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Spatial modes of light have become highly attractive to increase the dimension and, thereby,
security and information capacity in quantum key distribution (QKD). So far, only transverse
electric field components have been considered, while longitudinal polarization components have
remained neglected. Here, we present an approach to include all three spatial dimensions of electric
field oscillation in QKD by implementing our tunable, on-a-chip vector beam decoder (VBD). This
inversely designed device pioneers the “preparation” and “measurement” of three-dimensionally
polarized mutually unbiased basis states for high-dimensional (HD) QKD and paves the way for
the integration of HD QKD with spatial modes in multifunctional on-a-chip photonics platforms.

I. INTRODUCTION

Fueled by Big Data and artificial intelligence (AI),
there is an ever-increasing need for secure and high-
performance data processing capabilities. This demand
pushes the research on quantum computing as well as
cryptography, which take advantage of the physics of
light and quantum mechanics [1]. While quantum com-
puting could enable the desired fast and effective data
processing, it would also enable faster breaking of stan-
dard encryption. Quantum-based encryption such as
Quantum Key Distribution (QKD) tackles this issue:
QKD facilitates two parties to securely share a crypto-
graphic key, whereby the presence of an eavesdropper is
revealed by implementing fundamental laws of quantum
mechanics, namely, the no-cloning theorem [2].

The best-known QKD scheme may be the BB84 pro-
tocol, introduced by Bennett and Brassard in 1984 [3].
This prepare-and-measure protocol is based on using two
bases of mutually unbiased basis (MUB) states – by per-
forming a single measurement, the sent quantum state
cannot be fully identified if the encryption basis is un-
known. Nowadays, researchers aim to further improve
the performance of QKD, in particular, increasing the in-
formation capacity and transmission distances [4–7]. In
this context, high-dimensional (HD) QKD has attracted
considerable attention since for an increasing dimension
d the information capacity per photon as well as the error
threshold also increases [8–11]. Providing access to larger
dimensions by serving as MUB states, recently, in par-
ticular spatial modes of light have been of interest [12].
Orbital angular momentum (OAM) [13] as well as hybrid
polarization-OAM modes have been implemented in HD
QKD in free space, optical fibers, and underwater [14–20].
Besides increasing d, using spatial modes comes along
with the benefit of exploiting their inherent properties,
e.g. the ability to self-reconstruct upon perturbation [17].
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To efficiently implement spatial modes in QKD
schemes, appropriate techniques for “preparation” and
“measurement” of MUB states are required; in this
context, future commercialization demands, in particu-
lar, stable, compact, and robust tools. So far, mainly
bulky, complex techniques for encoding or decoding spa-
tial modes have been realized, using spatial light modula-
tors, digital mirror devices, combinations of q- and wave-
plates, or mode sorters [15, 17, 21–27]. In contrast, inte-
grated quantum photonics [1, 28] holds the potential of
miniaturizing and stabilizing encoding and decoding sys-
tems at low cost, scalability, and industrial compatibil-
ity. Additionally, on-a-chip prepare-and-measure devices
– QKD transmitters and receivers – could be included
in integrated platforms of multi-functionality, including
optical processing of data.

Pioneered by the implementation of SiO2-based optical
interferometers for time-bin QKD in 2004 [29], different
devices for time-bin as well as polarization-based QKD
have been successfully introduced [30–33]. The usage of
integrated photonics for HD QKD with spatial modes,
however, is still in its infancy. To date, researchers
proposed different integrated designs for the genera-
tion or detection of OAM modes and, more recently,
polarization-structured vector modes [34, 35] based on,
e.g., ring-resonators, metasurfaces, grating or inverse-
design structures [36–43]. However, most of these devices
are static and thus limited in terms of their accessible
modes and/or their implementation for HD QKD has not
been considered – partially because required MUB states
cannot be prepared/measured.

Proposing an integrated prepare-and-measure tool for
HD QKD based on scalar OAM and vector modes, we
present an inversely designed, tunable device, we term a
vector beam decoder (VBD). The VBD operates at the
crucial interface of on-a-chip sender/receiver devices and
free-space communication, thereby taking advantage of
compact, multifunctional, scalable, integrated photonic
platforms and satisfying the demand for long-distance
information transmission. Notably, the VBD does not
only enable the established HD QKD scheme which
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uses two-dimensionally (transversely) polarized spatial
modes; it represents the first device, to the best of our
knowledge, which facilitates the implementation of three-
dimensionally (3D) polarized MUB states for HD QKD.
The VBD prepares/ measures transverse as well as sig-
nificant longitudinal electric field components, unlock-
ing the still unexploited potential of 3D polarized spatial
modes for QKD.

In the following, we first outline the concept of im-
plementing spatial modes for HD QKD, in this case, 4D
QKD (Sec. II A). Subsequently, the tunable VBD is in-
troduced in a back-projection scheme – i.e. the VBD
becomes a vector beam emitter (VBE) – and we present
accessible 2D polarized MUB states in the form of scalar
OAM and vector modes (numerical results; Sec. II B).
Moving from 2D to 3D polarized MUB states, we ana-
lyze the compliance to the fundamental requirements for
MUB states, the mode quality, as well as the security
of the QKD scheme (Sec. II C). Finally, we discuss the
presented results (Sec. III).

II. RESULTS

A. Fundamentals on high-dimensional quantum
key distribution with spatial modes

Taking advantage of the fundamental laws of quantum
mechanics, quantum key distribution (QKD) allows two
parties, Alice and Bob, to securely exchange information
while being able to detect the presence of an eavesdrop-
per, Eve. In the QKD scheme of the BB84 protocol [3],
Alice and Bob unanimously agree on two orthonormal
information bases |Ψ〉 and |Φ〉; Alice and Bob randomly
select one of these bases to “prepare” (Alice) or “mea-
sure” (Bob) the sent photon. This principle is depicted
in Fig. 1a, where Alice and Bob interact each with one of
two entangled photons, generated by pumping a nonlin-
ear crystal (NC). While the first basis can be arbitrarily
chosen with states |Ψu〉, u = [1, d] ∈ N and dimension d,
the second basis must fulfill the condition:

|〈Ψu|Φv〉|2 =
1

d
, (1)

with v = [1, d] ∈ N. This condition ensures that |Ψ〉 and
|Φ〉 are mutually unbiased bases (MUB). This means,
when Alice randomly chose to sent her bits of informa-
tion in basis |Ψ〉 (|Φ〉), Bob detects the correct state
with unity probability for measuring in the same basis
〈Ψ| (〈Φ|), whereas he makes an ambiguous detection for
measuring in the other basis. The same applies for Eve’s
measurements, which ultimately reveals her presence.

Originally, the communication (“prepare-and-
measure”) protocol by Bennett and Brassard [3] is
based on implementing 2D polarization states; more
precisely, horizontal and vertical states (|Ψ〉) as well as
diagonal and antidiagonal states (|Φ〉) form the bases of
this 2D QKD approach (d = 2). To enhance the security

of the key generation process [10], we can increase the
dimension d by using the spatial degree of freedom
(DoF) of photons. For this high-dimensional (HD)
QKD, we implement spatial modes of light as MUB
states.

An exemplary set of states for bases |Ψ〉 and |Φ〉 is
shown in Fig. 1b for d = 4. In addition to the polarization
DoF, spanning a 2D Hilbert space, here, we take advan-
tage of the orbital angular momentum (OAM) DoF of a
photon to create a 4D Hilbert space [12]. OAM modes of
light are typically characterized by carrying a phase vor-
tex structure, represented by the phase factor exp(i`ϕ)
(ϕ ∈ [0, 2π]: polar angle in a cylindrical coordinate sys-
tem (r, ϕ, z)). Thereby, the topological charge ` describes
the number of 2π cycles of the transverse phase vortex
around the optical axis. The combination of the polariza-
tion DoF in the form of spin angular momentum (SAM),
i.e. right- (|R〉) and left-circular (|L〉) polarization, and
the OAM DoF with ` = ±1 allows us to realize the first,
so-called vector mode set [17, 25, 44]:

|Ψ00〉 =
1√
2
E0(r)[|R〉|`〉+ |L〉| − `〉],

|Ψ01〉 =
1√
2
E0(r)[|R〉|`〉 − |L〉| − `〉],

|Ψ10〉 =
1√
2
E0(r)[|L〉|`〉+ |R〉| − `〉],

|Ψ11〉 =
1√
2
E0(r)[|L〉|`〉 − |R〉| − `〉].

(2)

As illustrated in Fig. 1b (left), these modes impart spa-
tially varying linear polarization states in their transverse
plane (gray arrows) and a ring shaped intensity structure,
encoded in the amplitude E0(r). The set of MUB states
is given by [17, 25, 44]:

|Φ00〉 = E0(r)|D〉| − `〉,
|Φ01〉 = E0(r)|D〉|`〉,
|Φ10〉 = E0(r)|A〉| − `〉,
|Φ11〉 = E0(r)|A〉|`〉.

(3)

As depicted in Fig. 1b (right), these scalar modes are of a
homogeneous diagonal (|D〉) or antidiagonal (|A〉) linear
polarization (gray arrows) and carry a phase vortex of
positive or negative topological charge |`| = 1 (insets).

Per basis, each state corresponds to another bit of in-
formation, namely, 00, 01, 10, or 11, which Alice can pre-
pare to sent to Bob. Fig. 1c presents the ideal transfer
matrix for the communication between Alice and Bob for
implementing the spatial modes in Fig. 1b. It shows the
probability of Bob identifying the correct state sent by
Alice. If the preparation and measurement bases match,
Bob can unambiguously identify the sent state; for a mis-
match, Bob makes an ambiguous detection, measuring
the correct state only with a probability 1/d = 25%.

The key generation process for this 4D QKD approach
is sketched in Fig. 1d. Alice randomly selects a basis to



3

Δ�
p

re
p

a
re

00

01

10

11

Φ⟩Ψ⟩

00 01 10 11

Φ⟩

Ψ⟩

⟨Φ⟨Ψ
00 01 10 11

00

01

10

11

00

01

10

11

A
lic

e

1

0

Alice

---- -- --Key

Bit 

sequence
0101 11 00 01 0010 00

01 00 0010

Ψ Φ

Ψ Φ

Ψ

Ψ

Ψ

Ψ

Φ

Ψ Φ

Ψ

Φ

Ψ Φ

Ψ

a b

c d

�00 1

FIG. 1. The vector beam decoder (VBD) as an on-a-chip prepare-and-measure device for high-dimensional quantum key
distribution (QKD). (a) Schematic representation of the experimental system (APD: avalanche photo diode; NC: nonlinear
crystal; ∆α: adaptable relative phase shift; ∆E0: adaptable relative amplitude). (b) Mutually unbiased bases (MUB) |Ψ〉 and
|Φ〉 and their respective states, represented by spatial modes of light (|Ψ〉: vector modes; |Φ〉: scalar modes). (c) Transfer
matrix for communication between Alice and Bob. (d) Exemplary key generation process: Alice “prepares” her photons by
her VBD in randomly selected bases to encode a bit sequence; Bob “measures” the entangled photons by his VBD in likewise
randomly selected bases; bits sent in the same basis will be used as the key.

sent a bit sequence of length N to Bob; each information
bit corresponds to another scalar or vector state. Bob
chooses his measuring basis at random, too. At the end
of the transmission, Alice and Bob compare their bases
selection publicly via a classical communication channel
and discard bits measured in the instances of bases mis-
match. On average, Alice and Bob should be left with
N/2 information bits. However, if an eavesdropper is
present, these bit would contain errors induced by Eve’s
measurements. By publicly comparing a subset of the
sifted N/2 bits, Alice and Bob can reveal Eve’s presence,
estimate the induced error, and decide whether to pro-
ceed with the rest of the sifted key or discard it.

B. The tunable vector beam decoder as a
prepare-and-measure device

For HD QKD with spatial modes, Alice and Bob need
to apply a spatially resolved preparation/ measurement
technique, as indicated in Fig. 1a. Working at the topical
interface of free-space and integrated optical communi-
cation, we inversely designed a compact, integrated vec-
tor beam decoder (VBD) as “prepare-and-measure” tool.
This tool can decode, hence, prepare and measure the
spatial modes presented in Fig. 1b. To outline the work-

ing principle of the VBD, let us consider the QKD system
(Fig. 1a) in the case of classical back-projection [45]. For
classical back-projection, the NC is replaced by a mirror
and Alice’s detector (APD: avalanche photo diode) by a
classical light source. This source sends photons back-
wards through the VBD, thereby transforming it into a
tunable vector beam emitter (VBE; orange: phase-and-
amplitude modulators). The light field, which is emitted
orthogonally to the on-a-chip VBE, propagates to Bob,
after being reflected by the mirror in the NC plane. Bob
measure the light field by his VBD, detecting its output
by his APD.

The VBE is sketched in more detail in Fig. 2a, b. The
tunable VBE is comprised of an inversely designed cou-
pling region (Fig. 2a, red dashed box) with four input
waveguides A, B, C, and D, which combine into a single
single-mode waveguide (Fig. 2b, simplified sketch). Light
is coupled into the VBE by a coupling grating. The in-
versely designed region as well as waveguides and the cou-
pling grating are patterned into an air-clad 220 nm silicon
on insulator (details in Methods). When joining into the
inverse-design area, the waveguides of rectangular cross
section support a single mode of elliptical shape (green
dashed line/box) and, dependent on waveguide orienta-
tion, diagonal or antidiagonal linear polarization (gray
arrows). Each of the waveguide modes can be shifted
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FIG. 2. Generating MUB states by the VBD used as vector beam emitter (VBE) (classical back-projection approach). (a)
VBE with inverse design area (red dashed square) and its input waveguides A, B, C, and D. Linear polarization per waveguide
is indicated by a gray arrow; waveguide mode in green dashed plane (input C) is illustrated as an inset (green dashed box); the
output of the VBE propagates in the z-direction. (b) Sketch of tunable input waveguides with a coupling grating (bottom) as
well as phase-and-amplitude modulators (orange; ∆αA,B,C,D ∈ [0, 2π]; ∆E0; A,B,C,D ∈ [0, 1]). (c) MUB states of |Φ〉 generated

by input A, C, D, and B; top: (transverse) polarization ellipses on intensity | ~E|2 = |Φij |2 ∈ [0, 1], bottom: phase distribution
arg(Φij) ∈ [0, 2π], i, j = {0, 1}. (d) MUB states of |Ψ〉 realized by a combination of different input channels A-D, phase
shifts ∆αA-D, and amplitude adaptions by ∆E0; A-D. Per state, left to right: (transverse) polarization ellipses on intensity

| ~E|2 = |Ψij |2 ∈ [0, 1], i, j = {0, 1} and respective normalized Stokes parameters S1,2,3 ∈ [−1, 1].

in phase by ∆αA-D by electrically controlled gold (Au)
heaters (orange, Fig. 2b). By using Michelson interfer-
ometers (not sketched here; see Methods), we are also
able to control the relative amplitude ∆E0;A-D of the in-
put waveguides.

The VBE is designed in such a way that each of the
input waveguides A-D generates an output light field
~EA-D = [Ex, Ey, Ez]

T with its transverse components
~E⊥ = [Ex, Ey]T representing one of the four scalar MUB
states |Φij〉, i, j = {1, 0}. These output modes are pre-
sented in Fig. 2c (simulation), with the top row showing
the transverse polarization states (gray) upon the total

intensity | ~E|2 (normalized; grayscale) and the bottom
row depicting the respective transverse phase structure
arg(Φij) of (anti)diagonally polarized components.

The MUB states |Ψij〉 can be realized by using a combi-
nation of different input waveguides (A-D), phase shifts
∆αA-D, and amplitude adaptions ∆E0;A-D. Simplified,
this can be explained as follows: |R〉 ∝ |D〉 + i|A〉 and
|L〉 ∝ |D〉 − i|A〉. Hence, |R〉 and |L〉 polarized parts
of each vector state |Ψij〉 (Eq. (2)) can be formed by
combining two phase-shifted (∆α) orthogonally polarized
|Φij〉 states of equal topological charge `, i.e. two differ-
ent input waveguides are used. The tunable phase shifts
∆αA-D further enable us to combine newly formed |R〉
and |L〉 polarized parts according to Eq. (2). Amplitude
adaptions ∆E0;A-D can be used for normalization and
function as on-off switch per waveguide. Following this
principle, the vector modes |Ψij〉 in Fig. 2d (simulation)
can be formed. Per state, from left to right, we present

the transverse polarization (gray) upon the total inten-

sity | ~E|2 (normalized), and normalized Stokes parameters
S1,2,3 ∈ [−1, 1]. The Stokes parameters S1,2,3 represent
the amount of horizontal/vertical, diagonal/antidiagonal,
or right-/left-circular polarized components of a trans-
verse electric field, respectively. For vector modes of ba-
sis |Ψ〉, S1,2,3 highlight the spatial variation in transverse
polarization.

Clearly, the VBE supports the desired modes of light,
thus seem to fulfill the requirements for the outlined HD
QKD approach. To study the quality of these modes,
thereby analyzing the security of the respective key gen-
eration process, we will subsequently take a look at the
transfer matrix and selected security values. Also, the or-
thonormality and fundamental requirement of MUB will
be analyzed for the 3D electric field of the VBE/VBD.

C. From 2D to 3D polarized MUB states: mode
quality, security analysis, and 3D states

To quantify the security of the QKD approach based
on implementing the VBE (i.e. VBD in the quantum
system), we investigate the normalized transfer matrix T
(see Methods). To simultaneously determine the qual-
ity of realized MUBs |Ψij〉 and |Φij〉 (simulations), we
first assume Alice sends her bits using the inversely de-
signed VBE while Bob uses idealized modes 〈Ψij | and
〈Φij | following the complex conjugated Eqs. (2) and (3),
respectively. Thereby, E0(r)| ± `〉 is represented by a
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FIG. 3. Security analysis for the key generation by Alice and
Bob (classical back-projection) based on 2D and 3D polar-
ized MUB states. Transfer matrices for the cases that (a)
Bob’s measurement is idealized by using complex conjugated
Eqs. (2) and (3) as 2D decoding bases (Ez = 0 for 〈Ψ| and
〈Φ|), or (c) his measurement is performed by the VBD, tak-
ing the whole 3D electric field into account. (b) The intensity
|En|2 (normalized to the maximum of |Ex,y,z|2) and phase
φn, n = {x, y, z} per polarization component of |Ψij〉 or |Φij〉.

helical Laguerre-Gaussian (LG) mode [46, 47] of topolog-
ical charge ` = ±1 and radial index p = 1; its beam
waist is matched to Alice’s mode size. Note that, in this
case, Bob’s decoding basis is 2D polarized, hence, only
~E⊥ = [Ex, Ey]T of the VBE is considered for QKD and
analyzed for its mode quality.

In Fig. 3a we depict the normalized transfer matrix,
considering idealized MUB states for Bob’s measurement.
In Table I, we present the respective security values and
compare the quantum error rate Q, detection fidelity
F , the mutual information IAB between Alice and Bob,

Eve’s cloning fidelity FE , her mutual information IAE
with Alice, and the information capacity per photon R∆

in bits/photon to the ideal values in case of 4D QKD (de-
tails on security values are described in the Methods).

The top left and bottom right quadrant of the trans-
fer matrix (Fig. 3a) correspond to |〈Ψu|Ψv〉|2 and
|〈Φu|Φv〉|2, respectively, hence, allow imminent conclu-
sions about quality of the VBE’s MUB states and their
orthonormality per basis. For u = v (diagonal matrix
elements), matrix elements reveal the qualitatively good
match between Bob’s idealized 2D polarized decoding ba-
sis states and Alice’s states, realized by the VBE. For
u 6= v, values are close to zero, demonstrating the desired
unambiguity for measuring Alice’s states in the correct
basis. This observation is quantified in the quantum er-
ror rate Q = 0.057 and measurement fidelity F = 0.943,
being close to the ideal values of 0 and 1, respectively.
For measurements in the case of bases mismatch, i.e.
|〈Ψu|Φv〉|2 or |〈Φu|Ψv〉|2 (top right/ bottom left quad-
rant), the transfer matrix reveals small perturbations in
the probability values. Ideally, the value is 1/d = 0.25
(cf. Fig. 1c; Eq. (1)). Nevertheless, the slightly perturbed
transfer matrix allow us to calculate very convincing se-
curity values:

Dependent on Q, the amount of information that Al-
ice and Bob share in this QKD system, can be calcu-
lated, i.e. IAB = 1.594 bits per photon (ideal value is 2).
Eve’s cloning fidelity, i.e. her ability to copy a sent quan-
tum state, is quantified by FE = 0.479, reflecting the
perturbations observed in the transfer matrix. Impres-
sively, even though this value deviates from the ideal one
(0.25), the determined cloning fidelity is still lower than
the value in the standard 2D QKD case, i.e. F 2D

E = 0.5.
The associated mututal information shared between Al-
ice, using the VBE, and Eve is calculated as 0.239 (ideal
value is 0). Finally, the secret key rate R∆ of value 1.189
is above the Shannon limit of one bit per photon achiev-
able with qubit states and, thus, demonstrates the benefit
of implementing spatial modes by the VBE for realizing
HD QKD.

TABLE I. Security analysis of the QKD transfer matrices in
Fig. 3. The respective quantum error rateQ, detection fidelity
F , the mutual information IAB between Alice and Bob, Eve’s
cloning fidelity FE , her mutual information IAE with Alice,
and the information capacity per photon R∆ in bits/photon
is compared to the ideal values in case of 4D QKD.

Q F IAB FE IAE R∆

Ideal 0 1 2 0.25 0 2

Fig. 3a, 2D MUB 0.057 0.943 1.594 0.479 0.239 1.189

Fig. 3c, 3D MUB 0.004 0.996 1.957 0.306 0.018 1.914

Crucially, these security values can be improved even
further, becoming close to ideal, when considering the
whole 3D polarized electric field of the VBE. As pre-
sented in Fig. 3b (simulations), the modes emitted by the
VBE actually carry a significantly contributing longitu-
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dinally polarized component Ez. For each MUB state
of bases |Ψ〉 and |Φ〉, from left to right, we depict the

transverse polarization ~E⊥ = [Ex, Ey]T (gray) upon the

total field intensity | ~E|2 ∈ [0, 1] with ~E = [Ex, Ey, Ez]
T ,

and, per polarization component, its intensity contri-
bution |En|2 ∈ [0, 1] as well as its phase distribution
φn = arg(En) ∈ [0, 2π], n = {x, y, z}. The significance
of Ez is particularly visible for vector modes of basis |Ψ〉.
Note that, at the single-photon level, such as in the case
of the intended quantum experiment, each photon obvi-
ously only shows electric field oscillation perpendicular to
its propagation direction. Photons of 3D polarization can
be understood as photons propagating under an angle
with respect to the assigned optical axis (here: z-axis) of
the considered coordinate system. For transmitting pho-
tons of these modes in free space, a lens would perform
the task of bridging between non-paraxial (VBD/VBE)
and paraxial regime (free space) – without the loss of in-
formation. Following the typical implementation of spa-
tial modes in QKD, the prepare-and-measure plane (=
VBD plane) would be imaged onto the nonlinear crystal
plane (NC in Fig. 1a; mirror in classical back-projection).

Considering these additional polarization components
in the QKD approach, we determine the normalized
transfer matrix for Alice and Bob both using the
VBE/VBD; the matrix is presented in Fig. 3c. We use
this matrix to verify that the 3D polarized modes fulfill
the fundamental conditions for MUB states, and deter-
mine respective security values. Obviously, the matrix
shows less perturbations than in Fig. 3a, with particular
improvement in the matrix quadrants of basis mismatch
(top right, bottom left). Importantly, from these matrix
values (mean value 0.244 ≈ 1/d), we can conclude that
the condition in Eq. (1) is, on average, fulfilled for our 3D
polarized MUB states. Table I shows the calculated secu-
rity values for measuring with the VBD, thus, in case of
implementing the 3D polarized MUB states in the QKD
approach. Overall, the security values only insignificantly
deviate from the ideal values, proofing the quality and the
feasibility of the inversely designed VBE/VBD for HD
QKD. Further, these results present the first implemen-
tation of 3D polarized MUB states for HD QKD and,
simultaneously, the huge potential of this implementa-
tion.

III. DISCUSSION & CONCLUSION

The inversely designed, tunable VBE enables the
on-demand generation of scalar and vector modes of
light. Implemented as VBD, this integrated prepare-
and-measure device enables, for the first time to the
best of our knowledge, the implementation of 3D po-
larized MUB states for 4D QKD of very high security
(cf. Tab. I). The VBD was designed such that, for trans-
verse polarized components, it matches the set of known

vector and scalar modes, previously implemented for HD
QKD [17, 25] (Eqs. (3), (2)). By choosing to create an in-
tegrated, on-a-chip device that is oriented perpendicular
to the optical axis of incoming photons (z-axis ⊥ (x, z)-
plane), longitudinal electric field components take a sig-
nificant role. This choice allows us to create the new set
of 3D polarized MUB states.

As a compact, on-a-chip device, the VBD has the po-
tential to be implemented in future quantum photonic
integrated circuits [1, 28]. This topical area of research is
motivated by the scalability, stability, and multifunction-
ality of on-a-chip devices. In such a circuit, the VBD can
not only serve as a prepare-and-measure device for HD
QKD, but could also be used for optical quantum com-
munication with spatial-mode based multiplexing [23]. In
both cases, the VBD works at the crucial intersection of
free-space and on-chip communication. Although spatial
modes have proven beneficial for data multiplexing and
HD QKD, especially in free space, their implementation
within integrated circuits or optical fibers remains chal-
lenging. By combining the benefits of both, integrated
circuits and spatial modes of light, the designed VBD
bridges between free-space transmission and integrated
processing of optical data at the classical and quantum
level.

Standard optical decoding systems for spatial modes,
for QKD as well as for communication, only consider the
transverse electric field components of light as a valid ap-
proximation in the paraxial regime. However, the third,
longitudinal polarization component holds tremendous
untapped potential: they can enable completely new sets
of spatial modes for data encoding and, thereby, broaden
the spectrum of applicable modes. Also, similar to OAM,
z-components and their properties might be considered
as an additional DoF of photons, with respect to which
quantum superposition states can be formed. To facili-
tate these exciting future direction of implementing 3D
fields, we require encoding as well as decoding devices for
classical as well as quantum optics, which can handle 3D
polarized light – the VBD/VBE represents the first tool
of this kind.
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METHODS

A. Representation of MUB states by Laguerre-Gaussian modes

The 2D polarized MUB states (scalar and vector modes) in Sec. II A and Eqs. (2), (3) can be described as a
superposition of helical Laguerre-Gaussian modes LGp,`. These modes represent exact analytical solutions to the
paraxial wave equation in polar coordinates (r, ϕ, z) with its complex amplitude [46, 47]:

LGp,`(r, ϕ, z) = Ap,`(r, z) · ei kr2

2R(z) · eiφG
p,l(z) · ei`ϕ, and (4)

Ap,`(r, z) =

√
2p!

π(|`|+ p)!
· 1

w(z)
· e−

rR2

w2(z) ·

(
r
√

2

w(z)

)|`|
· L|`|p

(
2r2

w2(z)

)
, (5)

φGp,`(z) = (2p+ |`|+ 1)φG0,0(z) (6)

(p ∈ N0: radial mode number, k: wave number, R(z): wave front curvature, w(z): beam radius, w0 = w(0): beam
waist). L`p(·) represents the eponymous Laguerre polynomial [46, 47], and φGp,` the Gouy phase shift of LG modes (φG0,0:

Gouy phase of fundamental Gaussian beam). In the context of this work, we consider E0(r)| ± `〉 = LGp=0,±`(z = 0).
For this assumption, vector modes Eq. (2) are also known as cylindrical vector beams [34].

B. Inverse design of the VBD

We use adjoint optimized photonics inverse design to create the VBE, which can be implemented as VBD. For
the design, we aim for the MUB states of Eqs. (2) and (3) to be formed in the transverse electric field components
~E⊥ = [Ex, Ey]T of the VBE emission. For this purpose, we assume the MUB states to be composed of LG modes
LGp=0,±` (see above). We optimize an emitter structure that takes a waveguide mode (lowest-order TE mode) as
input and creates a beam out of the emitter plane ((x, y)-plane) which maximally overlaps with the desired electric
field in free space. For realizing all MUB states with the same emitter structure, we assume four input waveguides
with each of them resulting in one of the four |Φ〉 states as output. By implementing phase and amplitude modulation
per waveguide, these four output modes also allow us to create all MUB states of basis |Ψ〉.

The emitter structure is 220 nm thick, is 3× 3 µm in transverse size (Fig. 2a, red dashed box), and has 1.5 µm wide
input waveguides. By an adjoint optimization approach, we efficiently calculate the optimization gradients at every
point with only two simulations [48, 49]. Thereby, we maximize the overlap of the output field and the wanted MUB
mode, i.e.

max
ε
|~c † ~e(ε)|2. (7)

Here, ~c is the vectorized electric field of the desired MUB state and ~e(ε) represents the vectorized electric field due to
the designed-permitted distribution. The starting condition was a circle of radius 1.5 µm to best support cylindrical
symmetric LG modes. The resulting emitter structure is shown in Fig. 2a.

C. Fabrication design for a tunable VBE

To enable the tunable performance of the VBE/VBD, we incorporate phase and amplitude modulation per waveg-
uide A, B, C, and D. For this purpose, waveguides form Michelson interferometers on the device chip; per waveguide,
i.e. interferometer “arm”, the relative phase can be dynamically adapted between 0 and 2π by gold (Au) heaters,
placed next to each waveguide. The heaters allow a local refractive index change in the respective waveguide, resulting
in a phase retardation for the transmitted light. For functioning as the VBE, light can be coupled into the device by
a coupling grating at a joint input waveguide (cf. sketch in Fig. 2b). The grating is designed according to ref. [50].

D. Calculation of security values

The security analysis [10, 12] is performed from the transfer matrix T , with its four quadrants being described by:

T =

(
|〈ΨBob

u |Û |ΨAlice
v 〉|2 |〈ΨBob

u |Û |ΦAlice
v 〉|2

|〈ΦBob
u |Û |ΨAlice

v 〉|2 |〈ΦBob
u |Û |ΦAlice

v 〉|2

)
, u, v = {00, 01, 10, 11}. (8)
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Here, the operator Û represents the communication channel, through which Alice sents her states to Bob. In the frame
of this work, we assume an idealized channel with Û = 1. For determined matrices (Fig. 3a,b), each row m = {1, .., 8}
is normalized by the sum of |〈ΨBob

u |ΨAlice
m 〉|2 or |〈ΦBob

u |ΦAlice
m 〉|2 values, respectively.

The transfer matrix components allow us to determine the quantum error rate Q as the mean of:

QΨ = 1− 1

2

2∑
i=1

|〈ΨBob
i |ΨAlice

i 〉|2, (9)

QΦ = 1− 1

2

2∑
i=1

|〈ΦBob
i ΦAlice

i 〉|2, (10)

with the second term representing the measurement fidelity F . Based on Q (F ) and the dimension d (here, d = 4),
we can calculate further security values [10], such as the mutual information between Alice and Bob, i.e.:

IAB(d,Q) = log2(d) + (1−Q) log2(1−Q) + (Q) log2

(
Q

d− 1

)
. (11)

Noticeably, more information can be packed into every single photon with increasing dimension d. The choice of
dimension as well as the quantum error rate Q of the system also affect the eavesdropper cloning fidelity:

FE(d,Q) =
1

d

(
1 + (d− 2)Q+ 2

√
(d− 1)Q(1−Q)

)
. (12)

The respective mutual information shared between Alice and Eve is given by:

IAE(d,Q) = log2(d) + (FE −Q) log2

(
FE −Q
1−Q

)
+ (1− FE) log2

(
1− FE

(d− 1)(1−Q)

)
. (13)

For a two bases protocol (|Ψ〉 and |Φ〉) in higher dimensions, the secret key rate is described by [51]:

R∆(d,Q) = log2(d) + 2(1−Q) log2(1−Q) + 2Q log2

(
Q

d− 1

)
. (14)

E. Transfer matrix determination

To determine the transfer matrix of the proposed QKD system, classical back-projection is implemented (see
Results). This means, that Alice uses the VBD as VBE and Bob measures sent states by the VBD or idealized
complex conjugated MUB states (see Results). Numerically, we determine probability values in Eq. (8) by calculating
the scalar product of sent and measured states (electric fields are represented by matrices) and performing a 2D Fourier
transformation (2D FFT). Experimentally, the state sent by Alice would first be collected by a high-numerical-aperture
(high-NA) lens or objective and imaged onto the mirror in the NC plane. Next, the light field is imaged onto the
decoding plane. For decoding, idealized 〈Ψ| and 〈Φ| can be implemented by using a combination of q- [52] and wave
plates [17, 23]; subsequently, a lens performs the required Fourier transformation, such that, in the lens focus observed
on a detector, the on-axis intensity value is proportional to the probability value (= matrix component of T ). Taking
advantage of the 3D polarized MUB states, Bob would use the VBD which is placed in the image plane of Alice’s
VBE, i.e. the NC plane. The VBD is connected to a single-mode fiber (see Fig. 1a), guiding its output to the detector
(APD).
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