguides. The latter may then be
manipulated independently of the squeezed light to construct the
local oscillator. Since the temporal bandwidth of the generated
squeezed vacuum matches closely that of the above-threshold
modes, the local oscillator may be readily generated by first electro-
optically interleaving [37] the above-threshold soliton crystal,
followed by pulse-shaping the resulting state to retain coherent
light with the phases and intensities corresponding to the desired
supermode. This process is illustrated in Fig. 5(a). The entirety
of the local oscillator preparation may be implemented on-chip,
with the recent advances in on-chip electro-optic frequency comb
generation [38], low-loss phase-shifting [39], and, if necessary,
amplification [40].

Squeezing bandwidth. While the above-threshold modes
have linewidths of the order of 100 MHz (enabling low-power
OPO and formation of the soliton crystal), the bandwidth of
the squeezed light is dictated by the total linewidth of the below-
threshold modes, and thus is magnified by a factor of κout/κ . The
photonic molecule thus may be used to generate squeezed light
of bandwidth potentially much greater than that of the squeezing
resonator [Fig. 5(d)]. The local oscillator compositions corre-
sponding to the maximum squeezing at ω= 0 in Fig. 5(d) are
shown in Fig. 5(e).

Fourier frequency of maximal squeezing. A local oscillator with
optimal squeezing may be prepared in the corresponding super-
mode as long as U(ω) is real. However, this is guaranteed only for
ω= 0. In the case where U(ω) is complex, a local oscillator station-
ary in the rotating frame cannot be used to measure the maximum
squeezing [23]. However, for κout� κ , maximum squeezing
shifts to ω= 0, because the loss-normalized system detunings are
reduced. This fortuitously renders the squeezing in the photonic
molecule configuration amenable to the straightforward local
oscillator measurement.

6. DISCUSSION

We have applied a multimode squeezing analysis to the 2-FSR
soliton crystal microcomb, which captures the essential multi-
mode features of the below-threshold state. We have considered
the simplest realistic configuration for soliton crystal formation.
Additional work must be done to analyze the effects of Raman
scattering [27,41] and higher-order dispersion on the squeezing
structure. Application of the squeezed supermode decomposition
to higher-order soliton crystal states (N circulating pulses) results
in N − 1 orthogonal supermodes for each quasi-HG order. For
instance, a 7-FSR crystal features six quasi-HG0 and six quasi-HG1

supermodes of nearly identical squeezing levels (see Supplement
1). Thus, the squeezing spectrum of a soliton crystal source can be
tailored beyond two prominent supermodes. However, the pattern
of symmetry breaking in the annihilation of higher-FSR soliton
crystals is expected to be qualitatively different, as multiple pulses
(and thus multiple decay pathways) are present.

To experimentally test the findings of this work, several tech-
niques may be applied. Measuring the evolution of second-order
photon correlations [13] across the step would validate the exist-
ence of the threshold process as well as the formation of twin

quantum combs. Ultrafast imaging [7] could be used to observe
the soliton crystal decay and potentially identify whether the
macroscopic state evolution reveals the distinction between
the annihilation of soliton crystals and non-crystallized multi-
soliton states. Finally, the photonic molecule device proposed
here for direct measurement of out-coupled squeezing can
be readily fabricated using current experimental capabilities
[8,13,24,31–33].

This study may also serve as a starting point for exploring
the process by which the linearized model breaks down. The
unbounded growth of twin quantum combs in a soliton crystal
transitioning to the single-soliton state is an unreconciled discon-
tinuity within the linearized model. The experimental observation
of this discontinuity may give insights into the quantum para-
metric processes in Kerr microcombs beyond the linearized
model [42].
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