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Abstract

Kerr soliton microcombs are phase-locked frequency combs generated in a microresonator via a

third-order optical nonlinearity. Since their first demonstration in 2014 [1], soliton microcombs have

found applications in spectroscopy [2], LiDAR [3], communications [4], and convolutional processing

[5]. Experimental studies of soliton microcombs have also revealed a wealth of interesting nonlinear

dynamics [6, 7, 8, 9], and fundamental research on the classical dynamics continues to-date.

This thesis is divided into two parts: (I) the modeling and experimental observation of quantum

processes in multimode nonlinear photonics; and (II) the engineering of silicon carbide-on-insulator

(SiCOI) integrated photonics for nonlinear and quantum technologies. Part I is general to all Kerr

integrated photonics platforms. However, in experimental realizations, the choice of photonics plat-

form matters, not only because of a variation among materials in the raw strength of the nonlinearity

but also because of additional properties that influence device engineering and ultimate performance.

The development of the SiCOI nonlinear photonics platform enabled the experimental quantum op-

tics demonstrations of this thesis, and will be the focus of Part II.
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5.1 Timeline of SiC photonics development. First demonstration of SiC photonic

device using the Smart Cut approach with 6H-SiC [11]. Soon after, suspended res-

onators in 3C-SiC-on-Si were demonstrated [12]. Strong intrinsic absorption of low

quality Smart Cut and heteroepitaxial 3C films was hypothesized to limit the achiev-

able Q-factors. Using thicker 3C-SiC epilayers or thinning down bulk-crystal 4H-SiC,

enabled record Q factors in 3C-SiC [13, 14], ultra-high Q PhCs [15], and low-loss

4H-SiC-on-Insulator waveguides [16]. Recently, devices with Q factors exceeding 106

were shown, enabling the demonstration of optical parametric oscillation and micro-

comb formation [10]. This figure is reprinted from Ref. [17]: individual figures are

reproduced from [11, 12, 14, 15, 16, 10] . . . . . . . . . . . . . . . . . . . . . . . . . . 62
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1555 nm is converted to a TM20 mode at 777.5 nm, and coupled out via a single-mode,

e↵ective index-matched waveguide. Inset: Optical image of the second-harmonic out-

coupled via an inverse-designed vertical coupler (ring outline is overlaid for clarity).

b Numerical simulation of the phase-matching condition for the 1555 nm TE00 and

the 777.5 nm TM20 modes, demonstrating mode-matching for a waveguide width of

560 nm. Insets: Simulated mode profiles. c Dependence of second-harmonic power

in the output waveguide on the pump power in the input waveguide. A quadratic

fit reveals a conversion e�ciency of 360% W�1. Inset: The second-harmonic signal

imaged on a spectrometer, where linewidth is spectrometer-limited. . . . . . . . . . . 65

6.2 Potential for two-layer heterogeneous integration. A conceptual diagram
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7.1 Microring resonators and inverse-designed vertical couplers in 4H-SiC-

on-insulator. (a) A scanning electron micrograph (SEM) of two SiC microring res-

onators (false-colored) with diameters of 55 µm and 100 µm before SiO2 encapsulation.

(b) A schematic of the device cross-section after SiO2 encapsulation. (c) Transmission

spectrum of a ring with diameter 100 µm, width 3.0 µm, and height 530 nm, around
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wavelength is relative to 1532 nm. (d) A close-up SEM image of the inverse-designed

vertical coupler, highlighted in (a). The coupler converts a near-di↵raction-limited

free-space Gaussian beam (focused via a 50x objective with NA = 0.5) into the funda-

mental waveguide mode. (e) Camera image of the coupler operating at peak e�ciency,

showing little back-reflection from the input coupler, and a nearly-Gaussian beam at

the output. (f) We measure the single-mode coupling e�ciency to be 31% at the

target wavelength of 1550 nm, in close agreement with finite-di↵erence time domain

(FDTD) simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.2 Measurement of the intrinsic loss of 4H-SiC. (a) Diagram of the PCI measure-
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soliton spectral shape. Simulation (red) of the soliton frequency comb. . . . . . . . . 73
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8.3 Sub-mW parametric oscillation threshold power (a) SiC parametric oscillation

induced by pumping at the wavelength of 1553.3 nm. Top panel shows OPO just above

the threshold power (510 µW total power in the waveguide). Middle and lower panels

show measured optical spectra with loaded pump power of approximately 570 and

600 µW, respectively. (b) High-resolution scan of the fundamental TE mode with

a loaded (intrinsic) quality factor of 3.19 (5.61) million. The mode is seen to be

nearly critically-coupled to the waveguide. The scan laser wavelength is calibrated

using a wavemeter, and the red curve is a fit to a Fano lineshape. The asymmetry of

the resonance shape is attributed to interference with back-reflection of the vertical
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Chapter 1

Introduction

The primary motivation of this Dissertation has been to explore the fundamental quantum properties

of dissipative Kerr solitons (DKS) – self-assembled optical pulses in Kerr resonators driven by a

continuous-wave laser source. While the topic may seem to be quite narrow in application, I would

argue that it is more general than it first appears. Mathematically, the DKS state is a stationary

solution of a nonlinear Schrödinger equation with dissipation, drive, and detuning: the implications

of this work on Kerr resonator systems also extend to many nonlinear systems beyond nonlinear

integrated photonics. For example, while we primarily consider temporal solitons born from the

balance of the Kerr e↵ect with dispersion, the initial drive behind formulating the Lugiato-Lefever

equation (Eq. 1.1) was to describe spatial cavity solitons born from the nonlinearity balancing

di↵raction [20]. As we will see the Kerr microring resonator is a natural candidate to begin the

experimental observation of the coupling of quantum fluctuations and nonlinear spatial/temporal

structures.

The optical soliton is an optical field which remains unchanged with propagation, through balance

of linear and nonlinear e↵ects of the medium. As described above, the two classes are spatial

and temporal solitons, where the nonlinearity balances di↵raction or dispersion, respectively: this

highlights the space-time analogy of nonlinear optics [21]. Both are solutions of the nonlinear

Schrödinger equation. The nonlinear wave equation to describe a pulse with slowly-varying field

amplitude A(z, t) in distance z and time t propagating in a nonlinear medium, in the reference

frame moving with the group velocity, is written:

@A(z, t)

@z
= �ig0|A(z, t)|2A(z, t)� i

�2

2

@
2
A(z, t)

@t2
(1.1)

where g0 is the nonlinear strength of the medium and �2 represents the dispersion. The first

experimental report of an optical soliton was in 1980 at Bell laboratories [22], where the authors

observed soliton behavior of picosecond pulses sent through 700 m-long single-mode silica fiber,

2



CHAPTER 1. INTRODUCTION 3

Figure 1.1: The system under study. A ring resonator composed of a third-order nonlinear (�(3))
medium is used to generate solitons from a continuous-wave pump, injected via evanescent coupling
of a bus waveguide. Bottom: A pictorial representation of the spectral composition of the pump
(left) and output soliton (right). The round-trip time of the soliton pulse in the resonator is given
by the inverse of the repetition rate frep of the output train of pulses.

enabled by advances in optical fiber and mode-locked laser technologies. Looking at Eq. 1.1, the

existence of solitons is not surprising. For Kerr media, the nonlinearity g0 is positive. This term,

known as self-phase modulation, describes an intensity-dependent refractive index and thus a time-

varying refractive index for the pulse. The e↵ect is that lower frequencies shift to the leading edge of

the pulse, whereas higher frequencies shift to the back. If the dispersion �2 is positive (anomalous),

then the opposite e↵ect is observed, and the two e↵ects will balance.

What is remarkable, however, is the spontaneous formation of soliton pulses from an initial optical

state which is continuous wave. Consider taking the same Kerr fiber and wrapping it on itself to form

a ring resonator (Fig. 1.1), with access through an evanescently-coupled bus waveguide. The model

for this system is a modification of Eq. 1.1 via the addition of dissipation () and monochromatic

drive (F ), which may have a detuning (�):

@A

@t
= �(

2
+ i�)A� ig0|A|2A� i

D2

2

@
2
A

@✓2
+ F (1.2)

Here the spatial coordinate is the azimuthal angle ✓. The switching of time and position from Eq. 1.1

is a manifestation of the application of a periodic boundary condition for each roundtrip [23]. This

equation is known as the Lugiato-Lefever equation. The key feature is the pattern formation from a

uniform pump, which requires symmetry breaking. As we will see, the necessary symmetry breaking

occurs because of the quantum fluctuations which underlie the transition from spontaneous pair

generation to a dominance of stimulated pair generation via the optical nonlinearity.
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The optical mean field of the Kerr frequency comb (i.e., the “classical” comb) has been modeled

with great success by the Lugiato-Lefever equation (LLE), and the most commonly studied config-

uration is that where a single coherent pump laser (drive F in Eq. 1.2) supplies parametric gain

to populate the comb lines through stimulated four-wave mixing [24]. Note that spontaneous light

generation is absent from the model; in order to seed threshold processes such as optical parametric

oscillation (OPO), random noise must be added into every optical mode. Thus, the LLE can reveal

neither the properties of the quantum state of the comb, nor the coherent dynamics of the threshold

processes that drive the formation of the comb itself.

In Part I, we will show that soliton microcombs provide an excellent system for study of multi-

mode quantum optics: (i) They provide a highly-multimode equidistant phase-locked comb (time-

independent drive) which precisely balances dispersion in the resonator. (ii) They feature rich

nonlinear dynamics, with many di↵erent types of states and switching behaviors. Study of their

quantum properties can actually reveal physics of their classical nonlinear dynamics. (iii) Technolo-

gies for soliton capture, stabilization, and imaging are very well-developed since the first discovery

in 2014. Since the LLE on its own does not consider nor has the capability to include quantum

dynamics, it must be extended. We introduce a model, based on linearization of the full quartic

Hamiltonian, which we use to to study quantum fluctuations in the DKS itself as well as in the

states leading up to DKS formation.

In the second chapter in the thesis, we start by writing the linearized model for the below-

threshold quantum comb in a Kerr microresonator with a monochromatic pump. This system

is convenient because its symmetry allows for simplicity while still showing how the multimode

parameters in the comb influence the measurable properties. We will show the theoretical prediction

for two-photon correlations and quadrature squeezing, how they are a↵ected by dispersion, mode

crossings, and other parameters. In the third chapter of the thesis, we will describe the full linearized

model for the soliton microcomb and the photon correlation measurement that we used to validate

it. In the fourth chapter of the thesis, we discuss theoretical predictions for quadrature squeezing in

the soliton microcomb and its stages of formation.

In some sections of this Part I of the thesis, we will be including some general derivations

related to fundamental quantum optics, which may be found elsewhere in the literature, usually in

pedagogical context. I hope that the inclusion of such derivations will serve as a starting point for

those who wish to learn about the field.



Chapter 2

Below-threshold quantum comb

Before studying the quantum fluctuations that exist within the dissipative Kerr soliton, we will start

by building up the multimode formalism in a simpler system by describing the quantum fluctuations

within a signal-idler quantum comb [25] . The signal-idler quantum comb is the output quantum

optical field of a system where a monochromatic pump laser couples to a single mode of a Kerr

microring in the regime below the optical parametric oscillation threshold. In this regime, entangled

photon pairs are spontaneously generated in pairs of resonator modes. To-date, this system has

received perhaps the most attention in integrated quantum optics, as it (i) enables parallelized

generation of entangled pairs [26] or single photon sources [27], which has direct applications to

quantum technologies; and (ii) is readily modeled (modes are only coupled pair-wise and are simple

to analyze) and experimentally generated (no stringent device requirements to sustain a below-

threshold comb). In this chapter, I begin by applying the multimode linearized quantum model to

this simple case, with both analytic expressions and generalized numeric solver that, in subsequent

chapters, will be applied to the full multimode quantum system that describes solitons. I then

compare the theory to experimentally-observed two-photon correlations.

The nonlinear optics process that underlies Kerr comb formation is four-wave mixing (FWM) via

the third-order optical nonlinearity �(3): one pair of photons is created while another is destroyed.

This process obeys energy conservation and requires phase-matching. This is to say that if a pair of

photons is destroyed with frequencies !a and !b, then two photons labeled c and d will be created

at frequencies which obey the following equation: !a + !b = !c + !d. In the microring resonator,

we consider conservation of angular momentum for the phase-matching condition, which simplifies

to an azimuthal mode number matching condition: ma +mb = mc +md. The nonlinearity, mode

volume, and mode overlap will determine the nonlinear coupling rate between the photons. However,

for interactions between modes of the same transverse mode family with similar frequencies, we can

consider the mode overlap to be near-unity (see Chapter 6 for a case where conversion happens

between di↵erent transverse modes).

5
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Figure 2.1: Schematic of the ring resonator and its input waveguide. The pump power in
the waveguide is Pwg, which couples to the resonator with rate c. Azimuthal modes in the same
transverse mode family are separated in frequency and defined by their azimuthal mode number µ.
The pump is injected into mode labeled µ = 0 henceforth, with frequency detuning of �p. In the
absence of dispersion, the modes are separated by a fixed frequency which is the free-spectral range
of the resonator.

2.1 Monochromatic drive of a Kerr microring

We consider a single transverse mode family, where each azimuthal mode in the family is defined by

its azimuthal mode number µ with optical frequency !µ. Each mode is associated with an energy

decay rate µ which is related to the quality factor by Q = !µ/µ. For simplicity, we center the

mode indexing µ around the pumped mode â0. Considering the four-wave mixing conditions above,

we see that two photons will be destroyed from the pump modes to create pairs of photons only

within the modes symmetric around the pump (Fig. 2.2). Thus the symmetric cavity modes âµ and

â�µ are populated by parametric gain from the pump:

H0 =
X

µ

h
!µâ

†
µ
âµ + g0(â

†2
0 âµâ�µ + h.c.)

i
+Hp (2.1)

where Hp is the Hamiltonian for the coherent drive and g0 is the nonlinear coupling strength which

is inversely proportional to the e↵ective mode volume Ve↵:

g0 =
~!2

p
cn2

n
2
0Ve↵

,
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Figure 2.2: Schematic of the signal-idler quantum comb. A monochromatic drive at azimuthal
mode µ = 0 drives pair generation in the symmetric modes. The intracavity pump mode amplitude
is A0 and g0 is the nonlinearity. In this schematic, linearization of the system has been applied
(Section 2.3). As we will see in Section 2.5, the dispersion of the modes around the pump will
influence the linewidth and intensity of pair generation in the below-threshold lines.

where n2 is the Kerr refractive index and n0 is the linear refractive index. The coherent drive is

parametrized by the amplitude of the pump Ap and the pump frequency !p,

Hp = Apâ0e
�i!pt + h.c. (2.2)

The amplitude of the drive field relates to the waveguide input power via the relation between

intracavity amplitude and input/output power:

Ap =

s
cPwg

~!p

Here, c is the coupling rate of the cavity to the input waveguide and Pwg is the power in the input

waveguide. We define the detuning of the pump from its resonance as �p = !0 � !p, an important

parameter experimentally for accessing di↵erent Kerr comb states.

Although in experimental systems mode frequencies feature some spectral disorder due to mode

mixing and geometric imperfections, the dispersion of the modes is typically dominated by lower

orders of the Taylor expansion, which largely determine the system behavior. So, we write optical

resonance frequencies !µ as a Taylor series around the pump mode !0:

!µ = !0 +
X

n=1

1

n!
Dnµ

n (2.3)

Imposing the mode number matching condition ma + mb = mc + md, we had in e↵ect made a

rotating wave approximation, assuming that the free spectral range greatly exceeds dispersion and

cavity linewidth. In this regime, it is convenient to move into the reference frame obtained via the
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unitary transformation using Û(t) = e
iR̂t where R̂ =

P
µ
(!p + D1µ)â†µâµ. Using the definition

�µ = !µ � !p �D1µ, This allows us to re-write our eq. (2.1) Hamiltonian as

H0 =
X

µ

h
�µâ

†
µ
âµ + g0(â

†2
0 âµâ�µ + h.c.)

i
+ (Apâ0 + h.c.)

One can see that as a result of the term D1µ in R̂, D1 is eliminated from all terms in the

Hamiltonian via the mode matching condition. The energy o↵set by !p removes the explicit time

dependence from the pump drive.

2.2 Coupling to the bath: the input-output formalism

Here we present a derivation of the input-output relations for open quantum systems, a powerful

technique to relate the change of the field scattered o↵ a quantum system to the system itself [28, 29].

To describe the open system where the resonator modes experience loss, we allow our cavity modes

to couple to a continuum of harmonic oscillators [30], which we call the bath. To see how the bath

influences the Heisenberg equations, we start by considering the Hamiltonian of a single uncoupled

cavity mode:

H = !0a
†
a+

Z 1

�1
!b

†(!)b(!)d! +

Z 1

�1
[�a†b(!) + �

⇤
b
†(!)a]d! (2.4)

where !0 is the resonant frequency of the cavity mode with annihilation operator a, b(!) is the

annihilation operator of the bath mode at frequency !, and � is the coupling rate between them.

The relevant commutation relations are [a, a†] = 1, [b(!), b(!)†] = �(! � !0), and [a, b(!)] = 0. The

Heisenberg equations of motion are:

da(t)

dt
= �i[â, Ĥ] = �i!0a(t)� i�

Z 1

�1
b(!, t)d!

db(!, t)

dt
= �i[b̂(!), Ĥ] = �i!b(!, t)� i�

⇤
a(t)

Integrating the second equation, we obtain:

b(!, t) = b(!, 0)e�i!t � i�
⇤
Z

t

0
a(⌧)e�i!(t�⌧)

d⌧ (2.5)

We can then solve the second term of the first equation

Z 1

�1
b(!, t)d! =

Z 1

�1
b(!, 0)e�i!t

d! � i�
⇤

2
a(t)

where we have used Z 1

�1
e
�i!(t�⌧)

d! = 2⇡�(t� ⌧)
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Z
t

0
2⇡a(⌧)�(t� ⌧)d⌧ = ⇡a(t)

We can define the input operator

bin(t) =
1

2⇡

Z 1

�1
b0(!)e

�i!t
d!

which depends entirely on the state of the bath at t = 0. We arrive at the following equation of

motion for the cavity operator:

da(t)

dt
= �i!0a(t)� ⇡|�|2a(t)� i

p
2⇡�bin(t)

We can define /2 = ⇡|�|2 as the amplitude decay rate of the cavity mode, and arrive at the final

expression
da(t)

dt
= �i!0a(t)�



2
a(t)� i

p
bin(t)

which highlights the di↵erence in units between the cavity operator and the bath operator. This

energy decay rate  is related to the quality factor via Q = !0/, where  would be measured as the

full width half maximum of the Lorentzian resonance. While the emergence of the term �a(t)/2
is identical to the classical coupled mode equations, the term bin(t) is not present in the classical

picture: it represents the Langevin noise operator, necessary for the Heisenberg equations to be

consistent with a unitary evolution under the system Hamiltonian. This term describes the impact

of bath mode vacuum fluctuations on the dynamics of the cavity.

2.3 Linearization

To include the coupling to the bath, our full Hamiltonian is written

H = H0 +Hbath + V

where

Hbath =
X

µ

Z
!b̂

†
µ
(!)b̂µ(!)d! (2.6)

with a bath-coupling Hamiltonian

V =
X

µ

r
µ

2⇡

Z
â
†
µ
b̂µ(!)d! (2.7)
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where µ is the total loss rate for cavity mode µ. Note that here we have written coupling to a

single bath, but in realistic systems at least two baths must be considered (waveguide coupling and

free-space losses, Chapter 4).

Equation 2.1 is fourth-order and would render cubic operator evolution equations. If, instead,

the eq. 2.1 were to be transformed into a quadratic one, it would render a linear system of equations.

Fortuitously, we can perform this transformation for a Kerr system where the dominant quantum

e↵ects comprise interaction of two strong pump field photons with two quantum modes. This

is the crux of linearization. To linearize a system, we write a formal separation of the optical

state into the mean field solution (assumed to be a coherent state) and the quantum fluctuations:

âµ(t)! Aµ(t)+ âµ(t), where Aµ(t) is the complex amplitude of the coherent state inside the cavity.

We only consider quantum fluctuation terms which are quadratic in the strong mean-field of the

pump

dâµ(t)

dt
=


� i(�µ � 2g0|A0|2)�

µ

2

�
âµ(t)

+ ig0A
2
0â

†
�µ

(t)�pµb̂in,µ(t).

This example illustrates how a system of two modes (µ,�µ) driven by a coherently-pumped mode

µ = 0 has been transformed into a two-mode system by eliminating the pump mode from the

quantum space. As will become important in the next chapter, we are now free to solve for the

classical field A0 using the classical coupled mode equation

dA0(t)

dt
=


� i(�p � g0|A0|2)�

0

2

�
A0(t) +Ap,

thus tying together classical and quantum pictures.

2.4 Multimode input-output equations

So far we have considered only two (i.e., signal, idler) modes pumped by a single coherent pump.

We extend the treatment to a general multimode system as follows. Each bath-cavity mode pair has

an associated input-output relation:

b̂out,µ(t) = b̂in,µ(t)� i
p
µâµ(t) (2.8)
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We define the following 2n-dimensional vectors describing n quantummodes in the frequency domain:

ā(!) =

2

666666666664

â1(!)
...

ân(!)

â
†
1(�!)
...

â
†
n
(�!)

3

777777777775

b̄in(!) =

2

666666666664

b̂in,1(!)
...

b̂in,n(!)

b̂
†
in,1(�!)

...

b̂
†
in,n(�!)

3

777777777775

b̄out(!) =

2

666666666664

b̂out,1(!)
...

b̂out,n(!)

b̂
†
out,1(�!)

...

b̂
†
out,n(�!)

3

777777777775

(2.9)

We can define a matrix N(!) from our coupled mode equations relating the output fluctuations to

the input fluctuations:

b̄out(!) = N(!)b̄in(!) (2.10)

which can also be written explicitly as

b̂out,µ(!) =
nX

k=1

h
Nµ,k(!)b̂in,k(!) +Nµ,k+n(!)b̂

†
in,k(�!)

i

2.5 Photon correlations below threshold

Although throughout most of this thesis we will be relying on numerical methods to solve general

multimode systems, we begin with a symmetric Hamiltonian of a two-mode system to obtain some

analytic results which will provide insight into the full system. Here, we can derive simple analytic

expressions for expectation values of the photon correlations in the signal-idler pair generation

process. We only consider interactions between pairs of modes (�µ, +µ) centered around the pump.

For this analysis, we choose D1 = (!+ � !�)/2µ for which �+ = �� = �.

Ĥ0 = �(â†�â� + â
†
+â+) + ig(â�â+ � â

†
�â

†
+) (2.11)

where g = g0|A0|2, which includes both the Kerr coupling strength and the intensity in the pumped

cavity mode. Assuming + = � = , the Heisenberg equations read

dâ±(t)

dt
= �

✓
i� +



2

◆
â±(t)� gâ

†
⌥(t)� i

p
b̂in,±(t) (2.12)
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which gives us the following matrix N(!) in Fourier space:

N(!) =

0

BBBBB@

1 + (/2�i(�+!))
(g2��2)�(/2�i!)2

0 0 g
(g2��2)�(/2�i!)2

0 1 + (/2�i(�+!))
(g2��2)�(/2�i!)2

g
(g2��2)�(/2�i!)2

0

0 g
(g2��2)�(/2�i!)2

1 + (/2+i(��!))
(g2��2)�(/2�i!)2

0
g

(g2��2)�(/2�i!)2
0 0 1 + (/2+i(��!))

(g2��2)�(/2�i!)2

1

CCCCCA

We can calculate the pair generation rate

R±(t) =
D
b̂
†
out,±(t)b̂out,±(t)

E

where expectation value is taken with respect to the initial vacuum state. The expectation value is

computed by applying the commutation relations

D
b̂in,i(!)b̂

†
in,j(!

0)
E
= �ij�(! � !0)

D
b̂
†
in,i(!)b̂in,j(!

0)
E
= 0

First we solve for a single application of the output operator:

b̂out,+(t) |0i =
1p
2⇡

Z 1

�1
e
�i!t

d!N14(!)b̂
†
in,�(�!) |0i

Then the full expectation value is given by:

R+(t) =
1

2⇡

Z Z
e
�i(!�⌫)t

N
⇤
14(⌫)N14(!)

D
b̂in,�(�⌫)b̂†in,�(�!)

E
d!d⌫

=
1

2⇡

Z 1

�1
|N14(!)|2d!

R� =
1

2⇡

Z 1

�1
|N23(!)|2d!

where it is clear that R+ = R�. This term integrates to

R± =
g
2(/2)

(/2)2 � (g2 � �2) (2.13)

It is important to remember that we have tucked all detunings into the parameter �, including

the cross-phase modulation induced by the pump which also depends on g. In the practical system

where we assume higher order dispersion is negligible, � = �p +
D2
2 µ

2
±� 2g where �p = !0�!p. The

optical parametric oscillation threshold is reached when the generation rate goes to infinity, where

linearization breaks down:

g
2 � �2 = (/2)2
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Figure 2.3: Dependence of pair generation rate on the dispersion. Left: Photon pair
generation rate in the output waveguide, normalized to the cavity decay rate for anomalous dispersion
(purple) and normal dispersion (orange). The modes with anomalous dispersion are able to reach
the optical parametric oscillation threshold, whereas normal dispersion modes would not. Right:
Below-threshold spectra (photon generation rate versus mode number) for anomalous and normal
dispersion.

For the case � = 0, one can see that this occurs when the nonlinear gain becomes equal to the loss

rate (/2). It is noteworthy, however, that for systems with detuning, the system can be below

threshold even when g exceeds , which has implications for squeezing. An example of a strongly

detuned system is the multimode quantum state of a soliton crystal, described in Chapter 4.

With this analytic expression, we can examine the influence of dispersion on the below-threshold

spectra of the comb. With respect to the point at which OPO threshold is reached, the role of

dispersion is to balance the cross-phase modulation from the pump to hit the frequency matching

condition of � = 0. If we perform this compensation by using � = D2
2 µ� 2g and set D2 = ±2 and

µ = 1, we recover the left plot in Fig. 2.3 for varied g. In the case of anomalous dispersion (D2 > 0),

there exists a value of g where the OPO threshold is reached. In contrast, for normal dispersion

(D2 < 0), the OPO threshold is never achieved as the detuning grows with pump strength, increasing

� despite increasing g. Thus, the pair generation rate does not go to infinity at g/ = 1
2 . (Fig. 2.3,

left panel).

However, absence of OPO threshold in the normal dispersion regime of course does not imply

absence of a spontaneous-pair quantum comb. Figure 2.3 shows the pair generation rate versus mode

number with fixed g = 0.45 and D2 = ±0.01, for anomalous dispersion and normal dispersion of

the same magnitude. In the normal dispersion comb, the strongest pair generation is centered close

to the pump, whereas in the anomalous dispersion regime the mode pair with the largest photon

rate is some distance away, at the mode number where the pump-induced detuning counteracts

cold-cavity dispersion. As the comb approaches threshold, the pair generation in the mode which
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Figure 2.4: Dependence of the spectral density on system rates. Spectral density S(!)
normalized to the peak versus Fourier frequency for modes in three regimes: (i) drive far from
threshold without significant detuning, /2 > g > � (blue); (ii) drive approaching the threshold,
/2 g > � (green); and (iii) detuning larger than the drive, � > g (red).

will reach OPO will grow asymptotically (in the case shown in Fig. 2.3, for mode pair ±10).

We can also find an analytic expression for the spectral lineshape of the photons and the depen-

dence on the detuning parameter and proximity to threshold. The spectrum is given as the photon

number spectral density versus Fourier frequency ! (detuning from the rotating frame)

S±(!) =
D
b̂
†
out,±(!)b̂out,±(!)

E
,

and is equal to |N14(!)|2:
S±(!) =

���
g

(g2 � �2)� (/2� i!)2

���
2

The photon pair spectra reveal three di↵erent regimes, as shown in Fig 2.4, where the spectra

are normalized to the maximum value. We can define the parameter of e↵ective gain � =
p

g2 � �2

which can be real or imaginary. When /2� |�|, the lineshape is approximately a Lorentzian with a

full width half maximum of . When � approaches /2, the linewidth narrows. If � is imaginary with

magnitude greater than /2, then the lineshape is a split Lorentzian. As we will see in the analysis

of two-photon correlations, these three regimes will also capture the di↵erent temporal coherence

features of the light.
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2.6 Two-photon correlation function

We now analyze the second-order coherence of the below-threshold quantum comb. The normalized

two-photon correlation function is defined as:

g
(2)
ij

(t+ ⌧, t) =
G

(2)(t+ ⌧, t)D
b̂
†
out,i(t)b̂out,i(t)

ED
b̂
†
out,j(t+ ⌧)b̂out,j(t+ ⌧)

E (2.14)

where G
(2) is the unnormalized second-order coherence of the field:

G
(2)(t+ ⌧, t) =

D
b̂
†
out,i(t)b̂

†
out,j(t+ ⌧)b̂out,j(t+ ⌧)b̂out,i(t)

E
. (2.15)

As before, the expectation value is taken with respect to the initial vacuum state. Notice that the

normalization factor has already been calculated in the previous section.

To obtain the output operators in the time domain, we must relate them to the frequency-domain

input bath operator:

b̂out,i(t) =
1p
2⇡

Z 1

�1
d!e

�i!t
b̂out,i(!)

=
1p
2⇡

Z 1

�1
d!e

�i!t

nX

k=1

⇣
Nik(!)b̂in,k(!) +Ni(k+n)(!)b̂

†
in,k(�!)

⌘

Using the commutation relations of the frequency-domain input bath operators

D
b̂in,i(!)b̂

†
in,j(�!

0)
E
= �ij�(! + !

0)
D
b̂
†
in,i(�!)b̂in,j(!

0)
E
= 0,

we derive the following general expression for the unnormalized correlation:

G
(2)(t+ ⌧, t) =

1

(2⇡)2

Z Z
d!d⌫

X

k,l

h
|Nj,(l+n)(!)|2|Ni,(k+n)(⌫)|2 (2.16)

+N
⇤
j,(k+n)(⌫)N

⇤
i,l
(�⌫)ei⌫⌧ ⇥Ni,k(!)Nj,(k+n)(�!)e�i!⌧

+Nj,(l+n)(!)N
⇤
i,(l+n)(!)e

i!⌧ ⇥Ni,(k+n)(⌫)N
⇤
j,(k+n)(⌫)e

�i⌫⌧

i

The first term has no time dependence, and is simply an integral over the frequency domain,

which is identical to the normalization factor (the square of the generation rate). Note that this

term guarantees that the normalized g
(2)(⌧)! 1 at su�ciently long times where there is no longer

temporal structure (as we will see in Chapter 3, this is no longer true for a time-dependent starting

Hamiltonian). In the following sections, we evaluate the second and third terms to derive analytic

expressions for the auto- and cross-correlation measurement across a below-threshold comb with

monochromatic pump.
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2.6.1 Autocorrelation derivation

Obtaining the temporal autocorrelation of one of the modes in the signal-idler mode-pair requires

the evaluation of the following expression:

1

2⇡

Z
d!|N14(!)|2ei!⌧

To do so, we first rewrite the matrix element N14(!) in a convenient form:

N14(!) =
g

�2 � (/2� i!)2

=
ig

�

i�

(i�)2 + (/2� i!)2

For this function, we have the following Fourier transform:

f(t) =
ig

�
e
�

2 t sin(i�t) · u(t) = �g
�

e
�

2 t sinh(�t) · u(t)

where u(t) is the Heaviside step function. Then the full Fourier transform is a convolution of Fourier

transforms of individual Lorentzians:

Z 1

�1
dt · e�/2·(t�⌧) sinh (�(t� ⌧))u(t� ⌧)e�/2·t sinh (�t)u(t)

/ e
�(/2)⌧

h


2
sinh(�⌧) + � cosh(�⌧)

i

The final step is to square the convolution and divide by the square of the normalization factor.

2.6.2 Cross-correlation derivation

To derive the expression for the cross-correlation, we evaluate the following expression:

G
(2)(⌧) =

���
1

2⇡

Z
d!e

i!⌧
N22(�!)N14(!)

���
2
+

h 1

2⇡

Z
d!|N14(!)|2

i2

Note that the second term is the normalization term, which we evaluated in Section 2.5. To evaluate

the first term, it is convenient to rewrite the matrix element N22(�!) in three parts:

N22(�!) = 1 +�k (/2 + i!)

(i�)2 + (/2 + i!)2
+
�

�

(i�)

(i�)2 + (/2 + i!)2

Note this relation of the convolution:

F{f ⇥ g} = F{f} ⇤ F{g}
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where ⇤ is a convolution in time, ⇥ is just multiplication, and F{f} represents the Fourier transform

of f . The Fourier transform of N14(!) was evaluated in the previous subsection. The Fourier

transform of the second term of N22(�!) is:

f(t) = �e�
2 t cos(i�t) · u(t) = �e�

2 t cosh(�t) · u(t)

Then the convolution for this term is:

g(/2)

((/2)2 � �2)e
�

2 ⌧

⇣
/2 · cosh(�⌧) + � · sinh(�⌧)

⌘

The third term uses the same structure of Fourier transform as N14(!):

f(t) =
i�

�
e
�

2 t sinh(�t) · u(t)

The convolution for this term is:

g(/2)

(/2)2 � �2 (�i�/�)e
�

2 ⌧

⇣
/2 · sinh(�⌧) + � · cosh(�⌧)

⌘

Then the sum of the three convolutions is:

g(/2)

(/2)2 � �2 e
�

2 ⌧

h
(�� i�(/2)/�) sinh(�⌧) + ((/2)� i�) cosh(�⌧)

i

2.6.3 Auto- and cross-correlation: Final expressions

Recall the definition � =
p
g2 � �2. The final analytic expressions for the autocorrelation and

cross-correlation are:

g
(2)
++(⌧) = 1 +

e
�⌧

�2

h


2
sinh(�⌧) + � cosh(�⌧)

i2
(2.17)

g
(2)
+�(⌧) = 1 +

e
�⌧

g2

���
⇣
�� i



2

�

�

⌘
sinh(�⌧) +

⇣


2
� i�

⌘
cosh(�⌧)

���
2

(2.18)

and g
(2)
++(⌧) = g

(2)
��(⌧), g

(2)
+�(⌧) = g

(2)
�+(�⌧).

2.7 Experiment

In this section, we reproduce in experiment the analytic results we have derived above. We drive

SiCOI microrings (Fig. 2.7) with a monochromatic pump around 1550 nm and measure the below-

threshold spectrum and the two-photon correlations to compare to our predictions. Considerations

for the choice of SiC as the nonlinear optical platform are described in Chapter 8, where classical
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nonlinear experiments in SiC are presented.

Figure 2.5: Array of SiCOI microresonators used for experimental demonstrations in
Chapters 2 and 3. Scanning electron micrograph of silicon carbide-on-insulator microrings before
encapsulation in SiO2. The large rings have a diameter of 100 um and a height of 520 nm. The bus
waveguide, equipped with cross-polarized inverse-designed vertical couplers, wraps around the ring.
The couplers are designed to be close together to accommodate the operation field of a cryogenic
doublet (Section 9.1) used to obtain free-space access. A second smaller ring is fabricated inside
each larger ring to maximize device density and sweep a larger parameter space in the waveguide
width and bus waveguide coupling gap.

We generate Kerr frequency combs using microring resonators with a free spectral range (FSR) of

350 GHz, fabricated in 4H-SiCOI (see Chapter 5 and 8 for fabrication details). Broadband inverse-

designed vertical couplers are used to couple light to and from the device[10]. The device is operated

at 4 K to reduce the thermo-optic response [31], although traditional thermal management schemes

(e.g., frequency tuning, power bumping, laser cooling, auxiliary mode pumping) may have been used

instead to capture all states studied in this thesis. More information on the cryogenic operation and

the dependence of system parameters on temperature can be found in Section 9.1. With intrinsic

quality factors (Q) as high as 5.6⇥ 106, a low threshold OPO power requirement of 0.5 mW in the

waveguide is achieved (Section 9.2).

The observation of the full optical spectrum of a Kerr frequency comb, including the above- and

below-threshold processes, requires single-photon sensitivity and a high dynamic range. For this

purpose, we designed a single-photon optical spectrum analyzer (SPOSA) using multipass grating

monochromators and superconducting nanowire single-photon detectors (SNSPDs) (PhotonSpot,
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Inc). The SPOSA has a broadband (> 200 nm) quantum e�ciency of ⇠ 20%, and close-in dy-

namic range of > 140 dB at ±0.8 nm. In the design of the single-photon optical spectrum analyzer

(SPOSA), we focused on broadband operation in order to image all parts of the frequency comb,

which extends beyond the operation range of standard fiber-based filtering components. For this

reason, a free-space monochromator approach was chosen. Blazed gratings (600 grooves/mm) opti-

mized for 1.5 µm operated in the Littrow configuration have 75� 85% e�ciency across the range of

operation (1300-1700 nm). In a single-pass monochromator, dynamic range is limited to ⇠ 70 dB

by roughness-induced scattering from the grating surface. By operating the monochromator in a

two-pass configuration, where the forward and return beams do not overlap on the grating, the

dynamic range is doubled. To further increase the dynamic range, a second, single-pass monochro-

mator can additionally be used. The double-pass monochromator configuration has dynamic range

in excess of 180 dB and total peak e�ciency as high as 55%. The superconducting nanowire single

photon detectors (SNSPDs) are optimized for broadband operation with e�ciency exceeding 80%

from 1.0� 1.6 µm. The experimental setup is presented in Fig. 2.6.

Figure 2.6: Single-photon optical spectrum analyzer. A silicon carbide microring resonator
interfaced with inverse-designed vertical couplers[10] is mounted in a closed-cycle cryostat. Au-
tomated locking of a desired microcomb state is performed using active feedback by controlling
the laser wavelength and power. A free-space tunable two-pass monochromator (MC) and double
monochromator (DMC) serve as narrow band-pass filters with rejection of >130 dB and >180 dB,
respectively. The dynamic range of the superconducting nanowire single photon detectors (SNSPDs)
is extended from 60 dB to 180 dB via variable optical attenuators (VOA). A single SPOSA is used
for spectroscopy and two SPOSAs are used for photon correlation measurements. Photon detection
events are recorded with a timing module TimeTagger Ultra from Swabian Instruments.

In practice, the laser cannot be directly used to drive the resonators due to the substantial ampli-

fied spontaneous emission present in its spectrum, which would overwhelm the quantum comb signal.

Furthermore, since the laser output is amplified with an erbium-doped fiber amplifier (EDFA), even

noise is present due to substantial amplified spontaneous emission of the EDFA. To remove this
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Figure 2.7: Quantum coherence of parametric oscillation (a) The near-threshold spectrum
reproduced from Fig. 3.1a. Vertical dashed lines indicate the modes where the primary comb will

form. (b) Measured g
(2)
auto(⌧) on di↵erent modes shows the dispersion-dependent parametric gain

variation throughout the comb. (c) Observation of asymptotic growth of coherence near the OPO
threshold. The e↵ective parametric gain �, extracted from a numerical fit to Eq. 2.18 is plotted

against the detected count rate on mode µ = +5. (d) At the highest photon count rate, g(2)auto(⌧)
reveals coherence-broadening which corresponds to threshold proximity of 0.99896(5).

broadband noise, the pump is filtered with a free-space monochromator. We then tune the laser at

a fixed power onto resonance from blue to red, operating the device close to the optical parametric

oscillation threshold. Using the SPOSA, we record the below-threshold spectrum of Fig. 2.7a. We

can compare the shape directly with the analytic expression plotted in Fig. 2.7b: Our resonator is

designed for anomalous dispersion, and the peak of photon generation rate a few modes away from

the pump, as expected. Unlike the theoretical shape, however, some modes are higher or lower than

the expected smooth curve; this is likely due to avoided mode crossings. The microring is highly

multimode and interactions between di↵erent families will perturb the dispersion and quality factors,

which both influence the pair generation rate as seen in Eq. 2.13.

In our analysis of the spectral lineshape S(!) of the below-threshold pairs, we identified three

regimes of interest. The near-threshold comb (Fig. 2.7(a)) features all three regimes at di↵erent

mode numbers. Recall the expression for the auto-correlation (Eq. 2.18)

g
(2)
auto(⌧) = 1 +

e
�⌧

�2

h


2
sinh(�⌧) + � cosh(�⌧)

i2
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where � =
p

g2 � �2 is the e↵ective parametric gain, g = g0|A0|2 is the mode coupling strength,

and � is the detuning. Here, two regimes are notable: when �
2
> g

2, � is imaginary which gives

rise to oscillations in g
(2)
auto(⌧), corresponding to the double-peaked photon spectrum for a strongly

detuned parametric process[32, 33]; when � approaches /2, the g
(2)
auto(⌧) coherence (decay time)

increases asymptotically, reflecting the transition of the spontaneous FWM process into a stimu-

lated FWM process (analogous to lasing). In a Kerr frequency comb close to but below the OPO

threshold (Fig. 2.7a), both regimes can be observed simultaneously. We measure g
(2)
auto(⌧) using two

SNSPD detectors in a Hanbury Brown and Twiss configuration, and observe the dispersion-induced

variation in � for di↵erent signal-idler pairs (Fig. 2.7b) [24]. Mode µ = +9, far away from the

pump, displays oscillations in g
(2)
auto(⌧), signifying poor phase-matching. In contrast, mode µ = +5

shows a substantial coherence increase, which correctly predicts that it will seed the formation of

the primary comb. To observe the asymptotic coherence growth at threshold, we repeatedly sweep

the pump laser detuning through the OPO threshold condition, while synchronously acquiring the

photon count rates and two-photon correlations. Through the numerical fit to Eq. 2.18, � is ex-

tracted and plotted against the measured count rate (Fig. 2.7c). The maximum recorded coherence

broadening exceeds the cavity coherence [29] by nearly three orders of magnitude (Fig. 2.7d), which

indicates that the state is approaching the critical point at which the linearized model would break

down [34, 33].

So far we have fit our data to our analytic model which leaves as free parameters the nonlinear

coupling strength g and detuning �. However, in the full model, these parameters are coupled.

As the pump is tuned onto resonance, the intracavity amplitude grows; the modal detuning � is

dependent on both the pump detuning �p and this intracavity intensity of the pump via a cross-

phase modulation frequency shift. The full model involves solving the LLE (eq. 1.2) for the classical

mean-field of the pump and then solving for the driven quantum fluctuations of the input-output

model.

The basic test case for the self-consistency of the joint LLE and input-output modelling is the

OPO threshold condition: specifically, when the laser is tuned from blue to red to model the exper-

iment, the asymptotic bandwidth narrowing in the below-threshold mode (as computed via input-

output theory) and the formation of primary combs (as computed via the LLE) should happen

simultaneously. We numerically reproduce the near-threshold behavior presented in Fig. 2.7. The

result of the combined LLE and input-output theory simulation is presented in Fig. 2.8a. The modes

µ = ±5 indeed exit the regime of validity of the input-output formalism (when Qe↵ has positive real

eigenvalues) at the onset of the LLE threshold. Although coherent comb light is present in other

modes above threshold, the presented linearization failed only for the µ = ±5 modes. A qualitative

agreement between simulation and experimentally measured correlations (shown in Fig. 2.7b) is seen

at the simulated detuning of �9.3 MHz, Fig. 2.8c.
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Figure 2.8: Numerical analysis of OPO threshold a Top: Dependence of the pump inten-
sity in the microring (in units of photon number) on laser detuning. Detuning is given relative
to the OPO threshold; a higher laser frequency corresponds to a more negative detuning with re-
spect to the OPO condition. The LLE simulation (red) matches the analytic expression for the
cavity mode in the presence of the Kerr nonlinear resonance shift (dashed black line) up to the
threshold point, where the pump mode becomes depleted. Middle: Spectrum of the classical Kerr
comb in the ring resonator, computed via the LLE, showing the formation of the 5-FSR primary
comb. The scale represents log10(# of photons). Bottom: The photon spectrum of the below-
threshold modes computed via input-output theory. For each mode, a spectral window of ±2 GHz
is shown. At threshold, modes µ = ±5 exit the regime of validity of the linearized model and
are excluded from the input-output simulation. The scale represents photon number spectral den-
sity, log10(# of photons per Mrad/second). b Evolution of the spectrum of three select modes near
threshold (same scale as (b)). Above threshold, the spectra exhibit additional features generated by

the additional parametric processes driven by the primary comb lines. c Computed g
(2)
auto(⌧) at a

detuning of �9.3 MHz (indicated as a dashed line in (b)).
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Figure 2.9: Entanglement metrics. Comparison of CAR and two-mode squeezing with respect
to the proximity to the optical parametric oscillation threshold.

2.8 Entanglement metrics in below-threshold combs

It is natural to ask what is the optimal normalized drive strength Ã =
p
/(2g0)A0 to obtain

maximum entanglement in the signal-idler pairs. The answer is that Ã has to either approach unity

(indicating infinite rate of photon generation) or otherwise be very small — depending on whether

continuous variable or discrete variable entanglement is desired. The comparison is illustrated in

Fig. 2.9, and described below.

In the discrete variable picture, entanglement is quantified as a strong correlation between pho-

tons detected in the signal and idler modes. However, since the generation of photon pairs is stochas-

tic, it is possible for multiple photon-generation pair events to overlap in time, which degrades the

correlation. The correlation strength is quantified by the coincidences-to-accidental ratio (CAR).

Figure 2.10a shows an experimental measurement of the CAR via two-photon cross-correlation be-

tween a pair of modes. In the limit of weak drive, two-photon-pair events are dominant in degrading

the CAR (appearing as “accidental” detection), and thus CAR is inversely proportional to the

photon-pair generation rate, i.e. / |Ã|4. It is worth noting that this sets a fundamental limit

on the quality of discrete-variable entanglement, and any sources of noise photons will manifest as

additional reduction in CAR. In practice, one must balance the drive strength to be weak enough

that multi-photon events is not the dominant source of infidelity, but strong enough to achieve

su�ciently-high rate of photon generation to be experimentally useful.

In the continuous variable regime, the situation is practically the opposite. Here, the entangle-

ment manifests as the modification of the quadrature uncertainties of the signal-idler modes[35]: The

squeezing of the uncertainty along one of the field quadratures is the entanglement resource, and is

precisely the manifestation of temporal overlap of multiple signal idler photon pairs in the output

field. This can be seen by considering that the maximally-entangled continuous variable two-mode
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Figure 2.10: CAR from cross correlation measurement. Left: Cross-correlation measurement
of a signal-idler pair far from threshold, where the trace is normalized to g

(2)(⌧ ! 1) = 1. The
CAR is measured to be above 3⇥103. Note that the temporal lineshape is asymmetric around zero.
This reflects slightly di↵erent decay rates for the two modes. Right: Autocorrelation of a single
mode. This lineshape is always symmetric around zero. The proximity of the peak to g

(2)(0) = 2
reflects high single-mode purity of the measured photons. Parasitic photon sources such as pump
leakage will degrade the correlation peak below the prediction for thermal statistics.

squeezed state, (analogous to the bipartite entangled Bell state in discrete variables) is the equal

superposition of all signal-idler Fock states
P1

n=0 |nis |nii, corresponding to infinitely-squeezed vac-

uum. This state is unnormalizable, containing infinite photons, and one approaches this ideal state

asymptotically as Ã ! 1. Formalism for extracting the quadrature squeezing level of an arbitrary

quadratic system is discussed extensively in Chapter 4.

Discrete variable signal-idler correlations are typically characterized using time-resolved photon

detectors, whereas in the strong-drive, continuous variable regime, measurement of photon quadra-

ture squeezing is done via a local oscillator or phase-sensitive amplification measurement. However,

photon correlations can also provide valuable information about two-mode states in the strong-drive

limit. In the correlation measurement, the squeezing manifests as a broadening of the coherence of

spontaneously generated photons. Unlike quadrature squeezing, the correlation function is invariant

to photon losses. This e↵ect is the same in both three and four-wave mixing. As Ã! 1, the fragility

of the squeezed state grows asymptotically, but the correlation function is preserved. Monitoring the

photon statistics of a signal-idler mode pair with threshold has this way enabled the observation of

the state corresponding to Ã = 0.99896 (Section 2.7), which would correspond to squeezing beyond

30 dB if all the light generated was losslessly collected into a single optical mode (in practice, system

losses will degrade the squeezing). The correspondence of photon correlation features to squeezed

states will be discussed in Chapter 4.
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2.9 Going above threshold

We have described the evolution of coherence and quadrature squeezing as the signal-idler mode

pair approaches the optical parametric threshold. A natural question to ask is: what happens

when one goes past the threshold? Or, even before OPO is reached, what happens when the rate of

photon generation into the squeezed mode is so high (approaching the theoretical infinitely squeezed,

infinitely energetic mode) that photon loss from the pump, so far assumed negligible (undepleted

pump approximation), becomes significant? This regime is the breakdown of linearization [34, 36],

where now we need to consider the e↵ect of the quantum field on the coherent pump field, rather

than assume it unperturbed by below-threshold processes. Pump depletion may be accounted for

by employing a photon-number-conserving nonlinear Gaussian model, where the Gaussian moments

of the classical mean-field and the quantum state are numerically solved together [37]. This is still

an approximation of the full state.

Figure 2.11: Phase binarization at threshold. Left: Pictorial representation of a degenerate
squeezed state below the OPO threshold. Right: Degenerate squeezed state after reaching the OPO
threshold. The state becomes displaced from the origin and chooses one of two phases relative to
the pump: in-phase or out-of-phase.

In practice, we know that once the threshold is exceeded and OPO begins, the state ceases to be

squeezed vacuum and becomes more similar to a coherent state. In phase space, this is visualized as

the displacement of the squeezed state from the origin (Fig. 3). In a system where the nonlinearity

and the loss rate are comparable (g0/ ⇡ 1), a cat state (coherent state superposition) forms

along the squeezing quadrature axis [38]. Via strong light-matter interaction, cat states have been

prepared using microwave photons in circuit quantum electrodynamics (QED) [39, 40] and Rydberg

atoms in cavity QED [41]. However, in Kerr systems the nonlinear coupling rate is often much

weaker by multiple orders of magnitude, even in high-confinement photonic resonators. The e↵ect

of the large relative loss rate is that the rate of destruction of quantum coherence by dissipation

exceeds the rate of creation of quantum coherence by the two-mode interaction: the superposition

state is replaced by a classical mixture of coherent states of opposite phase. This e↵ect has been
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used to build coherent Ising machines [42, 43]: spins are represented with above-threshold binary

phases of degenerate optical parametric oscillators. Moreover, after pumping the system through its

threshold, the optical parametric oscillator remains squeezed. Intensity di↵erence squeezing in the

above-threshold signal-idler beams has been measured using Kerr microrings as the source [44].

There is another interest in studying the above-threshold states: coherent, phase-locked pumps

may be generated in-situ to drive quantum fluctuations in other modes. Once a pair of symmetric

modes goes above the OPO threshold, the coherent pump is a comb: the connectivity is no longer

pairwise but comprises multimode subgroups [45, 46] depending on the mode number of the first

mode to hit the threshold. In the Kerr system, as we will see in Chapters 3 and 4, the mean field

of modes which go above-threshold may directly drive pair generation and “lattice hopping” across

other modes.



Chapter 3

Quantum correlations in soliton

crystal microcombs

In the last chapter, we focused on the below-threshold quantum comb generated via a monochromatic

pump injected into a Kerr ring resonator. This allowed us to introduce relevant multimode formalism

for modeling the characteristics of the quantum fluctuations. We also saw how to interface the

linearized model with robust measurable quantities, namely two-photon correlations, and described

the experimental setup we have used to measure them.

In this Chapter, we will extend the same treatment to Kerr combs, which follow from the single-

pump state after it reaches its optical parametric oscillation threshold. We will see how the stim-

ulated multi-color Kerr comb light adds complexity to the Hamiltonian by extending the modal

connectivity from pair-wise coupling of signal-idler modes to multi-mode interactions dictated by

the mode-number matching condition. For certain Kerr combs, all-to-all coupling can be gener-

ated. Using the same experimental setup described in the previous Chapter, we experimentally

demonstrate quantum combs generated by above-threshold Kerr combs, and validate the theoretical

predictions.

3.1 Below-threshold spectra of Kerr combs

The below-threshold signal-idler comb studied in Chapter 2 (Fig. 2.7) is the first state in the stages of

formation of a dissipative Kerr soliton (DKS). The most common method to experimentally generate

DKS states is via monotonic red-tuning of the pump laser onto resonance with a microring mode. The

resonator may enter the DKS state after several stages of Kerr combs (primary, secondary, chaos).

While the strong mean field of these formation stages is routinely measured with commercial optical

spectrum analyzers [24], the full states (including weak quantum light) have not been observed

27
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Figure 3.1: Single-photon spectroscopy of optical microcombs (a) Stages of frequency comb
formation observed on the single-photon optical spectrum analyzer (SPOSA). Dashed line indicates
noise floor of a commercial optical spectrum analyzer (-80 dBm). (b) The single soliton state. (c)
A 7-FSR soliton crystal state, observed in a di↵erent device.

due to limitations of instrumental sensitivity. Here, we use the SPOSA to measure the below- and

above-threshold components of these di↵erent stages simultaneously.

As we red-tune the pump further onto resonance, di↵erent states emerge and can be stabilized

using a servo lock on the comb or pump power. The measured SPOSA spectra for these states are

shown in Figure 3.1. The top left panels State 1a and State 1b show the signal-idler comb that we

measured in Chapter 2, further from the threshold and close to the threshold, respectively. We see

a dramatic increase in the photon rate for modes close to their OPO threshold.

The third panel shows the primary comb (state 2). This is the state which forms directly after

the first pair of modes at ±µth hits its OPO threshold. Those modes transition from spontaneous

emission to stimulated emission; stimulated four-wave mixing fills out the comb in the modes which

are integer multiples of the mode spacing |µth| — In the previous section, modes ±5 exhibited the

drastic coherence broadening and increase in counts. A 5-FSR primary comb emerges after the

threshold is reached. Note that the below-threshold spectrum has taken on a di↵erent shape due to

the contribution of multimode drive. Figure 3.2 shows the dynamics of the below-threshold comb

in the formation of primary comb, illustrating the di↵erent e↵ect on the modes that are and are not

multiples of the mode numbers that seed OPO.

As more power is injected into the primary comb, it will drive pair generation across the below-

threshold comb, where the connectivity is dictated by the mode number matching condition. With

enough power in the primary comb, a second OPO threshold can be reached. If the threshold is
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Figure 3.2: Temporal dynamics in the birth of the primary comb. Photon detection rate
on mode 5 as the pump laser is detuned through threshold. Colors represent three detectors with
di↵erent level of attenuation to capture the full dynamic range of the signal. Exponential growth
away from threshold is replaced by asymptotic growth, followed by a plateau above threshold. Inset:
evolution of several modes in the comb. Modes �6 and +3 do not show a discontinuity at the
primary comb formation, but are still a↵ected due to the presence of multiple pumps after OPO
threshold. Mode +10, which is populated by stimulated FWM after OPO onset, reaches saturation
(detector signal goes to 0) practically instantaneously despite low photon rate before OPO. Modes
±5 are reproduced in the inset for contrast, displaying super-exponential growth that continuously
transitions to OPO.

reached in a mode which is one FSR from a primary comb mode, then the full above-threshold

comb can become filled out, forming a secondary comb and subcombs (State 3). As we will see in a

following section, the stimulated light and spontaneous light can exist at comparable levels within

the same mode; as more power is injected into the subcombs, stimulated light will come to dominate.

Finally, the secondary comb may transition into a chaotic state that may collapse into a single

bright soliton step. The spectrum of the bright soliton is shown in Fig. 3.1(b), corresponding

to a single pulse traveling around the ring. A time-domain measurement of power in the output

waveguide would reveal a pulse train at the repetition rate of the comb spacing. The capture of

the soliton state is highly dependent on the input pump power. With too little input power, only

modulation instability is observed; too much input power and a multi-soliton state (multiple pulses)

will be generated. Note that in this demonstration we access the states via adiabatic pump tuning,

enabled by working at cryogenic temperatures to significantly reduce the thermo-optic coe�cient
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of SiC. As can be seen in Fig. 3.1(b), the sech2 soliton envelope is seen to persist at the tails of

the DKS, in modes with very low photon number
D
a
†
j
aj

E
< 10�3 (corresponding to a photon count

rate of < 1 kHz). The quantum fluctuations generated in the DKS state and responsible for its

quantum-limited timing jitter [47, 9] are obscured in the single-soliton spectrum as the stimulated

four-wave mixing (mean-field amplitudes) dominates.

By probing the photon auto-correlation of individual teeth of the soliton, we have observed that

they have the g
(2) = 1 for all t, same as a coherent state. Light generated via stimulated four-wave

mixing will have the same photon statistics as the pump, and the laser is modeled as a coherent state.

We would like to measure spontaneously generated photon pairs isolated from the strong mean-field

state. A perfect soliton crystal [48, 49] (henceforth referred to as a soliton crystal) reveals these

quantum fluctuations (Fig. 3.1c). Here we measure a 7-FSR soliton crystal, where strong mean-field

light only occupies every 7th mode: this corresponds to seven pulses traveling around the ring with

equidistant spacing.

Soliton crystals can form due to perturbations in the dispersion and quality factors of the modes,

often naturally arising due to avoided mode crossings with other mode families in multimode res-

onators. For example, an N -FSR soliton crystal may be numerically accessed in the Lugiato-Lefever

equation by shifting the frequency of the N -th mode from the pump, inducing a perturbation in the

otherwise symmetric anomalous dispersion. The perturbation can induce localized enhancement of

conversion e�ciency in the µ±N mode. The pump and this strong line interfere, creating a bichro-

matic background wave in the resonator which stabilizes individual solitons into a perfectly-spaced

soliton crystal. The numeric modeling of soliton crystal formation will be discussed in more detail

in a subsequent section.

3.2 Equations of motion in presence of multiple pumps

Before we begin to explore the experimental correlations in these multimode Kerr combs, we will

first extend the linearization approach from the first Chapter to the case of multimode strong mean

field. We consider the general system Hamiltonian for four-wave mixing between cavity modes with

coherent drive of the pump mode, µ = 0:

Ĥsys =
X

µ

!µâ
†
µ
âµ �

1

2
g0

X

µ,⌫,j,k

�[µ+ ⌫ � j � k]â†
µ
â
†
⌫
âj âk + ↵0(â0e

i!pt + â
†
0e

�i!pt) (3.1)

where �[µ + ⌫ � j � k] is the Kronecker delta which enforces the four-wave mixing mode-matching

condition. Here, !µ is the resonance frequency of cavity mode µ and !p is the frequency of the

coherent pump driving the central mode. The nonlinear coupling coe�cient

g0 =
~!2

p
cn2

n
2
0Ve↵
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represents the per photon frequency shift of the cavity due to the third-order nonlinearity of the

cavity: ~ is the reduced Planck’s constant, n2 is the nonlinear refractive index, n0 is the material

index, and Ve↵ is the e↵ective mode volume of the resonator. The amplitude of the drive field is

↵0 =

s
cPwg

~!p

where c is the coupling rate of the cavity to the input waveguide and Pwg is the power in the

input waveguide. To linearize the system, we write a formal separation of the optical state into

the mean field solution (assumed to be a coherent state) and the quantum fluctuations: âµ(t) !
↵µ(t) + âµ(t), where ↵µ(t) is the complex amplitude of the coherent state inside the cavity. Moving

into the reference frame which removes explicit time dependence from the classical coupled mode

equations[32], we apply a unitary transformation using Û(t) = e
iR̂t where R̂ =

P
µ
(!p +D1µ)â†µâµ.

We enter the rotating frame of an evenly-spaced frequency ruler, with spacing D1, centered at the

central pump mode. Defining �µ = !µ � !p �D1µ, and keeping only quadratic terms, we arrive at:

Ĥsys =
X

µ

�µâ
†
µ
âµ �

g0

2

X

µ,⌫,j,k

�[µ+ ⌫ � j � k](

spontaneous pair generationz }| {
AµA⌫ â

†
j
â
†
k
+A

⇤
k
A⌫ â

†
j
âµ

| {z }
XPM & Bragg scattering

+h.c.) (3.2)

where Aµ are the complex-valued field amplitudes, described using the Lugiato-Lefever equation [23].

Starting with the linearized Hamiltonian, we obtain the coupled-mode equations

dâµ(t)

dt
=�

✓
i�µ +

µ

2

◆
âµ(t)

+ ig0

X

⌫,j,k

�[µ+ ⌫ � j � k]AjAkâ
†
⌫
(t)

+ 2ig0
X

⌫,j,k

�[µ+ j � ⌫ � k]A⇤
j
Akâ⌫(t)

�pµb̂in,µ(t) (3.3)

where µ is the the total decay rate of mode µ, �µ is the detuning from the rotating frame (set

by the group velocity of the soliton), and b̂in,µ are the cavity bath operators. In equation 3.3, the

first term accounts for the modal detunings (dispersion); the second term represents pair generation;

the third term describes XPM and Bragg scattering; and the last term is the coupling to the bath.

These processes are represented in Figure 3.3.
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Figure 3.3: Linearized model for quantum optical fields in a DKS state A schematic depic-
tion of a Kerr microresonator with a circulating perfect soliton crystal state. The full optical state
is modeled as a coherent classical comb (blue) that drives the quantum comb (red) via spontaneous
parametric processes.

3.3 Photon correlations in primary and secondary combs

In the linearized model of an above-threshold Kerr comb, a resonator mode may be occupied by

both a coherent state and quantum fluctuations. In theory, the interference of the coherent state

and the quantum fluctuations can be revealed through g
(2)(⌧), but the intensity of the former is

usually orders of magnitude greater (as can be seen in the spectra of the primary comb and the

soliton crystal, Fig. 3.1), making the experimental observation di�cult.

An exception can be found in the formation of secondary combs, where the amount of stimulated

light can be controlled by the strength with which the secondary comb is driven (Fig. 3.4(a)).

To isolate a state with this delicate balance, we characterize the quantum formation dynamics of

secondary combs through second-order photon correlations, complementing earlier classical studies

[24, 50]. We identify a device and pumping configuration where the first optical parametric oscillation

threshold is formed at modes ±8 from the pump mode. We monitor the autocorrelation of mode

µ = +4.

In State 1 (Fig. 3.4(b)), before the threshold is reached, the autocorrelation follows the analytic

lineshape derived in Chapter 1, with the coherence dictated by the lifetime of the resonator. The

autocorrelation peaks at 2, reflecting the thermal statistics expected when measuring only one mode
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of the signal-idler pair.

In State 2, the threshold is reached and the primary comb forms. Now the mode µ = +4

is populated by two dominant spontaneous processes: (i) pair generation from the pump alone

into modes µ = ±4 via terms such as A
2
0â

†
4â

†
�4; and (ii) degenerate pair generation into mode

µ = +4 via terms such as A0A8â
†2
4 . Recall that a cross correlation measurement between the two

entangled modes of a signal-idler comb will have a two-photon correlation peak that may go far

above g
(2)(⌧ = 0) = 2. This bunching will also be observed now in the autocorrelation measured

on mode µ = +4 due to the degenerate pair generation. The Fourier transform (inset) captures the

spectral bandwidth of the below-threshold light.

In State 3a, the primary comb has pumped a second OPO threshold and subcombs have formed.

The second threshold process did not take place in the µ = +4 mode, but stimulated four-wave

mixing has transferred coherent light into the mode. Notably, at the onset of subcombs merging,

the intensities of the (bichromatic) coherent state and the quantum optical fields become comparable,

and the signature of their interference in two-photon correlations is readily observed (third panel

of Fig. 3.4c, state 3a). The important feature of the correlation which distinguishes between the

coherent and spontaneous light is the timescale: the coherence of the beatnote is much longer than

the timescale of the resonator, corresponding to a much more narrow spectral peak. The Fourier

transform of the auto-correlation shows three peaks, at 0, �/2, and �; they represent, respectively,

the two-photon bunching of spontaneous pair generation, the interference of the quantum fluctuations

with the bichromatic coherent state, and the coherent RF beat note [24, 50] of the coherent state.

The details of the theory used to model the interference are presented below. As the subcombs

continue to merge, the coherent light drowns out the spontaneous parametric processes, and the

photon correlations correspond to the interference of two weak coherent sources [51].

The modeling of the interference in g
(2)(⌧) of stimulated and spontaneous FWM presented in

Figure 3.4 is explained below. The operator b̂out(t) is:

b̂out(t) = b̂in(t)� i
p
[↵(t) + â(t)],

or, in the frequency domain,

b̂out(!) = N(!)b̂in(!)� i
p
↵(!).

Since the coherent field in the mode is bichromatic,

↵(t) = Acoh,1e
�i!1t +Acoh,2e

�i!2t. (3.4)

We note that in the presence of a bichromatic coherent state, there is a distinction between g
(2)(⌧)
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Figure 3.4: Formation dynamics of secondary combs (a) A SPOSA spectrum of a secondary
comb state. (b) A graphical representation of the stages of secondary comb formation. (c) The auto-
correlation is measured at mode µ = +4 for each comb state. In state 1, only non-degenerate pair
generation contributes to mode µ = +4. In state 2, simultaneous degenerate and non-degenerate
spontaneous pair generation is present. In state 3a, subcombs begin to merge and two-photon
correlations reveal the interference of quantum fluctuations with the coherent state. The data are
overlaid with the fit to input-output theory. In state 3b, the coherent state dominates and only the
RF beat note is observed.

and the experimentally-measured correlations. Specifically, the measured correlations are the time-

averaged two-photon coincidences G
(2)(⌧) =

⌦
G

(2)(t+ ⌧, t)
↵
t
, normalized to the mean value at

⌧ !1:

g
(2)
exp(⌧) =

R1
�1 G

(2)(t+ ⌧, t) dt

limT!1
R1
T

R1
�1 G(2)(t+ ⌧, t) dt d⌧

(3.5)

To model the g(2)exp(⌧) presented in Fig. 3.4, we consider a system of three coherent drives (A�8, A0, A+8),

and four quantum modes (â�12, â�4, â4, â12). The e↵ect of other coherent driving modes is assumed

negligible, because their amplitude is much smaller. The fit parameters in the model are: 1) two

pump amplitudes (A0, and A+8 = A�8); 2) two coherent state amplitudes (Acoh,1 and Acoh,2); 3)
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two coherent state frequencies (!1 and !2); and 4) the pump laser detuning �p.

3.4 Soliton crystal correlations

In this section, we proceed to measure the correlations within a soliton crystal and compare them to

the prediction of the linearized model, where experimentally measured device parameters (dispersion,

intrinsic and coupled Q-factors, pump power) are used as the input to the LLE solver, whose solution

is in turn used as the driving terms of the input-output solver. In addition to soliton correlations,

we also experimentally observe correlations within non-phase-locked combs (non-soliton states),

which feature multiple tones at di↵erent teeth: we explore how these tones (which result in a time-

dependent Hamiltonian) influence the correlations.

In a DKS state, the coherent comb is phase-locked and time-independent in the group-velocity

reference frame, yielding a time-independent Hamiltonian for the quantum optical fields (Eq. 3.2).

In contrast, a comb that is not phase-locked will produce a Hamiltonian with a time-dependent

drive. To observe this e↵ect in experiment, we consider a microring resonator which supports three

distinct states with a 2-FSR spacing: one state is a 2-FSR soliton crystal (Fig. 3.5a); the others

are non-natively spaced secondary combs [24] in the process of merging. These secondary combs

are non-phase-locked states, which manifests in the frequency domain as polychromatic comb teeth.

For each 2-FSR state, we measure g
(2)(⌧) =

⌦
g
(2)(t, t+ ⌧)

↵
t
on mode µ = �15 while simultaneously

measuring the RF spectrum of mode µ = �6 on a photodetector. Whereas the soliton crystal

two-photon correlations are time-independent far from zero time delay, the correlations of a non-

soliton state exhibit oscillations whose Fourier transform matches the RF spectrum measured on the

photodetector. Such temporal dynamics may be modelled via Floquet theory [52]. We note that

similar temporal oscillations in g
(2)(⌧) have been observed in Floquet-driven two-level systems [53].

The soliton crystal state o↵ers an excellent opportunity to experimentally verify the linearized

model for the DKS state. The mean-field solution (complex amplitudes Am in Eq. 3.2) of the soliton

crystal can be readily computed via the LLE; the below-threshold modes comprise the quantum

fluctuations driven by the mean-field solution without any admixture of coherent light and, crucially,

they are decoupled from the the quantum fluctuations of the above-threshold modes by the mode

matching condition �FWM. We measure the correlations between all pairs of below-threshold modes of

the 2-FSR soliton crystal, and compute the theoretically predicted second-order correlations matrix

for the measured device parameters (Fig. 3.5c). We note that the only free parameter in the model

is the pump laser detuning (within the soliton locking range). The agreement of the model with the

experiment suggests that the quadratic Hamiltonian of the linearized model is indeed appropriate

for describing the photon statistics of the quantum optical field generated in the below-threshold

modes of a DKS state.
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Figure 3.5: Quantum correlations in non-phase-locked combs and perfect soliton crystals
(a)A SPOSA spectrum of a 2-FSR soliton crystal. (b) Left: The measured g

(2)(⌧) at mode µ = �15
for di↵erent 2-FSR states observed in the device (inset shows an OSA spectrum of the measured
state). Right: The RF beat note measured on a photodetector at mode µ = �6 (red), and the
Fourier transform of the measured g

(2)(⌧) (blue). Bottom panel includes the photodetector noise
floor, corroborating the low-noise soliton state. (c) The second-order correlations matrix for the
below-threshold modes in the 2-FSR soliton crystal. Left: theoretical model; Right: experimental
data. (d) The logarithmic negativity (EN ) matrix calculated for the 2-FSR soliton crystal assuming
10⇥ increased out-coupling of the below-threshold modes. No pairwise entanglement is predicted in
the device with unmodified waveguide coupling.

3.4.1 Logarithmic negativity

The observation of all-to-all coupling in the 2-FSR soliton crystal quantum state is suggestive of an

interesting entanglement structure. One may ask whether squeezing is generated in the system. This
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question is the topic of Chapter 4. Meanwhile, we may ask whether entanglement more generally

is generated between pairs of modes in the system. One metric for entanglement is the logarithmic

negativity. Here, we compute the logarithmic negativity [54], EN , for all mode pairs to assess the

entanglement across the 2-FSR soliton crystal in the resonator mode basis.

In steady state (t ! 1), the density matrix describing any two modes ↵ and � is described by

a Gaussian Wigner function:

W↵,�(q↵,� = [x↵, p↵, x� , p� ]
T ) =

1

⇡
p
Det[⌃↵,� ]

exp (qT
↵,�

⌃↵,�q↵,�) (3.6)

where ⌃↵,� = hq↵,�qT↵,�iW is the 4 ⇥ 4 steady state correlation matrix formed from Weyl-ordered

operators. The entanglement measure between these two modes can be computed as a log-negativity

of this matrix, defined by

E↵,� = max[0,�log(
p
2⌘)] (3.7)

where

⌘ =

r
⇥�

q
⇥2 � 4Det(⌃↵,�) (3.8)

and

⇥ = Det(⌃↵) + Det(⌃�)� 2Det(C) (3.9)

and ⌃↵,⌃� and C are defined as di↵erent blocks of ⌃↵,�

⌃↵,� =

"
⌃↵ C

C
T ⌃�

#
(3.10)

To compute the correlation matrix ⌃↵,� from a quadratic Hamiltonian, it is convenient to express

the correlation elements in terms of annihilation operators. We can immediately note that

hx↵x�iW =
1

2


ha↵a�i+ ha†↵a

†
�
i+ ha†

↵
a�i+ ha↵a†�i

�
(3.11a)

hp↵p�iW = �1

2


ha↵a�i+ ha†↵a

†
�
i � ha†

↵
a�i � ha↵a†�i

�
(3.11b)

hx↵p�iW = hp�x↵iW =
i

2


�↵,� + ha†

↵
a
†
�
i � ha↵a�i+ ha†�a↵i � ha�a

†
↵
i
�

(3.11c)

The correlators for the annihilation operators required above can be easily calculated from the input-

output formalism. Recall that for a quadratic, time-invariant Hamiltonian, the Heisenberg equations
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read

d

dt

"
a(t)

a
†(t)

#
= Qe↵

"
a(t)

a
†(t)

#
+M

"
bin(t)

b
†
in
(t)

#
(3.12)

Physically, we expect eigenvalues of Qe↵ to all have negative real part so as to have a well defined

steady state. We then obtain by integrating the above equations that as t!1
"
a(t)

a
†(t)

#
=

Z
t

0
e
Qeff(t�⌧)

M

"
bin(⌧)

b
†
in
(⌧)

#
d⌧ =

Z
t

0
Xe

⇤(t�⌧)
X

�1
M

"
bin(⌧)

b
†
in
(⌧)

#
d⌧ (3.13)

where we can define the eigenvalue decomposition Qe↵ = X⇤X�1. It is now straightforward to

calculate

lim
t!1
h
"
a(t)

a
†(t)

# h
a
†(t) a(t)

i
i = lim

t!1

Z
t

0
Xe

⇤(t�⌧)
X

�1
MM

†
X

�†
e
⇤⇤(t�⌧)

X
†
d⌧ = XNX

† (3.14)

where N is a matrix whose elements are given by

Ni,j =
[X�1

MJM
†
X

�†]
i,j

�i + �
⇤
j

(3.15)

defined in terms of the eigenvalues of Qe↵, �i, where J is a 2N ⇥ 2N matrix:

J =

"
I(N) 0

0 0

#

We find that in this basis, no pair-wise entanglement is numerically predicted in the measured

device. As will be shown in Chapter 4, this is not because entanglement is absent, but because

the pair-wise mode basis is not the natural basis for this multimode system. Nonetheless, even

in the native mode basis, we find that entanglement can exist if a modified device architecture is

employed. Consider a photonic molecule device where the below-threshold modes are overcoupled to

the output waveguide via a auxiliary microring[55, 56]. This architecture is advantageous because it

allows for the e�cient extraction of the quantum optical fields from the device while simultaneously

filtering them from the coherent fields, all without impacting the soliton crystal (Fig. 3.6). For this

system, we numerically observe all-to-all entanglement along the signal-idler diagonal of the pump

(Fig. 3.5d). Such entanglement structure is consistent with the all-to-all connectivity in the 2-FSR

soliton crystal Hamiltonian.
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Figure 3.6: Photonic molecule architecture for all-to-all entanglement generation (a)
Schematic of the experimentally-demonstrated device. (b) LLE simulation of the device for pump
power of 6.6 mW in the waveguide. The desired 2-FSR soliton crystal state exists for detuning in
the range 175–395 MHz. This simulated soliton step width of 220 MHz is somewhat larger than the
experimentally-observed step width of 150 MHz. (c) The simulated spectrum taken at detuning of
330 MHz. (d) Left: The two-photon correlation matrix computed for the state in (c). The scale
bar indicates max{g(2)(⌧)}. Right: The corresponding entanglement negativity, EN , matrix. (e-h)
correspond to (a-d) but for the photonic molecule configuration, where the out-coupling of the odd
resonator modes is increased by 10 times via the auxilliary resonator (e) Schematic of the photonic
molecule configuration. (f) It is confirmed via LLE that the same 2-FSR soliton crystal state can be
captured in simulation. (g) The spectrum of the comb at the same detuning of 330 MHz is identical
to the comb spectrum in the unmodified device, since only the below-threshold modes are a↵ected
by the addition of the auxiliary ring. (h) The corresponding correlation and entanglement matrices
for the photonic molecule device.
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3.4.2 Photonic molecule analysis

The second-order correlation matrix for the 2-FSR soliton crystal state (Fig. 3.5) was computed via

LLE simulation and input-output theory using the following parameters:

• D2/2⇡ = 3.65 MHz, obtained from FEM simulation, neglecting higher-order terms. A single

perturbation of �30 MHz was introduced at mode µ = �2 to induce the formation of the

soliton crystal state [49].

• For the pump mode (µ = 0), the intrinsic and coupling Q factors of 2.37 and 6.55 million,

respectively, were used, extracted from the measured cold-cavity transmission spectrum.

• For the other modes, intrinsic and coupling Q of 2.77 and 7.47 million, respectively, were used,

corresponding to the mean of the measured Q factors for the modes within the laser scanning

range (µ = �3 to +14).

• Pump power of 6.6 mW in the waveguide, corresponding to the experimentally-measured value.

The result of the LLE simulation is shown in Fig. 3.6b. The simulated soliton crystal spec-

trum for the detuning of 330 MHz is shown in Fig. 3.6c. In the input-ouput theory model, the

laser detuning (within the range of existence of the soliton state in the LLE simulation) is the only

free parameter. The corresponding second-order photon correlations and EN matrices are shown in

Fig. 3.6d. Negligible entanglement is thus predicted in the resonator mode basis for this soliton crys-

tal state. However, entanglement can be recovered by selectively over-coupling the below-threshold

modes via a photonic molecule configuration, shown in Fig. 3.6e. This configuration is as follows:

The auxillary resonator has a FSR that is 2 times larger than the FSR of the primary microring.

The coupling strength of the two ring resonators exceeds the total losses (scattering and waveguide

coupling) of the primary resonator. The auxillary ring is further over-coupled to its output waveg-

uide, so that rather than be strongly-coupled to the primary resonator, the auxillary resonator acts

as a selective out-coupling channel for the odd-numbered modes of the primary resonator. We note

that the finesse of the experimentally demonstrated resonators (approximately 3500) is su�cient

for this architecture. To model this system, we perform the LLE simulation with the same device

parameters as for the experimentally demonstrated device, but with the out-coupling rates of the

odd modes increased by 10 times. We numerically confirm that the same 2-FSR soliton state can

be prepared for this device (Fig. 3.6f). The computed second-order correlation and EN matrices for

the the quantum state of this device are shown in Fig. 3.6h.

3.4.3 7-FSR soliton crystal

In (N > 3)-FSR soliton crystals, the below threshold modes are not all-to-all coupled. Instead, the

modes are divided into disjoint sets grouped by the value |µ mod N |, as per the mode-matching



CHAPTER 3. QUANTUM CORRELATIONS IN SOLITON CRYSTAL MICROCOMBS 41

Figure 3.7: Connectivity in the 7-FSR soliton crystal. Diagram of the connected subgroups.
The mean field comb is measured in blue and the below-threshold light is colored purple, green, and
orange. The three colors represent the three connected subgroups.

condition. Thus, bN/2c non-interacting subsets (each internally all-to-all coupled) are expected in

an N-FSR soliton crystal. Indeed, for the 7-FSR soliton crystal state presented in Fig. 3.1d, we

experimentally confirm three disjoint all-to-all correlated sets of modes (see Fig. 3.7 for a diagram

of the connectivity).

Figure 3.8 presents the generation of a 7-FSR soliton crystal state in a di↵erent device. The

optical spectrum (Fig. 3.8a) as well as the transmission and comb power traces across the pump

resonance identify the existence of the soliton state. The SPOSA spectrum (Fig. 3.8c) reveals

quantum frequency comb lines which were obscured by the noise floor of the OSA spectrum, and their

correlation matrix is presented with the prediction from the LLE-driven linearized model (Fig. 3.8d).

Again we observe good agreement with the model. The multimode entanglement structure will be

more precisely understood in the next chapter, through squeezed supermode analysis.
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Figure 3.8: 7-FSR soliton crystal state (a) OSA spectrum of the soliton crystal state. (b) Pump
power transmission (upper panel) and comb power (lower panel) versus wavelength tuning when
the pump laser is scanned from blue to red across the pump resonance. (c) Optical spectrum of
the soliton state measured using the SPOSA. (d) The max[g(2)(⌧)] correlation matrix for the below
threshold modes in the 7-FSR soliton state (Left: theoretical model, Right: experimental data).



Chapter 4

Multimode squeezing in soliton

crystal microcombs

In Chapter 3, we described a linearized model for the quantum fluctuations of the below-threshold

modes that exist within soliton crystal microcombs. We then used two-photon correlations to validate

the model. In this Chapter, we further study the linearized model of DKS states to predict the

quadrature squeezing that may exist across the dissipative Kerr soliton.

As discussed in the Introduction, the optical mean field of the Kerr frequency comb (i.e., the

“classical” comb) has been modeled with great success by the Lugiato-Lefever equation (LLE) [23], a

nonlinear Schrödinger equation which includes dissipation, drive, and detuning. The most commonly

studied configuration is that where a single coherent pump laser supplies parametric gain to populate

the comb lines through stimulated four-wave mixing [24]. Spontaneous light generation is absent

from the model; in order to seed threshold processes such as optical parametric oscillation (OPO),

random noise must be added into every optical mode. Thus, the LLE can reveal neither the properties

of the quantum state of the comb, nor the coherent dynamics of the threshold processes that drive

the formation of the comb itself.

The quantum state of soliton microcombs has received little attention, and studies to-date (in-

cluding the work of Chapter 3) have approached it via an extension of pairwise mode analysis [32, 46]

which is used to describe signal-idler quantum frequency combs [25, 57, 35]. However, the signal-idler

basis cannot be expected to capture the structure of the collective quantum fluctuations in a soliton

microcomb due to the extended modal coupling (Fig. 4.1), suggesting the need for a multimode

analysis.

An example of a well-studied multimode system is the synchronously-pumped optical parametric

oscillator (SPOPO), where an external mode-locked classical comb source drives a quantum comb

via a second-order (�(2)) nonlinear process. While SPOPO may also be performed with a third-order

43
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Figure 4.1: A schematic depiction of a soliton crystal state in a Kerr microresonator.
Top: A continous-wave pump laser is evanescently coupled into the microring through a bus waveg-
uide and used to generate the soliton crystal. In the temporal domain, the below-threshold state
(red) co-propagates with the coherent soliton pulses (blue). Bottom: In the frequency mode basis,
the above- and below-threshold modes form two subsets, allowing the quantum fluctuations to be
studied in isolation.

nonlinearity, the majority of experimental and theoretical studies have considered SPOPO using the

second-order optical nonlinearity. In this case, the pump comb is centered around frequency 2!0

which drives pair generation (spontaneous parametric down-conversion) in a comb centered at !0.

The frequency-spacing �! of the resonator modes centered around !0 matches the repetition rate

of the pump pulses. This system features all-to-all connectivity across the below-threshold modes,

and the four-wave mixing interaction Hamiltonian can be written

Hint =
X

m,n

[Gm,na
†
m
a
†
n
+ h.c.] (4.1)

We can diagonalize this interaction Hamiltonian into independent squeezers, whose composition

in the native mode basis is given by the eigenvectors of the matrix G. The eigenvalues reflect the

gain and the degree of squeezing of each supermode. The OPO threshold condition of the system

is defined by the largest eigenvalue with respect to the loss rate. For a Gaussian pump pulse,

the squeezed supermodes resemble Hermite-Gauss modes, where the lowest order (Gaussian) mode
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features the highest degree of squeezing. By shaping a local oscillator to match the supermode

spectrum in amplitude and phase, the squeezing across the di↵erent supermodes may be measured

using homodyne detection.

The SPOPO is naturally described in a basis of supermodes (i.e., superpositions of frequency

modes) [58, 59] and this basis reveals multimode quadrature squeezing [60, 61]. The result is mul-

timode squeezed states that are multiplexed both in the temporal and spectral degrees of freedom.

Exploitation of the temporal degree of freedom with continuous-variable optical states has enabled

the largest continuous-variable cluster states. However, the spectrally-defined multimode squeezing

structure allows for reconfigurability of the entanglement [61] as well as mode-selective non-Gaussian

operations [62].

Three key features distinguish the soliton microcomb from previously-studied squeezed light

sources. First, Kerr cavity soliton systems typically feature (and rely on) significant modal dis-

persion, which contributes strongly detuned parametric processes. Second, the third-order (�(3))

nonlinearity in soliton microcombs introduces four-wave mixing nonlinear terms not present in �(2)

systems, most notably Bragg scattering (frequency translation of a photon). In degenerate and

signal-idler squeezing schemes, these system properties are often considered as parasitic processes

that degrade squeezing [63, 64]. Finally, the quantum fluctuations in a soliton microcomb are driven

not by an external source [65], but by a coherent comb that is itself generated in situ via the same

Kerr nonlinearity, intimately linking the mean-field and the below-threshold states.

In this Chapter, we apply a multimode quadrature squeezing analysis to the soliton microcomb

and its formation. We show that multimode analysis is necessary to understand Kerr microcomb

threshold processes beyond the single-pump regime, and that such analysis can predict the properties

of the post-threshold mean field, such as spatiotemporal oscillations. We find that the quantum state

of the soliton crystal microcomb is highly squeezed across the entire range of its existence, and that

the passage from a soliton crystal to a single soliton state is a coherent threshold process associated

with asymptotic growth in squeezing. Finally, we describe how the soliton crystal can be engineered

as a practical source of multimode quadrature-squeezed light.

4.1 Bloch-Messiah decomposition

The quantum fluctuations of the soliton microcomb are described by a many-body quartic Hamilto-

nian, where all resonator modes are coupled by a four-photon interaction through the �(3) nonlin-

earity of the medium. In a soliton crystal microcomb [66, 8], as we saw in Chapter 3, the resonator

modes can be partitioned into two sets: (i) above-threshold modes populated via stimulated four-

wave mixing and comprising the classical dissipative Kerr soliton state, and (ii) the below-threshold

modes populated only via spontaneous four-wave mixing [46]. Due to this robust partition guaran-

teed by energy and momentum conservation, the soliton crystal forms a unique system for studying
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in isolation the quantum fluctuations of dissipative Kerr solitons. To model the quantum state, the

simplest approach is to assume that the above-threshold modes are in a classical coherent state [38]

(complex amplitudes Am) and that this coherent state drives parametric processes in the below-

threshold modes âj . In Chapter 3, this approximation was used to predict the second-order photon

correlations that exist across the below-threshold modes of a soliton crystal state, measured pairwise

in the resonator basis [46].

For convenience, we include again the coupled-mode equations recovered from the linearized

Hamiltonian,

dâµ(t)

dt
=�

✓
i�µ +

µ

2

◆
âµ(t)

+ ig0

X

⌫,j,k

�[µ+ ⌫ � j � k]AjAkâ
†
⌫
(t)

+ 2ig0
X

⌫,j,k

�[µ+ j � ⌫ � k]A⇤
j
Akâ⌫(t)

�pµb̂in,µ(t) (4.2)

where µ is the total decay rate of mode µ [46], �µ is the detuning from the rotating frame (set by

the group velocity of the soliton), and b̂in,µ are the bath operators. In equation 4.2, the first term

accounts for the modal detunings (dispersion); the second term represents pair generation; the third

term describes XPM and Bragg scattering; and the last term is the coupling to the bath.

From equation 4.2, it is evident that the presence of multiple pump modes Aj generates multi-

mode coupling, resulting in collective comb dynamics that cannot be understood through pairwise

mode analysis. An example of such a collective e↵ect is the temporal envelope of the below-threshold

comb, obtained from the steady-state solution of equation 4.2. The temporal shape of the quantum

fluctuations does not mimic that of the mean field, but rather has a split shape (Fig. 4.1). The origin

of this peculiar feature will, in a later section, be understood through the supermode decomposition.

To calculate the maximally-squeezed supermodes of the system, we rewrite the Heisenberg equa-

tions in the basis of the quadrature operators of each mode r(t) = (x1(t), ..., xn(t)|y1(t), ..., yn(t))T

where xn = 1p
2
(a†

n
+ an) and yn = ip

2
(a†

n
� an). Input-output relations can be written for the

quadrature operators as rout(t) = rin(t) +
p
�r(t) where � is a diagonal matrix of the cavity decay

rates µ. In the Fourier basis, the input and output fields are related by a transfer matrix, S(!):

rout(!) = S(!)rin(!) (4.3)

which can be diagonalized by Euler decomposition [67, 68]:

S(!) = U(!)D(!)V †(!). (4.4)
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The matrix D(!) is diagonal with corresponding anti-squeezing and squeezing levels associated

with maximally-squeezed orthogonal supermodes encoded in U(!): the columns define the linear

combination of quadratures, which can be mapped to a local oscillator for homodyne detection of

the squeezing for ! where U(!) is real. This is always the case for ! = 0. For systems with

terms corresponding to detuning or Bragg scattering, the ideal local oscillator configuration will

depend on the Fourier frequency [69, 67]: e.g., the ideal local oscillator configuration for measuring

maximum squeezing at zero Fourier frequency may measure sub-optimal squeezing across the rest

of the spectrum.

Figure 4.2: Supermode analysis of primary and secondary comb formation. (a) Intracavity
comb intensity simulated via LLE. Top: Spectral composition of the comb. Bottom: Integrated
comb intensity. Here and onward, frequency quantities are written in units of loss rate . (b)
Azimuthal distribution in the rotating frame for a state at detuning of �0.7 (left) and �0.5
(right). (c) Squeezed supermode spectrum near the threshold of primary comb formation (detuning
of �0.93). All supermodes are doubly-degenerate. Here and onward, unless otherwise stated,
squeezing eigenspectra represent minimum uncertainty states. The maximally-squeezed supermode
is composed of a signal-idler pair at modes ±µ. Left inset: Illustration of the highest-gain supermode.
Right inset: Maximum squeezing versus detuning, up to the primary comb threshold. (d) Squeezed
supermode spectrum near the threshold of the secondary comb (detuning of �0.60). Dashed (solid)
lines represent non-degenerate (doubly-degenerate) modes. Left inset: Illustration of the detunings
in the highest-gain supermode. Right inset: The spectral composition of below-threshold modes
approaching secondary threshold.
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4.2 Multimode analysis of comb formation

We begin with the supermode analysis of the stages of the microcomb that precede the soliton.

The mean-field Hamiltonian coupling terms Am are obtained via an LLE simulation. We use system

parameters consistent with the SiCOI microrings measured in Chapter 3: nonlinear coupling g0/2⇡ =

3.4 Hz, a free spectral range of D1/2⇡ = 350 GHz, integrated quadratic dispersion D2/2⇡ = 30 MHz,

and a loaded quality factor of Q = 1.5 · 106 with critical coupling to the bus waveguide. The loss

rate is assumed equal for all modes, and denoted as  (i.e., µ = ). We note that these parameters

are similar to soliton devices in many material platforms such as silicon nitride [8, 66, 24], lithium

niobate [70, 71], and tantala [72]. Figure 4.2(a) shows the evolution of intra-cavity mode amplitudes

Am(t) under adiabatic red-tuning of the pump laser through the formation of primary and secondary

combs. The formation of the primary comb produces a spatial rolls pattern, and the subsequent

formation of the secondary comb generates spatiotemporal oscillations (Fig. 4.2(b)).

A powerful feature of supermode analysis is the ability to reveal the multimode nature of threshold

processes. Figure 4.2(c) illustrates the supermode analysis near the primary comb threshold: here,

maximally-squeezed supermodes consist of signal-idler pairs [25, 57] described by the supermodes
1p
2
(â�µ + âµ) and

ip
2
(â�µ � âµ), reflecting the amplitudes and phases of the local oscillators that

could be used for homodyne detection. The well-known result of this single-pump Hamiltonian

is that phase matching dictates which pair reaches threshold first, and predicts the spacing of

the subsequent primary comb [24]. We now turn to the formation of the secondary comb: with

the multiple nonzero-amplitude modes of the primary comb, the connectivity in the Hamiltonian

increases beyond pairwise mode interactions. The squeezing spectrum just before the secondary-

comb threshold is shown in Figure 4.2(d). The maximally-squeezed supermode approaches the

threshold at a nonzero Fourier frequency ! = �, indicating the presence of detuning in the multimode

parametric gain process. To understand the origin of this detuning in the squeezing spectrum, we can

examine the spectral composition hâ†
µ
(!)âµ(!)i of the below-threshold modes which, near threshold,

is dominated by emission into the first supermode. The spectral composition (Fig. 4.2(d)) reveals

that the supermode consists of two quantum subcombs of equal and opposite detuning from the

primary comb spacing. This detuning in the squeezing spectrum predicts the RF beatnote 2� that

accompanies the formation of the secondary comb [24], giving rise to the spatiotemporal oscillation

[50] seen in the numeric solution of the LLE (Fig. 4.2(b)). Thus, the supermode analysis sheds light

on the formation process (contrasting the pair-wise mode analysis of secondary-comb formation [24]),

and furthermore predicts the dynamics of the ensuing secondary comb.

4.3 Soliton crystal and its annihilation

After the formation of the secondary comb, the system enters the chaotic — modulation instabil-

ity (MI) — regime. We will not discuss the MI state: the Hamiltonian is time-dependent and a
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Figure 4.3: Squeezed supermodes of a soliton crystal. (a) Intracavity comb intensity simulated
via LLE. Inset: Maximum supermode squeezing along the soliton crystal step. (b) Maximally-
squeezed supermodes at zero Fourier frequency at the middle of the step (detuning of 5.7). Top:
quasi-HG1 mode; Bottom: quasi-HG0 mode. (c) Complete eigenspectrum of the soliton crystal
versus detuning. Black curves represent the eigenspectrum at detuning 5.7. Other detunings are
shown in colors matching the inset of (a). Inset: The temporal shape of the squeezed vacuum
hâ†(✓)â(✓)i, where â(✓) =

P
µ
âµ(t)eiµ✓ (red), as compared with the mean field (blue), at detuning

5.7. (d) LLE simulation showing the annihilation of the soliton crystal in the temporal domain.

subspace of below-threshold modes cannot be clearly delineated, thereby complicating the quantum

analysis. In order to induce soliton-pair crystallization from the MI state, we introduce a �100 MHz

perturbation at µ = +2 (as described in Ref. [8]). In the LLE simulation (Fig. 4.3a), the MI state

can be seen to end in a low-noise 2-FSR soliton crystal state, followed by an abrupt transition to

the single soliton.

We analyze the quadrature squeezing for the below-threshold state as it evolves with detuning

across the soliton crystal step. The state features significant spatiotemporal precession with respect

to the resonator free spectral range and care must be taken to perform the squeezing analysis in

the stationary frame of the mean-field solution for each detuning. This procedure is described in

Section 4.5. The inset of Fig. 4.3(a) shows the evolution of maximum squeezing which exceeds 20 dB

for all detunings. The maximally-squeezed supermodes extend across the entire comb (Fig. 4.3(b))

and resemble the Hermite-Gauss (HG) modes, the eigenmodes of SPOPO [59]. This reflects the
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all-to-all coupling in the Hamiltonian.

The evolution of the complete supermode eigenspectrum across the soliton crystal step is shown

in Fig. 4.3(c). For all detunings, two supermodes show strong and comparable levels of squeezing

while the rest have levels below 0.5 dB. This two-mode dominance of the eigenspectrum is a unique

feature to the soliton crystal, unobserved in other multimode systems studied to date [73, 59, 68,

65], although Hermite-Gauss-like squeezed supermodes have been predicted in soliton propagation

through a �(3) fiber [68]. The supermode structure of the squeezed vacuum explains the puzzling

contrast between its temporal profile and that of the mean field, shown in the inset of Fig. 4.3(c):

the strong contribution of the quasi-HG1 supermode (whose Fourier transform to the time-domain

is also bi-modal) induces the temporal splitting of the squeezed vacuum pulse.

Obtaining the temporal shape of the squeezed vacuum corresponds to the evaluation of the

azimuthal photon number operator, hâ†(✓)â(✓)i, where

â(✓) =
X

µ

âµ(t)e
iµ✓

.

The evaluation is performed in the rotating frame of the soliton and is thus time-independent. To

compute intra-cavity expectation values, we relate the cavity operator to the input bath operators

via a n⇥ 2n transfer matrix Q which follows from the system Hamiltonian:

âµ(!) =
nX

k=1

h
Qµ,k(!)b̂in,k(!) +Qµ,k+n(!)b̂

†
in,k(�!)

i

where n is the number of longitudinal modes. Via the commutation relations

D
b̂in,i(!)b̂

†
in,j(!

0)
E
= �ij�(! � !0),

D
b̂
†
in,i(!)b̂in,j(!

0)
E
= 0

where the expectation value is taken with respect to the initial vacuum state, we arrive at the

expression

hâ†(✓)â(✓)i =
X

l,m,k

e
i(l�m)✓

Z 1

�1
d! Q

⇤
m,k+n

(!)Ql,k+n(!)

Furthermore, an anti-crossing in the squeezing values of the two dominant supermodes is observed

(Fig. 4.3(c)), in contrast to the signal-idler pairs preceding primary comb formation, where no

modal interaction is revealed in the squeezing spectra (Fig. 4.2(c)). The apparent interaction of the

supermodes at the anti-crossing is further evidenced by the hybridization of the supermode shapes.

Even at zero Fourier frequency, the phase profile of the quasi-HG0 mode (Fig. 4.3(b)) reveals a

contribution of the odd quasi-HG1 mode. This anti-crossing is observed universally for higher-order

soliton crystals as well (see Section 4.5). Its physical significance is not yet understood.
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Figure 4.4: Soliton crystal stability diagram and the quantum twin comb. (a) A simulated
stability chart of the LLE. Power and detuning dependence of the maximum squeezing of the soliton
crystal within its existence range is represented by the color gradient. The secondary ordinate
axis shows normalized pump amplitude f as defined in Ref. [1]. Inset: Power dependence of the
Fourier frequency � of peak squeezing of the near-threshold state. (b) The spectral composition
of the near-threshold state, showing a prominent light generation in a twin comb structure. (c)
The second-order autocorrelation g

(2)(⌧) for a single resonator mode (µ = 1) reveals the twin-comb
signature through a temporal oscillation with period ⇡/�.

The end of the soliton crystal step is accompanied by asymptotic growth in the squeezing of

one supermode, indicating that the dissociation of the soliton crystal state is a coherent threshold

process. This can be anticipated from the fact that the passage from the crystallized two-soliton

state to the single soliton results in the breaking of C2 symmetry and correspondingly the onset

of OPO in the modes µ = 1 (mod 2). In this regard, soliton crystal annihilation is unique among

other state transitions, such as one-by-one disappearance of pulses in multi-soliton states [7] and

transitions between soliton crystals with defects [66], where symmetry breaking does not occur. The

annihilation of the soliton crystal is also the only known example (to our knowledge) of a threshold

process that results in a reduction of the mean-field intensity: According to the LLE simulation

(Fig. 4.3(d)), one soliton disappears without energy transfer to the other.

As shown in Fig. 4.4(a), the strong squeezing across the step culminating in asymptotic growth

is universally present across the soliton crystal existence condition. For all powers, the threshold

is reached at a non-zero Fourier frequency � (inset of Fig. 4.4(a)), indicating a strongly detuned

threshold process. This is confirmed through calculating the spectral composition of the squeezed

vacuum near threshold, which shows that every resonator mode displays a strongly-split spectrum

(Fig. 4.4(b)). The near-threshold state is thus composed of twin quantum frequency combs o↵set

by � from the soliton crystal rotating frame. Equal intensities of the twin combs is guaranteed by
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energy and momentum conservation. Twin combs would be directly observable in the second-order

autocorrelation g
(2)(⌧), manifesting as a temporal oscillation with a period of ⇡/� (Fig 4.4(c)). The

autocorrelation peaks at g(2)(0) = 3 and exhibits significant coherence broadening, as expected for

near-threshold OPO [33, 46].

A degenerate parametric oscillator reaches parametric oscillation in a continuous process in which

damping precludes the formation of a coherent cat state and instead produces a classical mixture of

coherent states [38], manifesting as random phase selection of the above-threshold OPO. If the soliton

crystal did not exhibit quantum twin comb behavior (� = 0) at threshold, the supermode analysis

would lend itself to an analogous picture: the post-threshold state is a classical mixture of either

one of the soliton pulses disappearing, corresponding to the modes µ = 1 (mod 2) possessing phase

of 0 or ⇡ with respect to modes µ = 0 (mod 2). However, since � 6= 0, such a simple interpretation

is not possible: the passage through threshold must be accompanied by the spectral collapse of

the quantum twin comb into a rotating frame. This cannot be explained within the framework of

the linearized model, which we show here to predict unbounded growth of twin combs at non-zero

�. The annihilation of the soliton crystal thus represents a clear opportunity for experimental and

theoretical exploration of the breakdown of the linearization assumption in nonlinear Kerr resonators.

4.4 Soliton crystal squeezed light source

Until now, we have considered squeezing in the absence of parasitic loss channels—all of the quantum

light generated inside the resonator is collected with unity e�ciency. While in principle one may

realize resonators with an arbitrarily high waveguide-coupling rate relative to the intrinsic loss, peak-

e�ciency Kerr soliton devices operate near the critical coupling point, which limits the outcoupled

squeezing to 3 dB. Soliton operation in the over-coupled regime is associated with a severe increase

in the power requirements, as the OPO threshold scales quadratically with resonator losses. For

instance, the outcoupling-limited squeezing of 10 dB (15 dB) requires an escape e�ciency of 90%

(96.8%), and corresponds to an increase of the OPO threshold by 25 (250) times, putting into

question the practicality of this approach. In this section, we present a device architecture that

overcomes this limitation.

The photonic architecture based on a 2-FSR soliton crystal is shown in Fig. 4.5(a). The proposed

device consists of the squeezing resonator, engineered for anomalous dispersion to support soliton

formation, and critically-coupled to the bus waveguide (i = c = /2) for e�cient in-coupling

of the pump. The auxiliary resonator is designed to have a free-spectral range twice larger than

that of the squeezing resonator, and its modes overlap in frequency with the odd (µ = 1 (mod 2))

azimuthal modes of the squeezing resonator. The auxiliary resonator is strongly over-coupled to the

drop waveguide (coupling rate aux � i), and is coupled to the squeezing resonator with strength J

such that aux � J > . This corresponds to the regime known in cavity quantum electrodynamics
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Figure 4.5: Practical highly-squeezed multimode source (a) A schematic of the photonic archi-
tecture for squeezed light generation and measurement. (b) Magnitude of squeezing extracted from
the resonator as a function of outcoupling e�ciency. The total outcoupled squeezing for the first (sec-
ond) supermode is shown in solid purple (orange). It is bounded by the intrinsic squeezing generated
in the resonator (dashed purple and orange lines) as well as the limit �10 log(1� out/(out + )) set
by the extraction e�ciency (dashed black line) , where  is the total loss of the resonator modes in
absence of the auxiliary ring. Grey solid (dashed) lines represent the outcoupled (intrinsic) squeezing
from a near-threshold mode driven by a single-mode pump. (c) Top: LLE simulation of soliton crys-
tal generation for out/ = 50 at 100 mW input power (gray). Simulation for the case out = 0 with
a 15 mW pump (i.e., the maximum power at which the soliton crystal capture is deterministic [8]) is
shown for comparison in black. Bottom: Squeezing in the waveguide along the soliton crystal step.
Dashed line represents the outcoupling limit. (d) (Anti-) squeezing spectrum in the waveguide at
the end of the step. (e) Local oscillators for the maximally-squeezed supermodes, with measurable
squeezing of 16.4 dB and 13.4 dB.

as Purcell enhancement: the odd modes of the squeezing resonator are coupled to the auxiliary

resonator and experience a decay rate (out) into the drop waveguide. If the magnitude of Purcell

enhancement (out/i) is well below the finesse F of the squeezing resonator (typical F is 103�104),

the even modes in the squeezing resonator are una↵ected by the auxiliary resonator. Thus, rather

than disturb the formation of the soliton crystal, the auxiliary ring stabilizes its formation through

the suppression of undesirable OPO processes. The choice of J and aux thus provides control over

the outcoupling rate of the below-threshold modes without negatively impacting the above-threshold
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state.

The magnitude of squeezing in the drop waveguide as a function of out/ is shown in Fig. 4.5(b).

The squeezing calculation in presence of loss is presented below. In the regime of small out, the

squeezing is limited by the outcoupling e�ciency into the drop waveguide, and increases with out.

The intrinsic squeezing, however, drops with increasing out, since the classical soliton crystal state

remains unchanged and thus results in weaker e↵ective drive and increased distance to threshold.

In the regime where out dominates other losses, the outcoupled squeezing is limited by the intrinsic

squeezing of the system.

The same conditions responsible for the formation of the twin quantum frequency combs near

the soliton crystal annihilation threshold also provide resilience of the squeezing strength against

the addition of the outcoupling rate aux, rendering the soliton crystal an attractive source of

squeezed light. This is illustrated by contrast with the squeezing of a typical, non-detuned squeezed

source (Fig. 4.5(b)). Ramping up out without altering the pump power, the maximum outcoupled

squeezing is ⇡ 3 dB at out = 2, beyond which it rapidly decays. In contrast, the peak outcoupled

squeezing of the below-threshold soliton crystal state reaches its maximum of 10 dB at out = 20.

The resilience of squeezing to added losses is the consequence of the detuning of the squeezing process:

the broadening of the below-threshold modes associated with growing out reduces the e↵ective drive

strength but simultaneously reduces the loss-normalized detuning of the below-threshold modes with

respect to the pump modes. The detuning thus acts as a “squeezing strength” reservoir, and the

auxiliary resonator enables the extraction of 10 dB of outcoupled squeezing without increasing the

pump power.

We have so far described the e↵ect of the auxiliary resonator while holding constant the power of

the pump laser. Since, as noted above, the auxiliary resonator stabilizes the soliton crystal state, the

state can be synthesized in the squeezing resonator at much higher pump power to achieve squeezing

levels limited by the escape e�ciency. We illustrate this in Fig. 4.5(c) for escape e�ciency ⌘ = 0.98

(out = 50 ), which corresponds to the outcoupling-limited squeezing of ⇡ 17 dB in the waveguide.

In this condition, the soliton crystal may be captured with a 100 mW pump, over a greatly-extended

detuning range. The outcoupled squeezing grows steadily along the soliton crystal step (consistent

with the growing above-threshold comb power), asymptotically approaching the outcoupling limit.

A few additional characteristics of the photonic molecule architecture, as they pertain to the

realization of a practical highly-squeezed multimode source, are worth noting:

Construction of the local oscillator: The photonic molecule conveniently separates the squeezed

vacuum and the above-threshold soliton crystal into separate waveguides. The latter may then be

manipulated independently of the squeezed light to construct the local oscillator. Since the temporal

bandwidth of the generated squeezed vacuum matches closely that of the above-threshold modes,

the local oscillator may be readily generated by first electro-optically interleaving [74] the above-

threshold soliton crystal, followed by pulse-shaping the resulting state to retain coherent light with
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the phases and intensities corresponding to the desired supermode. This process is illustrated in

Fig. 4.5(a). The entirety of the local oscillator preparation may be implemented on-chip, with the

recent advances in on-chip electro-optic frequency comb generation [75], low-loss phase-shifting [76],

and, if necessary, amplification [77].

Squeezing bandwidth: While the above-threshold modes have linewidths on the order of 100 MHz

(enabling low-power OPO and the formation of the soliton crystal), the bandwidth of the squeezed

light is dictated by the total linewidth of the below-threshold modes, and thus is magnified by a

factor of out/. The photonic molecule thus may be used to generate squeezed light of bandwidth

potentially much greater than that of the squeezing resonator (Fig. 4.5(d)). The local oscillator com-

positions corresponding to the maximum squeezing at ! = 0 in Fig. 4.5(d) are shown in Fig. 4.5(e).

Fourier frequency of maximal squeezing: A local oscillator with optimal squeezing may be

prepared in the corresponding supermode as long as U(!) is real. However, this is only guaranteed

for ! = 0. In the case where U(!) is complex, a local oscillator stationary in the rotating frame

cannot be used to measure the maximum squeezing [65]. However, for out � , maximum squeezing

shifts to ! = 0, because the loss-normalized system detunings are reduced. This fortuitously renders

the squeezing in the photonic molecule configuration amenable to the straightforward local oscillator

measurement.

4.4.1 Fixed local oscillator in the presence of parasitic loss

We model non-unity waveguide escape e�ciency ⌘ via the addition of a second decay channel, which

accounts for all resonator losses other than waveguide coupling:

dâµ(t)

dt
=�

✓
i�µ +



2

◆
âµ(t)

+ ig0

X

⌫,j,k

�[µ+ ⌫ � j � k]AjAkâ
†
⌫
(t)

+ 2ig0
X

⌫,j,k

�[µ+ j � ⌫ � k]A⇤
j
Akâ⌫(t)

�
p
cb̂in,µ(t)�

p
id̂in,µ(t)

Now the total cavity decay rate  = i + c is a sum of the intrinsic decay rate i to a second

bath (with vacuum operator d̂in,µ(t)) and the decay rate c to the output waveguide. To obtain the

squeezing in the output waveguide, we evaluate the input-output relation:

b̂out,µ(t) = b̂in,µ(t) +
p
câµ(t)
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In Fourier space, the output operators can be directly mapped to the input operators[46] via n⇥ 2n

transfer matrices N(!) and M(!):

b̂out,µ(!) =
nX

k=1

h
Nµ,k(!)b̂in,k(!) +Nµ,k+n(!)b̂

†
in,k(�!)

+Mµ,k(!)d̂in,k(!) +Mµ,k+n(!)d̂
†
in,k(�!)

i

To calculate the noise variance spectrum for an arbitrary local oscillator, we can define a supermode

decay operator

L̂(t) =
X

j

↵j âj(t)

whose Hermitian conjugate creates a photon in a superposition of longitudinal modes across the

frequency comb, where ↵j = |↵j |ei�j defines the amplitude and phase composition of the supermode.

Its associated supermode input-output operators are

L̂in(t) =
X

j

↵j b̂in,j(t)

and

L̂out(t) =
X

j

↵j b̂out,j(t).

The corresponding Hermitian quadrature operators of L̂out are:

L̂
(+)
out (t) = L̂

†
out(t) + L̂out(t)

L̂
(�)
out (t) = i(L̂†

out(t)� L̂out(t))

The noise variance is then defined as

V
(±)(!) =

Z 1

�1
d⌧hL̂(±)

out (t)L̂
(±)
out (t+ ⌧)iei!⌧

,

and is computed by applying the commutation relations:

D
b̂in,i(!)b̂

†
in,j(!

0)
E
= �ij�(! � !0)

D
b̂
†
in,i(!)b̂in,j(!

0)
E
= 0

D
d̂in,j(!)b̂

†
in,j(!

0)
E
= 0

The maximally-squezed supermodes can be obtained from the columns of U(!), which defines the

linear combination of quadratures (x1(t), ..., xn(t)|y1(t), ..., yn(t))T for a given supermode. When



CHAPTER 4. MULTIMODE SQUEEZING IN SOLITON CRYSTAL MICROCOMBS 57

U(!) is real, then the composition for the kth maximally-(anti)squeezed supermode at ! may be

written:

|↵j |=
q

U(!)2
j,k

+ U(!)2
j+n,k

�j = atan2 (U(!)j+n,k, U(!)j,k)

4.5 The rotating frame of the soliton crystal

In this Chapter we consider only time-independent states (i.e., when the coe�cients Am in the

Hamiltonian are constant). Here, we describe the process for entering the appropriate rotating

frame for the soliton state. Figure 4.6 shows free-evolution of the mean-field of two states: the

primary comb and the 2-FSR soliton crystal state. For the primary comb, the solution is seen to

be stationary in time. Thus, to compute supermodes for this state, no additional transformation is

required. In contrast, a soliton crystal state is precessing in time [8]. This can be understood as

the mismatch between the D1 of the resonator and the repetition rate of the soliton, determined by

the group velocity of the soliton state. Thus, in order to enter the rotating frame where the soliton

is stationary, we evolve the soliton state in time, extracting the rate of phase accumulation of each

mode, and apply a rotating frame correction accordingly.

Figure 4.6: Mean-field evolution of stationary and precessing solutions to the LLE. Left:
Time evolution of the primary comb field intensity (reproduced from Fig. 4.2(b)). The state can
be seen to be time-independent in the the rotating frame of the first-order dispersion parameter
D1. Right: The time evolution of the 2-FSR soliton crystal state field intensity. The state is not
time-independent due to precession in the D1 rotating frame.

4.6 Squeezed supermodes of a 7-FSR soliton crystal

Application of the squeezed supermode decomposition to higher-order soliton crystal states (N cir-

culating pulses) results in (N � 1) orthogonal supermodes for each quasi-HG order. For instance,
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a 7-FSR crystal features six quasi-HG0 and six quasi-HG1 supermodes of nearly-identical squeezing

levels. Figure 4.7 shows the supermode decomposition for a soliton crystal without all-to-all connec-

tivity. Unlike the 2-FSR soliton crystal, formation of quasi-degenerate supermodes is observed, due

to the subgroups of internally all-to-all coupled modes as dictated by the Hamiltonian. Thus, the

squeezing spectrum of a soliton crystal source can be tailored beyond two prominent supermodes.

However, the pattern of symmetry breaking in the annihilation of higher-FSR soliton crystals is

expected to be qualitatively di↵erent, as multiple pulses (and thus multiple decay pathways) are

present.
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Figure 4.7: Supermode decomposition of a 7-FSR soliton crystal. (a) The squeezing eigen-
spectrum of a 7-FSR soliton crystal, showing a total of 12 strongly-squeezed supermodes. (b)
Illustration of the mean-field soliton crystal state, comprising coherent light in modes µ = 0 (mod
7), and and the squeezed vacuum, forming three independent subsets of modes (orange, green, pur-
ple) as dictated by the four-wave mixing mode-matching condition. (c) Local oscillators (LO) at
zero Fourier frequency. The vertical lines (orange, green, purple) represent amplitudes of each con-
stitutent frequency basis mode. The supermode envelope is illustrated in light solid and dashed
lines. The black dots represent phase of each constituent frequency basis mode. The squeezing value
of the supermode at ! = 0 is noted in the top right corner.
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Chapter 5

Introduction

In the quantum optics studies of the preceding Chapters, the experiments utilize silicon carbide-on-

insulator (SiCOI) integrated photonics as the nonlinear platform. SiC possesses attractive material

properties for nonlinear optics, including substantial second- and third-order nonlinearities (�(2) and

�
(3)), a large bandgap (3.2 eV, which allows SiC photonics to cover the entire visible spectrum),

optical transparency past 5 um, and a moderately high linear refractive index (n = 2.6) which allows

for a good confinement within cladding materials such as silica (n = 1.44) and air. Importantly,

SiCOI is CMOS compatible, which is attractive for the prospect of scalable quantum and nonlinear

systems. Additionally, silicon carbide hosts optically-addressable spin defects in its crystalline lattice,

which opens up the possibility to combine nonlinear optics with cavity quantum electrodynamics.

In this Part II of the thesis, I will describe demonstrations in classical nonlinear optics using high-

quality SiCOI photonics, which also enabled the experimental demonstrations described in Part

I.

Wafer-scale growth and processing of 4H and 6H polytypes of SiC was developed in the 1990’s

for applications in high-power electronics. Soon after, 4H- and 6H-SiC-on-insulator (SiCOI) were

demonstrated [78] using the same ion-implantation (Smart-Cut) method that is used to produce

silicon-on-insulator (SOI) wafers. This technology enabled the first demonstration of photonic crystal

cavities (PhCs) in SiC [11, 79] (Fig. 5.1). As the development of photonics in Smart-Cut 4H-SiC

continued [80] and Smart-Cut SiCOI became optimized on a wafer-scale [81], the intrinsic optical

absorption of the SiC thin films was identified as the limiting factor for high-Q SiC photonics, limiting

waveguide losses to > 5 dB/cm [82]. Although further optimization of the implantation conditions

may remedy the low material quality [80], it is unclear whether the Smart-Cut method is suitable

for producing films of SiC with the same nearly-pristine crystal quality as silicon-on-insulator. The

di↵erence between Smart-Cut SOI and SiCOI stems from the drastically di↵erent thermal properties

of silicon and SiC: The lattice of silicon will soften and heal at the modest temperatures achievable in

standard quartz furnaces. SiC, in turn, is one of the most refractory materials, subliming at 2700�C.
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Figure 5.1: Timeline of SiC photonics development. First demonstration of SiC photonic device
using the Smart Cut approach with 6H-SiC [11]. Soon after, suspended resonators in 3C-SiC-on-Si
were demonstrated [12]. Strong intrinsic absorption of low quality Smart Cut and heteroepitaxial 3C
films was hypothesized to limit the achievable Q-factors. Using thicker 3C-SiC epilayers or thinning
down bulk-crystal 4H-SiC, enabled record Q factors in 3C-SiC [13, 14], ultra-high Q PhCs [15], and
low-loss 4H-SiC-on-Insulator waveguides [16]. Recently, devices with Q factors exceeding 106 were
shown, enabling the demonstration of optical parametric oscillation and microcomb formation [10].
This figure is reprinted from Ref. [17]: individual figures are reproduced from [11, 12, 14, 15, 16, 10]

Repairing the lattice in post-processing without destroying the substrate is thus likely impossible.

Another approach to SiC photonics took advantage of the heteroepitaxial growth of 3C-SiC

films on silicon. A variety of 3C-SiC-on-Si photonics devices have been demonstrated, including

PhCs [12, 83] and whispering-gallery-mode resonators [84]. However, this approach also su↵ers from

substantial intrinsic material absorption, due to the high density of crystal defects near the growth

interface caused by the Si-SiC lattice mismatch. Recently, a technique based on film transfer and

back-side polishing introduced the 3C-SiC-on-insulator platform and enabled waveguides with losses

down to 1.5 dB/cm, still likely limited by material absorption [13, 14].

Leveraging the wafer-scale production of 4H-SiC and the advanced grinding and polishing equip-

ment developed for processing it, a method for fabricating “quantum-grade” 4H-SiC-on-insulator

was recently introduced [16]. This method enables 4H-SiCOI substrates with the same crystalline

quality as bulk SiC crystal. Using 4H-SiCOI produced this way, ultra-high quality (Q) factor PhCs

(Q = 6.3 ⇥ 105) have been fabricated [15]. 4H-SiCOI also enabled quantum photonic devices with

single color centers in a CMOS compatible architecture [16]. Unfettered by the material absorption

limit of previous approaches, integrated SiC photonics with propagation loss below 5 dB/m have
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become possible. As detailed in Chapter 7, low-loss microring resonators were used to demonstrate

optical parametric oscillation and microcomb formation [10], establishing SiC as a promising mate-

rial for integrated nonlinear photonics. In the same Chapter, we measure the intrinsic absorption of

4H-SiC to be as low as 2 dB/m in an unoptimized sublimation-grown sample [10], indicating that

integrated photonics in SiC with Q factors of at least 107 are possible.



Chapter 6

Resonant second-order nonlinear

photonics

One of the main attractions of SiC is its moderately-strong second-order optical nonlinearity (�(2)).

In non-centrosymmetric crystals, second-order nonlinear processes typically are several orders of

magnitude stronger than third-order processes in similar structures. This allows in principle for

significantly more power e�cient nonlinear photonics technologies, including quantum frequency

conversion [85], optical parametric oscillation [86], and spectral translation [87]. In SiC, the prospect

of monolithically combining this second-order nonlinearity with Kerr solitons for visible combs [87],

supercontinuum generation for self-referencing [88], and optically-addressable spin qubits for quan-

tum frequency conversion [89], motivate its exploration. In this Chapter, we focus on second-order

processes with resonant enhancement via an integrated photonic resonator, relevant for the first two

applications. In Chapter 9, we will return again to second-order nonlinear light generation in the

context of supercontinuum generation in SiC waveguides.

4H-SiC is a non-centrosymmetric crystal with the point group of 6mm, C6v. Measured at 1 µm
[90], the second-order nonlinear tensor has three independent elements:

d33 = �11.7 pm/V

d31 = 6.5 pm/V

d15 = 6.7 pm/V

The strongest term with field polarizations along the optical axis is about a factor of three less than

lithium niobate. In comparison to modal phasematching, it is relevant to note that the e↵ective

nonlinearity of periodically-poled photonics is reduced by a factor of 2/⇡ due to the quasi-phase

matching condition [91] (although the near-perfect mode overlap and reduced propagation losses

64
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Figure 6.1: Second-order frequency conversion in microring resonators. a SEM of a ring
resonator designed for second-harmonic generation. The fundamental TE00 mode at 1555 nm is
converted to a TM20 mode at 777.5 nm, and coupled out via a single-mode, e↵ective index-matched
waveguide. Inset: Optical image of the second-harmonic out-coupled via an inverse-designed ver-
tical coupler (ring outline is overlaid for clarity). b Numerical simulation of the phase-matching
condition for the 1555 nm TE00 and the 777.5 nm TM20 modes, demonstrating mode-matching for
a waveguide width of 560 nm. Insets: Simulated mode profiles. c Dependence of second-harmonic
power in the output waveguide on the pump power in the input waveguide. A quadratic fit reveals
a conversion e�ciency of 360% W�1. Inset: The second-harmonic signal imaged on a spectrometer,
where linewidth is spectrometer-limited.

significantly improve the e�ciency).

In this brief Chapter, we describe details for design and experimental demonstration of doubly-

resonant second-harmonic generation in 4H-SiCOI microring resonators, reproduced from [16]. We

then extend our analysis for the prospect of triply-resonant quantum frequency conversion from spin

qubit emission wavelengths in the near-infrared into the telecommunications band.

6.1 Second-harmonic generation

Here, we demonstrate doubly-resonant second-harmonic generation using modal phase-matching in

a microring resonator (Fig. 6.1a). Towards this end, we design the dimensions of the ring to induce

geometric dispersion to balance the intrinsic material dispersion and allow for phase-matching across

a wide frequency separation. To utilise the d31 nonlinear term in c-cut 4H-SiC, we design for phase-

matching between the fundamental quasi-transverse-electric mode (TE00) at 1555 nm and a quasi-

transverse-magnetic mode TM20 at 777.5 nm. Finite-element method simulation using anisotropic

Sellmeier equations [92] for air-clad 4H-SiC shows that e↵ective refractive index matching is possible

between these modes for a waveguide thickness of 350 nm, a waveguide width of 560 nm, and a

microring radius of 27.5 µm (see Fig. 6.1b). Two bus waveguides are designed to selectively point

couple either the pump or second harmonic, each equipped with inverse-designed grating couplers [93]

optimised for the appropriate wavelength (see Fig. 6.1a). Via transmission measurements through
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Figure 6.2: Potential for two-layer heterogeneous integration. A conceptual diagram showing
two applications that can be implemented with the 4H-SiCOI architecture. a On the left, the
realisation of spin-spin entanglement scheme between two emitter-cavity systems. On the right,
emission from a single spin defect is delivered to a triply-resonant ring resonator to achieve frequency
conversion to the telecommunication frequencies. Although for maximum circuit e�ciency it is best
to forgo silicon nitride interconnects, this approach may enable short term multi-qubit integration
until near-unity single-qubit yield is attained b Material stack illustration for the proposed platform.

each bus waveguide at the respective design wavelength, we measure loaded Q factors of 8 · 104

for the pump at near-critical coupling and 2 · 104 for the second harmonic, undercoupled with a

transmission of T = 0.5. The devices were designed to be compatible with air-clad inverse-designed

vertical couplers. By varying the pump power, we obtain a linear power dependence of the SHG

with the square of the pump power, as expected in the undepleted pump limit (see Fig. 6.1c). The

SHG e�ciency is defined as the ratio between the generated second-harmonic power in the output

waveguide versus the square of the pump power in the input waveguide. The e�ciency of our SHG

process is measured to be 360% W�1.

The e�ciency of second harmonic generation in a doubly resonant cavity may be derived using

temporal coupled mode theory [94]. At low input powers in the undepleted pump limit (marked by

a quadratic dependence of output power P2 on input power P1), the second harmonic conversion

e�ciency is given by
P2

P
2
1

= 32
Q

4
1Q

2
2

Q
2
1,cQ2,c

|�|2

!1

where !1 is the frequency of the pump (!2 = 2!1), � is the cavity mode coupling factor, and Qk

is the total Q of the kth cavity mode, described by 1
Qk

= 1
Qk,c

+ 1
Qk,i

where Qk,c is proportional

to the decay rate into the output waveguide and Qk,i is proportional to the loss rate due to all

other loss channels (including material absorption). Via transmission measurements through each

bus waveguide at the respective designed wavelength (assuming that coupling into the non-designed

bus waveguide for a given wavelength is negligible), we measure Q1 = 8.5 · 104, Q1,c = 1.3 · 105,
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Q2 = 3.5 ·104, and Q2,c = 2.3 ·105. The � used here is derived via perturbation theory to be [94, 95]
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where i, j, k 2 {x, y, z}, �(2) is the second-order nonlinearity of the material (�(2)
ijk

= 2dijk), and

Elm represents the electric field component polarized along m of the lth mode. The permittivity

is ✏, where ✏0 is the vacuum permittivity. Using a finite-element method simulation, we solve for

the mode profiles in a curved waveguide at the relevant wavelengths (see Fig. 6.3) and use them

to calculate |�|= 4 J�1/2. Using the above model, the theoretical e�ciency of our SHG process

is approximately 700% W�1. This discrepancy is likely a result of nonuniformity in the microring

waveguide dimensions at di↵erent azimuthal angles, which degrades overall phase-matching [96].

With improved Q-factors and optimized fabrication techniques, the conversion e�ciency may be

significantly improved.

6.1.1 Other demonstrations

This Chapter describes the first demonstration of doubly-resonant second-harmonic generation

(SHG) in SiC photonics. E�cient singly-resonant SHG has also been demonstrated in photonic

crystal cavities at telecommunications wavelengths [15, 79], enabled by the very high quality factor-

to-mode volume ratio. In a microdisk resonator [87] and an inverse-designed Fabry-Perot resonator

[97], chaotic Kerr combs have been spectrally translated from near-infrared and infrared to visible

wavelengths. Simultaneous second-harmonic generation and supercontinuum generation have been

observed in SiC waveguides [98] (Chapter 9).

6.2 Quantum frequency conversion

Photons are necessary as flying qubits in quantum information processing for long-distance commu-

nications and distributed quantum computation. However, the high-transparency window of silica

fibers is limited to the 1300 nm and 1550 nm infrared bands, whereas nearly all current solid-state

qubit candidates emit at other wavelengths. This has motivated a decade of development in quan-

tum frequency conversion (QFC) technology, with the goal of enabling a quantum network which

connects nodes operating at di↵erent wavelengths and allows long-distance transport of quantum

information.

Quantum frequency conversion of single photons emitted by a color center to telecommunication

wavelengths is possible by means of nonlinear second-order di↵erence frequency generation [99],

where the emitter (!e) and pump (!p < !e) photons generate a telecommunication photon (!T =

!e � !p). A single photon may be converted with high fidelity from !e to !T , i.e., the conversion
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Figure 6.3: Modal phase-matching for di↵erence-frequency generation. Left For a waveg-
uide height of 350 nm, sidewall angle of ✓ = 7�, and radius of 27.5 µm with SiO2 cladding, the phase-
matching condition (nT!T +np!p�ne!e)/2⇡ = 0 THz is achieved for a waveguide width of 725 nm.
Right The absolute value of the primary electric field component in the ring cross-section for each

mode. The spatial overlap diagram features the real component of
P

ijk
�
(2)
ijk
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⇤
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⇤
2jE3k +E
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2kE3j)

prior to integrating over the volume.

e�ciency is quantum-limited, for a critical pump power

Pp =
!p

16|�|2QeQpQT�p

where �p is the ratio of the decay rate into the waveguide over the total decay rate of the pump

mode [94]. Using �p = 1.93 um, �T = 1.55 um, �e = 860 nm (corresponding to the silicon vacancy

V1 center in SiC [16]) with �p = 0.5, and QT = Qp = 2 · Qe = 5 · 105, we calculate a critical

pump power of Pp = 0.3 mW. The coupling factor |�|= 2.4 J�1/2 now includes a product of three

separate fields [94] and is calculated using simulated pump and telecom TE00 mode profiles and a

TM20 mode profile (see Fig. 6.3) at the emitter wavelength, where the waveguide dimensions in a

27.5 um-radius, SiO2-clad microring are designed for phase-matching (i.e., to satisfy the condition

ne!e = nT!T +np!p, where nk is the e↵ective index of the mode with frequency !k). This di↵erence

frequency process utilizes the same nonlinear term as the SHG process, where the polarization of

the !e mode is chosen to match the orientation of the emitter dipole moment.



Chapter 7

Optical parametric oscillation

After describing the engineering of the second-order optical nonlinearity of SiC for doubly-resonant

second-harmonic generation, we turn to the demonstration of optical parametric oscillation (OPO)

in SiC photonics [10]. Unlike SHG, the demonstration of OPO requires significantly lower propaga-

tion loss due to the threshold-process nature of the e↵ect. Unlike SHG, which can in principle be

observed for arbitrarily low pump powers (provided one has su�ciently sensitive detectors), OPO

is a phenomenon that only occurs once a certain gain threshold is met. The power requirement for

this threshold scales inversely with the square of the quality factor.

As optical parametric oscillation is a predecessor of dissipative Kerr soliton formation, its first

demonstration was an essential stepping stone for soliton generation. On the other hand, on-chip

OPO is in its own right useful for technologies such as e�cient wideband spectral translation [100]

and on-chip generation of non-classical light states [57] (see Chapter 2). Furthermore, the monolithic

integration of optical spin defects with a near-threshold OPO light source (i.e., parametric drive)

can enable the demonstration of new physical e↵ects in cavity quantum electrodynamics.

In this Chapter, we demonstrate on-chip �(3) optical parametric oscillation (OPO) and micro-

comb formation in high-purity semi-insulating (HPSI) 4H-SiC-on-insulator microring resonators.

This is enabled by resonator dispersion engineering, improved fabrication techniques resulting in Q

factors as high as 1.1 million, and compact inverse-designed vertical couplers for a broadband, high-

e�ciency free-space interface. We also perform a careful study of the intrinsic material absorption

of SiC, providing crucial information on the dominant sources of loss in high-Q photonic devices

based on SiC.

The device fabrication follows the process described in Ref. [16], with modifications to improve the

pattern-transfer fidelity and device Q factors. Instead of using HSQ e-beam resist, which su↵ers from

low reactive-ion etching selectivity against SiC, an aluminum hard mask (deposited via evaporation

and patterned with ZEP e-beam resist) is used. Combined with a low-power SF6 etch, this yields

a hard-mask selectivity of 9 (compared to 2 for HSQ). Using this method, devices in SiC films

69
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Figure 7.1: Microring resonators and inverse-designed vertical couplers in 4H-SiC-
on-insulator. (a) A scanning electron micrograph (SEM) of two SiC microring resonators (false-
colored) with diameters of 55 µm and 100 µm before SiO2 encapsulation. (b) A schematic of the
device cross-section after SiO2 encapsulation. (c) Transmission spectrum of a ring with diameter
100 µm, width 3.0 µm, and height 530 nm, around a TE00 resonance with an intrinsic Q of 1.1 · 106
and loaded Q of 9.7 · 105. The wavelength is relative to 1532 nm. (d) A close-up SEM image of
the inverse-designed vertical coupler, highlighted in (a). The coupler converts a near-di↵raction-
limited free-space Gaussian beam (focused via a 50x objective with NA = 0.5) into the fundamental
waveguide mode. (e) Camera image of the coupler operating at peak e�ciency, showing little back-
reflection from the input coupler, and a nearly-Gaussian beam at the output. (f) We measure the
single-mode coupling e�ciency to be 31% at the target wavelength of 1550 nm, in close agreement
with finite-di↵erence time domain (FDTD) simulation.

as thick as 1.5 µm can be fabricated. Figure 7.1a shows microring resonator devices before oxide

encapsulation. Q factors as high as 1.1·106 are measured (Fig. 7.1c), which corresponds to waveguide

loss of 0.38 dB/cm. Routing light to and from the chip is done via e�cient and broadband inverse-

designed vertical couplers [101, 93], with a peak single-mode coupling e�ciency of 31%, as illustrated

in Fig. 7.1(d-f). Accurate pattern transfer and high aspect ratio nanostructures enabled by the

new fabrication approach were essential for the demonstration of the close agreement between the

simulated and measured e�ciency at the target wavelength of 1550 nm.

The waveguide loss of 0.38 dB/cm presented here approaches the previously reported upper

bound of 0.3 dB/cm on the intrinsic absorption of 4H-SiC [80]. To identify the dominant source

of loss in high-Q SiC devices, we perform high resolution characterization of the intrinsic absorp-

tion of SiC via photothermal common-path interferometry (PCI), which has been used to detect
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Figure 7.2: Measurement of the intrinsic loss of 4H-SiC. (a) Diagram of the PCI measurement
setup, described in detail in Ref. [18]. (b) A crystal of 4H-SiC with dimensions of 5 ⇥ 5 ⇥ 10 mm
undergoing the absorption measurement. Multiple reflections of the red probe laser inside the crystal
are visible.

absolute absorption down to 1 ppm/cm [18]. In PCI, a low-power probe beam is used to sense

the heating e↵ect from the absorption of a high-power pump beam, as shown in Fig. 7.2a. The

pump beam, with comparatively smaller waist, is chopped, periodically modulating the heating ef-

fect, which induces self-interference of the probe beam via the photothermal e↵ect. We perform

absorption measurements on sublimation-grown HPSI 4H-SiC (Shanghai Famous Trade Co. LTD)

with resistivity exceeding 105 ⌦·m (Fig. 7.2b). The measured absorption is shown in Table 7.1.

We note that the absolute accuracy of PCI requires a low-transparency calibration sample or pre-

cise knowledge of material properties, including the refractive index, the thermo-optic coe�cient,

the coe�cient of thermal expansion, and the thermal conductivity. Based on previously-reported

values of these parameters for 4H-SiC [92, 102, 103, 104, 105], we conservatively estimate the ab-

solute accuracy of the reported values to be ±25%. However, the relative precision is within 1%.

This allows us to observe wavelength-dependent anisotropy in absorption (3.7 at 1550 nm and 2.0

at 1064 nm). Such strong wavelength-dependent anisotropy suggests that residual crystal defects

with polarization-dependent near-IR and telecom absorption [106, 107, 108], rather than the bulk

SiC lattice, may be the dominant source of loss; however, further investigation is necessary. Our

high-resolution absorption measurements indicate that Q-factors exceeding 107 are possible in SiC.

Defect-free epitaxial SiC layers used in quantum technologies [108, 109, 110] may enable photonics

with even higher Q factors.

In order to generate degenerate four-wave mixing OPO, one must achieve frequency and phase

matching between the pump, signal, and idler modes in the resonator. The frequency matching

condition 2!p = !s +!i follows from conservation of energy. The phase matching condition ensures
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Table 7.1: Intrinsic optical loss of HPSI 4H-SiC

Wavelength Polarization Absorption (dB/cm)

1064 nm ? c-axis 0.063

k c-axis 0.031

1550 nm ? c-axis 0.074

k c-axis 0.020

proper volumetric mode overlap and, for OPO within one mode family of a microring, reduces to

the statement of conservation of angular momentum 2µp = µs + µi, where µ is the azimuthal mode

number [111]. The spectral characteristics of the OPO and subsequent microcomb are determined

by the dispersion relative to the pump mode (µp = 0)

!(µ) = !0 +
X

k=1

Dk

k!
µ
k

where the k
th-order dispersion is Dk. Here, D1 is the free spectral range (FSR) of the resonator.

When D2 dominates all higher-order terms and is positive (negative), the mode dispersion is said

to be anomalous (normal).

We engineer microrings to possess anomalous dispersion in the TE10 mode across the telecom-

munications band for broadband microcomb generation [24]. The dispersion calculations include

material anisotropy [92], and are performed in cylindrical coordinates to include the e↵ect of the

microring bending radius. For 100 µm diameter microrings, a target height of 530 nm and a width

of 1850 nm (with a sidewall angle of 10�) are chosen. To predict the OPO behavior, we obtain a

transmission spectrum across the full range of the tunable laser (1520-1570 nm), and extract the

dispersion of the TE10 mode by measuring the frequencies of the resonances. To measure dispersion

with high precision, we rely on a fiber-based Mach Zehnder interferometer, the free spectral range of

which is measured using an adaption of the radio-frequency spectroscopy method [112]. Figure 7.3a

shows the integrated dispersion Dint = !(µ)� (!0+D1µ) with respect to mode number, to visualize

all k � 2 dispersion terms. Numerical simulation of the integrated dispersion for the target microring

dimensions is plotted for comparison, showing agreement.

The intrinsic (loaded) Q factor of the TE10 mode is measured to be 2.7 · 105 (1.8 · 105). At

the OPO threshold power, primary sidebands emerge at µ = ±12. As more power is injected

into the microring, a primary comb at the multi-FSR sideband spacing emerges (Fig. 7.3b). At

75 mW, spectrally-separated sub-combs are formed around the primary lines. At the maximum

injected power, the sub-combs fill out and interfere around the pump, which is evidence of chaotic

comb generation [24]. The thermo-optic e↵ect we observe in our devices may require the use of

active capture techniques [113] for soliton formation, and lithographic control of device structure
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Figure 7.3: Microcomb formation in a 4H-SiC microring. (a) Measured integrated dispersion
(green points) of the TE10 mode versus the relative mode number µ, where µ = 0 corresponds to the
pump mode. The orange curve is a numerical simulation, from which we extract D2/2⇡ = 61 MHz
and D3/2⇡ = �0.01 MHz. Center inset: Close-up of the measured dispersion datapoints. Left
inset: Numerical simulation of the TE10 mode cross-section. (b) Measured OPO spectra (blue)
at di↵erent injected powers, featuring three distinct stages in the microcomb formation. A sech2

fit (red envelope) is overlaid onto the chaotic frequency comb for comparison to the characteristic
soliton spectral shape. Simulation (red) of the soliton frequency comb.

can eliminate avoided mode crossings, which may otherwise impede soliton capture. Using the

experimental parameters of our device, we simulate the soliton frequency comb using the Lugiato-

Lefever equation [23], neglecting Raman and �(2) e↵ects. The simulated soliton is shown in the last

plot in Fig. 7.3b.

Finally, we measure the OPO power threshold in our devices and use it to determine the nonlinear
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refractive index (n2) of 4H-SiC. The power threshold of the OPO is defined as the power injected

into the pump mode at which the primary sideband emerges. This threshold is determined by the

loss and the confinement of the three modes

Pth =
!0n

2

8⌘n2c

Vp
QL,sQL,iQL,p

(7.1)

where n is the modal refractive index, V is the mode volume, and ⌘ = QL,p/Qc,p where Qc,p accounts

for coupling losses from the pump mode to the waveguide [100]. In this demonstration, we use the

TE00 mode of a 55 µm diameter ring resonator with the same cross-section as before. Although the

dispersion is normal for the fundamental TE mode, pumping at an avoided mode crossing allows us

to achieve frequency matching [114] and to generate OPO, while benefiting from the higher quality

factors of the fundamental mode. By optimizing the pump power such that the OPO threshold

is reached exactly on resonance, we measure a threshold of 8.5 ± 0.5 mW. Using the simulated

mode volume and measured quality factors, we extract a nonlinear refractive index for 4H-SiC of

n2 = 6.9± 1.1⇥ 10�15 cm2/W at 1550 nm, consistent with previous studies [115, 116].



Chapter 8

Soliton microcombs

In this Chapter, building on the demonstration of OPO in Chapter 8, we describe the first demon-

stration of a soliton microcomb in SiC photonics. In Part I of this Dissertation, we used soliton

microcombs generated in SiC to explore their fundamental quantum properties. However, there

is strong motivation to generate soliton microcombs in SiC for classical comb technologies. The

dissipative Kerr soliton has become the foundation of multiple technologies, including comb-based

spectroscopy [2], LiDAR [117], optical frequency synthesizers [118], and optical processors [5]. As

will become evident in this chapter, SiC is uniquely suited for low-power Kerr soliton operation. SiC

possesses a high linear and nonlinear refractive indices [10] (n = 2.6 and n2 = 6.9 · 10�15 cm2/W at

1550 nm), which makes it suitable for highly e�cient, compact Kerr photonic devices. However, the

tight confinement and high material index of integrated waveguides make them susceptible to scat-

tering losses caused by surface roughness. We demonstrate the fabrication of SiC microresonators

with smooth sidewalls and strong confinement with high quality factors. The fabricated microring

resonators have a radius of 100 µm, height of 500-600 nm, and width of 1850 nm.

To fabricate SiC resonators, thin films of monocrystalline 4H-SiC are used [16]. Bulk high-purity

semi-insulating (HPSI) SiC crystal was purchased from Cree Inc. The devices are patterned via e-

beam lithography using ZEP52A e-beam resist (Zeon Corp), combined with an aluminum hard-mask

to increase the SiC etching selectivity [10].

8.1 Cryogenic operation

We cool the device to 4 K to reduce the thermo-optic response in order to access bright soliton

states via adiabatic pump frequency tuning [31]. We use a closed-cycled Montana cryostat with a

three-axis piezo stage for the sample to sit. Light is coupled on and o↵ the chip via inverse-designed

vertical couplers [10]. Free space access is performed through a cryogenic-compatible doublet lens

(Fig. 8.1). The light is injected and collected using single mode fiber couplers. The top cryogenic

75
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chamber window is anti-reflection coated for operation at telecommunications wavelengths. The

coupling e�ciency from the single mode of the fiber into the bus waveguide was measured to be an

average of 18 % across the set of characterized devices.

Figure 8.1: Cryostat configuration. Photograph of the closed-cycle cryostat used to achieve 4 K
operation of the device. The sample sits inside a radiation shield where the doublet sits atop. The
final enclosure features an AR-coated window at the top. Inset: view of the imaging doublet lens
from below.

We first check the influence of cryogenic operation on key system parameters, including the

quality factors and dispersion [31]. Figure 8.2 shows the result of tracking the resonance wavelength

of a mode from room temperature to 4 K. As expected, the resonance experiences a blue shift as

it is cooled. The mode shifts by 330 GHz (2̃.7 nm). At each temperature, we extract the drop in

transmission and linewidth of the resonance to extract the intrinsic and coupling quality factors.

While there is some variation in the quality factors across the scan, the average stays constant. The
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variation is likely attributed to temperature tuning induced avoided mode crossings with other mode

families of lower quality factor. We observe no di↵erence in the measured dispersion with the change

in temperature.

Figure 8.2: Temperature dependence of the quality factor and resonance frequency. Top:
Resonance wavelength versus stage operation temperature for a single resonance. The stage is
equipped with a local heater to tune the temperature. Bottom: Measured intrinsic and coupling
quality factors versus temperature for the same resonance.

From the frequency shift, the e↵ective thermo-optic coe�cient @n/@T can be retrieved if @⌫/@n

is calculated via an eigenmode solver [119]:

@n/@T = (@⌫/@n)�1
@⌫/@T

where T is the temperature and ⌫ is the frequency. We note that the shift includes a contribution

from thermal expansion, though the coe�cient of thermal expansion for 4H-SiC is an order of

magnitude lower than the thermo-optic coe�cient at room temperature. We find that at 4 K, the

e↵ective thermo-optic coe�cient is reduced from its room temperature value by nearly three orders

of magnitude.
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8.2 Sub-mW parametric oscillation threshold

In the Chapter 7, we discussed the experimental details for the first demonstration of optical para-

metric oscillation in the platform. In this section, we show a significantly lower threshold, enabled by

lower propagation loss through improved fabrication methods of the devices [46]. The e�ciency of

the Kerr nonlinear interaction improves with higher quality factors of the optical resonator. For ex-

ample, the threshold relation for optical parametric oscillation in a microresonator can be expressed

in the following form:

Pth =
⇡n!0Ae↵

4⌘ n2

1

D1Q
2

(8.1)

where Q denotes the total Q factor (intrinsic loss and loading included) with pump mode frequency

!0, Ae↵ is the e↵ective mode area, ⌘ is the cavity-waveguide coupling strength, and D1 is the free-

spectral range (FSR) in units of rad/s. Zero detuning of the laser frequency with respect to the

pump mode frequency is assumed. The parametric oscillation threshold is inversely proportional

to the square of the Q factor. Fig. 8.3 shows a sub-milliwatt (approximately 510 µW) parametric

oscillation threshold of a SiC optical resonator featuring an intrinsic Q factor of 5.6 million with a

350 GHz FSR.

Figure 8.3: Sub-mW parametric oscillation threshold power (a) SiC parametric oscillation
induced by pumping at the wavelength of 1553.3 nm. Top panel shows OPO just above the threshold
power (510 µW total power in the waveguide). Middle and lower panels show measured optical
spectra with loaded pump power of approximately 570 and 600 µW, respectively. (b) High-resolution
scan of the fundamental TE mode with a loaded (intrinsic) quality factor of 3.19 (5.61) million. The
mode is seen to be nearly critically-coupled to the waveguide. The scan laser wavelength is calibrated
using a wavemeter, and the red curve is a fit to a Fano lineshape. The asymmetry of the resonance
shape is attributed to interference with back-reflection of the vertical couplers.
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8.3 Bright soliton

Figure 8.4: SiC soliton microcomb (a) The optical spectrum of a single soliton state with 2.3 mil-
liwatts operation power. (b) RF spectrum (resolution bandwidth = 100 kHz) of the entire soliton
comb confirms a low-noise state. (c) Measured frequency dispersion belonging to the soliton forming
mode family (TE00) is plotted versus the relative mode number. The red curve is a fit using D1/2⇡
= 358.663 GHz and D2/2⇡ = 8 MHz. Simulation of the soliton mode families is plotted (green
curve), and the simulation fairly agrees with the measurement results. (d) Upper panel presents
pump power transmission versus tuning across a resonance used for the soliton formation. Lower
panel shows comb power trace in which the pump laser scans over the resonance from the short
wavelength (blue detuned) to the long wavelength (red detuned). The shaded region (orange) de-
picts the spectral region where the single soliton exists.

Coherently pumped solitons in optical microresonators form as a result of the balance of the

Kerr nonlinear shift and the cavity dispersion, as well as the parametric gain and the cavity loss.

The soliton-forming mode family (in particular for bright solitons) in a microresonator must fea-

ture anomalous dispersion and minimal distortion of the dispersion (e.g., minimal avoided-mode-

crossings). The power requirement for soliton operation is inversely proportional to the total Q

factor of the mode family [112].

We demonstrate the generation of a dissipative soliton microcomb in a SiC microresonator.

Figure 8.4a shows the spectrum measured for a single-soliton state, and the soliton spectral shape

follows the square of a hyperbolic secant function. Small spurs in the spectrum correlate with the

avoided-mode-crossings in the mode dispersion spectrum (Fig. 8.4c), and the RF spectrum of the

single-soliton state confirms that it is a low-noise state (Fig. 8.4b). While tuning the laser through
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Material Q0 (M) FSR (GHz)
Soliton operation power
(OPO threshold) (mW)

Si3N4 260 5 ⇠ 20 Ref. [120]

Si3N4 8 194 1.3 (1.1) Ref. [121]

Si3N4 15 99 6.2 (1.7) Ref. [122]

SiO2/Si3N4 120 15 28 (5) Ref. [123]

LiNbO3 2.4 199.7 5.2 Ref. [124]

AlGaAs 1.5 450 1.77 (0.07) Ref. [125]

SiC 5.6 350 2.3 (0.51) Chapter 8

Table 8.1: Comparison of integrated soliton device performance

the resonance mode, the pump power transmission as well as the comb power (Fig. 8.4d) show a

step transition from modulation instability (MI) and a chaotic comb state to a stable soliton comb

state. The high Q SiC resonator enables a low operation power of the soliton microcomb of 2.3 mW:

Table 8.1 compares operation powers of various chip-scale soliton devices.

8.4 Soliton crystals

Soliton crystals, temporally-ordered ensembles of soliton pulses, have been observed in various optical

resonator platforms, and their dynamics as well as defect-free generation have been actively explored.

We demonstrate soliton crystal states with 2- and 7-FSR comb spacing, corresponding to phase-

locked lattice of 2 and 7 identical solitons, respectively. We characterize the soliton crystals through

the analysis of their optical spectra, RF beatnote, and second-order photon correlations. The 7-FSR

soliton crystal measurement is shown in Part 1, Chapter 4.

Figure 8.5 shows the OSA spectrum and RF beatnote noise of the 2-FSR soliton crystal state

that is studied in Chapter 4. In that Chapter, the RF beatnote of a single resonator mode is shown;

In Fig. 8.5, we show the RF spectrum of the whole comb. Sweeping the laser from blue- to red-

detuned, we observed a transition from a broad and noisy RF signal corresponding to the modulation

instability (MI) state, to a low-noise state, coinciding with the beginning of a discrete step in the

transmission trace across the cavity resonance.
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Figure 8.5: 2-FSR soliton crystal state (a) OSA spectrum of the soliton crystal state. Inset:
pump power transmission versus laser tuning when the pump laser wavelength is scanned from blue-
to red-detuned across the pump resonance. (b) RF spectra (resolution bandwidth = 100 kHz) of
the soliton comb (black) and MI comb (red).



Chapter 9

Supercontinuum generation

In this Chapter, we further extend the nonlinear light generation toolbox of SiC photonics to demon-

strate broad (2.8 octaves) supercontinuum generation in silicon carbide waveguides, with comb gen-

eration in the mid-infrared (as far as 3.8 um) [98]. The bandgap of 3.2 eV of the 4H polytype allows

use of the visible spectrum, while the optical transparency window extends beyond 5.5 um.

The principle behind supercontinuum generation is the extreme coherent broadening of an op-

tical spectrum from nonlinear e↵ects. One application of supercontinuum generation is to extend

combs into wavelength regimes which are di�cult to access with conventional lasers. For exam-

ple, with appropriate dispersion design, femtosecond pulses centered at 1600 nm can be used to

e�ciently generate a comb in the mid-infrared. By using an additional nonlinear process, such as

second-harmonic or third-harmonic generation, and beating its generated signal with light from the

broadened supercontinuum, the carrier-envelope o↵set frequency of the comb may be measured and

stabilized, known as self referencing. This enables one to precisely know the exact optical frequencies

of all teeth of the broadened comb (which may span many octaves, comprising millions of teeth), a

powerful instrument for spectroscopy. The key parameter which controls the shape of the generated

supercontinuum is the waveguide dispersion. One can control the integrated dispersion by tuning

the thickness and width of the SiC waveguides:

��(!) = �(!)� �(!0)� �1 ⇥ (! � !0) (9.1)

The dispersive waves will be generated at the zero-dispersion points in the spectrum [126]. Numeric

solutions of integrated dispersion for waveguides of di↵erent width are shown in Fig. 9.1.

We fabricate 4 mm-long 500 nm thick 4H-SiC waveguides encapsulated in SiO2, where the widths

of the waveguides are swept to measure di↵erent dispersion conditions (Fig. 9.2). The waveguides

are designed with inverse tapers at to optimize the edge-coupling to the fundamental TE mode.

The waveguide dimensions are chosen to feature anomalous dispersion for a pump wavelength of
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Figure 9.1: Dispersive wave phase-matching condition. Integrated dispersion versus wave-
length for waveguides with two di↵erent cross-sections. The zero-crossing point indicates the best
phase-matching for the dispersive wave. By tuning the waveguide width, the dispersive wave fre-
quency may be shifted.

1550 nm. The integrated dispersion is tailored to target dispersive wave generation in the mid-

infrared, between 3 um and 4 µm.

The pump pulse source is an erbium-doped fiber mode-locked laser emitting pulses of 70 fs, at

a rate of 100 MHz, centered at 1570 nm and with a free-space power of 300 mW. The generated

supercontinuum light at the end of the waveguide is collected via lensed fiber and measured on an

optical spectrum analyzer. We collect the mid-infrared region of the spectrum using a set of lenses

and fiber adapted for operation in that wavelength regime. The spectrum is then measured using

an optical spectrum analyzer with operation up to 2.4 µm and a Fourier-transform spectrometer for

the longer end of the spectrum.

Figure 9.3 shows measured supercontinuum spectra for two of the waveguides. The initial pump

spectrum is shown in blue. The red is the measured spectrum at the waveguide output. We observe

the expected broadening as well as dispersive waves generated around 3.2 and 3.8 µm, per the design

of the integrated dispersion. The system parameters are used to simulate the expected spectrum

via numeric solution of the nonlinear Schrödinger equation [127]. The spectra were measured for an

estimated on-chip pulse energy of 0.2 nJ, slightly lower than demonstrations of mid-IR dispersive

waves in silicon nitride [127] and aluminum nitride [128], suggesting that SiC is an e�cient platform

for this application. The integrated dispersion can be designed to be almost flat across the spec-

tral region of interest. In this configuration, we generate smooth continuum spanning 2.8 octaves

(Fig. 9.4). This spectrum was also obtained with an on-chip pulse energy of 0.2 nJ.

A frequency comb is defined by its repetition rate and the absolute o↵set of the comb, known
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Figure 9.2: Device under test. Scanning electron micrographs of SiC waveguides before encapsu-
lation with SiO2. (a) View from above of the waveguides. (b) View of waveguide cross-section and
sidewall roughness.

Figure 9.3: Supercontinuum generation into the mid-infrared. Measured (red) and simulated
(black) supercontinuum versus the initial pulse spectrum (blue). Top: Waveguide dimension of
980 nm width and 500 nm height. Bottom: Dimension of 1230 nm width and 500 nm height.
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Figure 9.4: Broad supercontinuum generation. Top: Simulated integrated dispersion for a
2000 nm by 500 nm waveguide. Bottom: Measured output spectrum versus the input pulse spectrum.

as the carrier-envelope o↵set (CEO) frequency. The repetition rate may be measured in a straight-

forward way by sending the pulses to a photodetector, but the CEO cannot be accessed directly. A

convenient way to measure it is via the self-referencing method: the principle consists in interference

between high-frequency comb lines and frequency-doubled low-frequency comb lines, measured on

a fast photodetector. The observed beating signal is the carrier-envelope o↵set frequency. This

technique requires a second harmonic process as well as an octave-spanning comb. As discussed

in Chapter 6, silicon carbide features an optical second-order nonlinearity and resonant second-

harmonic generation has been demonstrated. Using a similar phase-matching condition as in Chap-

ter 6, the supercontinuum waveguides were designed specifically for second-harmonic generation

from the TE00 mode at 1600 nm.

In the waveguides where phase-matching was engineered, there are peaks near the second-

harmonic frequency of the pump that shift with waveguide dimension (Fig. 9.5). The power of

the highlighted peak is measured against the input power; a quadratic relation with input power is

recovered, indicating that the peak is likely originating from second-harmonic generation. Depend-

ing on the second-harmonic generation phase-matching condition and the position of the dispersive

wave, di↵erent visible colors are observed scattering from the end of the waveguide (Fig. 9.6). Some

peaks are overlapped with the main body of the supercontinuum, suggesting that these devices may

be suitable for measuring and stabilizing the CEO frequency of the comb. A next step is to iden-

tify a waveguide dimension that simultaneously features self-referencing and dispersive waves in the

mid-infrared and to lock the CEO frequency of the mid-infrared comb for spectroscopy applications.
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Figure 9.5: Prospect for self-referencing. Simultaneous supercontinuum generation and second-
harmonic generation for di↵erent waveguide widths. The power of the highlighted peak is measured
against the input power; a quadratic relation with input power is recovered, indicating that the peak
is likely originating from second-harmonic generation.

Figure 9.6: Optical images during operation. Scattered visible light from waveguides of di↵erent
widths, where the photo is taken near or at the end of the waveguide.



Chapter 10

Multi-mode multi-emitter cavity

QED

In Chapters 7-10, we discussed three distinct classical photonics demonstrations utilizing the optical

nonlinearities of SiC. In this Chapter, we turn in a quite di↵erent direction to study one of the most

unique attributes of the material: SiC hosts optically-addressable crystal defects (color centers) with

very long spin lifetimes.

We detail the integration of stable and coherent color centers into thin-film integrated photonics

for the first time, using the SiC platform. We measure a whispering gallery mode resonator coupled

to two spin qubits, and study the multi-emitter multi-mode cavity quantum electrodynamics (QED)

unique to this system.

Color centers [129, 130, 131] are among the leading contenders for the realization of distributed

quantum information processing, including communication [132, 133] and computation [134], com-

bining a long-lived multi-qubit spin register [135] with a photonic interface in the solid state. To

continue scaling up quantum networks while maintaining high entanglement generation rates, the

intrinsically weak interaction between photons and color centers must be enhanced via integration

into photonic resonators [136, 137, 16, 133, 138, 139, 140]. E↵orts in cavity integration have already

enabled milestone demonstrations such as cavity-mediated coherent interaction between two emitters

[137], single-emitter cooperativity exceeding 100 and spin-memory-assisted quantum communication

[133]. The ultimate goal of quantum computation and error-protected communication [141] requires

the realization of photonic circuits with high complexity and minimal inter-node loss, and will require

bringing together all integrated photonics expertise developed in the past two decades [142].

Yet color center technologies cannot at present take advantage of the state of the art in integrated

photonics, due to two central challenges. First, thin-film-on-insulator photonics technologies have

been incompatible with high-quality color centers: this motivated the focus on bulk-crystal-carving
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methods [143, 136, 93, 144, 145], suitable for fabrication of individual devices but restrictive in terms

of large-scale monolithic photonic circuits. Second, absence of a first-order Stark shift, which renders

a defect’s optical transitions insensitive to electric field noise (as is the case for inversion symmetric

defects [146, 147]) had been widely considered to be a prerequisite for color centers to maintain

optical coherence in nanophotonic structures. This notion motivates the dominant focus on group-

IV color centers in diamond (SiV, SnV, GeV) [148]. While inversion symmetry is not in theory

needed for the absence of a first-order Stark shift [149], a non-polar, non-centrosymmetric defect

is yet to be identified experimentally. Among the materials that lack crystal inversion symmetry

is SiC [17], which has otherwise emerged as the top contender for wafer-scale integration of color

centers with excellent spin-optical properties (such as the silicon vacancy (VSi) [150, 151, 152, 153,

145] and the divacancy [110, 154]). The requirement of zero first-order Stark shift for maintaining

optical coherence in nanostructures has only recently been challenged in a demonstration of optically-

coherent VSi in bulk-carved SiC nanobeams [145].

In this Chapter, we demonstrate the integration of optically-coherent non-inversion-symmetric

color centers into scalable thin-film SiC nanophotonics. We demonstrate cavity cooperativity of a

single VSi color center of up to 0.8, allowing for the observation of dipole-induced transparency [155]

in SiC. We use this platform to demonstrate superradiant emission of two SiC color centers.

10.1 Optically-coherent color centers

The photonic device consists of a microdisk resonator integrated with a waveguide (Fig. 10.1(a)),

fabricated in 4H-SiCOI [16]. The high-Q transverse-magnetic (TM) modes of the resonator optimally

align with the dipole moment of the VSi in a c-cut wafer [150]. The coupling waveguide terminates

in a flat facet on both ends to allow for e�cient single-mode free-space coupling. We observe a

total coupling e�ciency from the waveguide to the single-mode fiber of up to 24%, which includes

all setup losses. The experiments are performed at 4.3 K in a closed-cycle cryostat (Montana In-

struments). The microresonator modes are tuned spectrally via argon gas condensation [156]. A

pulsed femtosecond laser centered at 740 nm is used to uniformly excite the emitters in the disk:

it couples to all resonator modes simultaneously, owing to its broad spectrum. As the microres-

onator is gas-tuned, an enhancement of emission at the VSi zero-phonon line (ZPL) wavelength of

916.5 nm (as observed via a spectrometer) indicates Purcell enhancement of one or more VSi. With

a resonator mode parked at the Purcell enhancement condition, we measure the absorption lines of

the coupled emitters via photoluminescence excitation (PLE), where a weak (0.5 pW in the waveg-

uide) continuous-wave resonant laser is scanned across the ZPL while detecting the phonon sideband

(PSB) of the emitters. A PLE scan shows that in this device, two emitters are coupled to the cavity

(Fig. 10.1b), henceforth labeled emitters A and B. The VSi is known to feature two spin-conserving

optical transitions, A1 and A2, split by 1 GHz [151]. We perform experiments with a weak o↵-axis
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Figure 10.1: Spectrally-stable VSi emitters in integrated 4H-SiCOI photonics. (a) Scan-
ning electron micrograph of the device. A waveguide, which wraps around the disk (seen in the
optical microscope image, inset), is coupled to the resonator. A microscope objective is used to
couple light to and from the flat facets of the waveguide. (b) A cavity photoluminescence spectrum
(emitter PLE spectrum) in black (green), taken with a scanning resonant laser with 1.5 µW (0.5 pW)
of power in the waveguide. We extract a loaded cavity quality factor of Q = 1.3 ·105. The prominent
peaks at 2.7 and 4.5 GHz detuning are the A2 transitions of the two emitters. The corresponding
A1 transitions are labelled with arrows. In this figure and henceforth, laser detuning is relative to
327.113 THz (916.5 nm). (c) Lifetime measurements for emitter A (blue) and emitter B (red) on-
and o↵-resonance with the cavity. The gray region represents the excitation pulse. (d) A 1-hour
PLE scan (3.6 s per line) of each emitter (while the other is selectively ionized into the dark state),
with the cavity positioned on-resonance with the emitter.

external magnetic field that mixes the ground-state spins, which renders the optical transitions no

longer spin-conserving, eliminating resonant-laser-induced spin-polarization. We focus our study on

the A2 transition of each emitter, which is brighter due to its higher quantum e�ciency [151]. We

optimize the magnetic field orientation to reduce the relative intensity of the A1 transition upon

resonant driving through coherent population trapping of the spin- 32 sublevels [157]. In order to

investigate the strength of cavity-waveguide coupling, we scan a laser at a higher power (1.5 µW in

the waveguide) to observe a dip in power on resonance. The absence of a cavity transmission dip

suggests that the resonator mode is strongly undercoupled to the waveguide. In order to observe

the cavity resonance, we take advantage of the fluorescence generated by the resonator surfaces that
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can be excited by a laser in the VSi ZPL wavelength range and can emit in the VSi PSB wavelength

range. Since the fluorescence is proportional to the power circulating in the resonator, the fluores-

cence intensity traces out the Lorentzian profile of the cavity mode, from which we extract a loaded

quality factor of 1.3 · 105 (Fig. 10.1b).

The emitter-cavity coupling rate is a key metric for cavity quantum electrodynamics systems.

We determine coupling strength of each emitter to the cavity by measuring the emitter lifetime

reduction on resonance, known as Purcell enhancement. First, we selectively ionize one emitter into

the dark state via strong resonant excitation, and tune the cavity on-resonance with the remaining

bright emitter. We then excite the emitter with 150 ps resonant pulses (obtained via pulse-shaping a

mode-locked Ti:Sapphire laser) through the cavity mode and detect the transient ZPL emission using

temporal filtering. As shown in Fig. 10.1(c), the on-resonance lifetime for emitter A (B) is measured

to be 4.2 ns (3.5 ns), which corresponds to a lifetime reduction of 2.7 (3.2) from the bulk lifetime

of 11.3 ns [19], and a Purcell enhancement F of 30 (39) [157]. From the simulated mode volume

of 128(�
n
)3 for the fundamental TM00 mode, we find the theoretical maximum Purcell enhancement

of 77 in this device. The observed Purcell enhancement is comparable to that achieved in the first

integration demonstrations of the diamond silicon vacancy [136, 158] and tin vacancy [139, 140] into

photonic crystal nanobeam cavities, despite the much stronger mode confinement of those devices.

We attribute this to the optimal dipole overlap of the VSi with the cavity TM mode and the less

stringent emitter positioning requirements of the microdisks. Via resonant pulsed excitation with

1 ns long pulses (generated from a continuous-wave laser using electro-optic amplitude modulation)

and detection of the PSB emission with the cavity detuned by �80 GHz, we measure the o↵-resonant

lifetime of emitter A (B) to be 10.7 ns (11.1 ns). The minor discrepancy between the o↵-resonant

lifetimes and the bulk lifetime (11.3 ns) is attributed to the coupling of the emitters to other modes

of the microdisk.

Although Purcell enhancement has been observed in several color center platforms [138, 159,

136, 158, 139], including thin-film diamond [160] and SiC [16], to date cavity-coupled color centers

that retain their optical coherence have only been demonstrated in bulk-carved diamond [136, 137].

To quantify the optical coherence and the spectral stability of the VSi in 4H-SiCOI microdisks, we

perform continuous PLE scans on each emitter while on- and o↵-resonance with the cavity. The

on-resonance PLE scans are shown in Fig. 10.1(d). Emitters A and B were measured at di↵erent

times, and the cavity was spectrally aligned with the measured emitter before the start of each one-

hour acquisition. Over the course of one hour, no emitter ionization is observed, and slow spectral

di↵usion is below 500 MHz. The average single-scan optical transition linewidth for emitter A (B) is

found to be 54.3(3) MHz (63.4(3) MHz), which corresponds to 17 MHz (18 MHz) of spectral di↵usion

beyond the transform limit. Repeating the measurement o↵-resonance, we find the emitter A (B)

linewidth to be 37.8(8) MHz (38.5(8) MHz), which corresponds to 24 MHz of spectral di↵usion

beyond the transform limit [157]. The reduced spectral di↵usion on-resonance may be due to a
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Figure 10.2: Dipole induced transparency (DIT) in SiC. (a) A wide laser scan across the
cavity resonance, showing the transmission spectrum through the device (black). The VSi phonon
sideband emission is simultaneously detected (green, multiplied by 50x). Excitation of the resonator
mode is performed through a scattering imperfection on the disk edge and transmission through
the waveguide is detected. (b) Close-up scan at the cavity center for di↵erent emitter detunings �.
Orange and green traces are o↵set by +0.1 and +0.2 MHz, respectively.

decreased rate of excitation of surface-related defects, because the well-confined TM cavity mode

is e�ciently excited with low laser power. These results indicate excellent spectral stability of the

nanophotonics-integrated VSi.

10.2 Dipole-induced transparency

From the measured Purcell enhancement and o↵-resonant emitter linewidths, we calculate the

emitter-cavity cooperativity C = 4g2

�
to be 0.6 and 0.8 for emitter A and B, respectively. This

regime enables the observation of dipoled-induced transparency (DIT) [155], where the VSi scatter

photons from an input coherent state. Because the device studied here is strongly under-coupled to

the bus waveguide, DIT is di�cult to observe through waveguide transmission. We instead excite

the disk through a scattering point on its edge, and detect transmission into the waveguide, thus in

e↵ect performing the measurement in a drop-port configuration [155]. Scanning the continuous-wave

laser across the disk resonance, DIT dips for both emitters are clearly observed, shown in Fig. 2(a,b).

The slow spectral drift of the emitters allows us to measure DIT for di↵erent relative detunings.

Looking forward, spin initialization, targeted emitter placement, and cavities with a larger Q/V

metric [16, 15] will enable stronger transmission contrast in DIT for the realization of spin-photon

entanglement and spin-readout via the modification of cavity reflectivity [137, 133].

10.2.1 Derivation for whispering gallery mode resonator

Dipole induced transparency is often explored for a system where a single cavity mode couples

to one or more emitters [155], which is the case for a nanobeam [136], two-dimensional photonic
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Figure 10.3: Input-output diagram for the microdisk. Bath and cavity operators for a disk
resonator coupled to a single bus waveguide along with a scattering port.

crystalm[15], or Fabry-Pérot resonator [161]. The whispering gallery mode (WGM) resonator is

distinct in that each resonance corresponds to two degenerate cavity modes. In this section, we

define a model to describe transmission through the WGM resonator in the presence of quantum

emitters. We describe our model in the clockwise (CW) and counter-clockwise (CCW) propagating

mode basis. These modes are degenerate with resonance frequency !0 and are described by cavity

mode annihilation operators aCW and aCCW. Using the input-output formalism [28], we write

the relations between the bath operators, including the scattering-defect excitation port used in

experiment (Figure 10.3):

bout =
p
caCCW + bin

cout =
p
caCW + cin

dout =
p
dD + din =

p
d(
p
↵ · aCW +

p
1� ↵ · aCCW) + din

Here, D is the resonator mode which the scattering port couples to fully. Note that it is not

necessarily a standing wave: D couples with strength ↵ to aCW and (1 � ↵) to aCCW. We have

defined two coupling rates: c between the resonator and the bus waveguide and d between the

resonator and the scattering channel. The emitters in the WGM resonator couple maximally to two

di↵erent standing waves:

S1 =
1p
2
[aCWe

i✓ + aCCWe
�i✓]

S2 =
1p
2
[aCWe

i� + aCCWe
�i�]

where ✓ and � define the azimuthal orientation (phase) of the standing waves relative to the excited

mode D. The emitters, modeled as a pair of two-level systems with associated annihilation operators
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�1 and �2, couple to these standing waves with coupling coe�cients g1 and g2. We write a non-

Hermitian Tavis-Cummings Hamiltonian which includes the decay of the emitters and the cavity:

HTC =(!0 +�� �/2� i�1)�
†
1�1 + (!0 +�+ �/2� i�2)�

†
2�2

+ (!0 � i)(a†CWaCW + a
†
CCWaCCW) +

h
g1S

†
1�1 + g2S

†
2�2 + h.c.

i

| {z }
HI

where !0 is the cavity resonance frequency, � is the frequency di↵erence between the cavity and the

center of the two emitters, � is the frequency di↵erence between the two emitters, �j is the linewidth

of the jth emitter (which includes all sources of decay and dephasing), and  is the total decay rate

of the cavity. We can explicitly write out the coupling term with respect to the CW and CCW

modes:

g1S
†
1�1 + g2S

†
2�2 =

g1p
2
(e�i✓

a
†
CW�1 + e

i✓
a
†
CCW�1) +

g2p
2
(e�i�

a
†
CW�2 + e

i�
a
†
CCW�2)

We can define coupling coe�cients:

G1 =
g1p
2
e
�i✓

, G2 =
g2p
2
e
�i�

and re-write the interaction term:

HI = (G1a
†
CW +G

⇤
1a

†
CCW)�1 + (G2a

†
CW +G

⇤
2a

†
CCW)�2 + h.c.

The Heisenberg equations for the two CW and CCW cavity modes are defined as

ȧCW = �i[HTC , aCW]� 

2
aCW �

p
ccin �

p
↵
p
ddin

ȧCCW = �i[HTC , aCCW]� 

2
aCCW �

p
cbin �

p
1� ↵

p
ddin

Then we can write all four Heisenberg equations (in the frequency domain):

�i!aCW = (�i!0 �


2
)aCW �

p
ccin �

p
↵
p
ddin � iG1�1 � iG2�2

�i!aCCW = (�i!0 �


2
)aCCW �

p
cbin �

p
1� ↵

p
ddin � iG

⇤
1�1 � iG

⇤
2�2

�i!�j = �i[(!0 +�+ (�1)j �
2
)� �j

2
]�j � iG

⇤
j
aCW � iGjaCCW
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The measurement of Figure 2 of the main text describes the transmission through the “drop” waveg-

uide formed between the input scattering point on the disk and the output bus waveguide:

tc = hcouti/hdini

tb = hbouti/hdini

We solve for aCW in terms of the input bath operators and use the expectation values of our input-

output equations:

hcini = hbini = 0

hcouti =
p
chaCWi

hbouti =
p
chaCCWi

We solve the system of equations to arrive at the following expressions:

tc =
�1�2

p
dc

�2 �  + � [
p
1� ↵ + �

p
↵�]

tb =
�1�2

p
dc

�2 �  + � [
p
↵ 

� �
p
1� ↵�]

where we have defined

�1(!) = [�i(! � !0 ��+ �/2) + �1/2], �2(!) = [�i(! � !0 ��� �/2) + �2/2]

 
+ = G

2
1�2 +G

2
2�1,  

� = G
⇤2
1 �2 +G

⇤2
2 �1

� = (�i(! � !0) + /2)�1�2 + |G1|2�2 + |G2|2�1

To account for the Fano shape observed experimentally in the transmission spectrum, we add a

coherent term with a defined phase ⇢ and amplitude B. We include the relative amplitude A with

an o↵set C:

Tc(!) = |A · tc(!) +B · ei⇢|2+C

Note that this equation does not account for the non-unity occupation probability[158] of the spin-

1/2 ground state (corresponding to the A2 transition). This results in an underestimate of the

coupling strength between the excited mode D and the emitter standing waves S1 and S2. In the

main text, the fits are performed as follows. The cavity and Fano parameters !0, , B, C, and

⇢ are fit to the wide scan data (Fig. 10.2(a)). These parameters are fixed for all other fits. For

each close-in scan in Fig. 2(b), the PLE measurement which is taken simultaneously is fit to extract

the parameters � and �. We set the values for g1 and g2 to those extracted from the lifetime
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measurements. In the DIT fit, the free parameters are ✓, �, ↵, and A.

10.3 Superradiance

Photon interference between two color centers, a prerequisite for the generation of remote spin-

spin entanglement, has been an outstanding challenge in SiC. Here, we demonstrate two-photon

interference between two microdisk-integrated emitters, which arises from their collective coupling

to the same cavity mode. To observe photon interference in the continuous wave regime, a tunable

above-resonant laser is coupled to a resonator mode around 730 nm to excite both emitters. We

note that while above-resonant excitation in bulk crystal has been used to obtain nearly transform-

limited photon emission from the VSi [152], we observe that in nanostructures it induces rapid

spectral di↵usion due to disturbance of the surface charge environment, broadening the optical

linewidths to approximately 0.5 GHz. This spectral instability reduces the rate of superradiant

emission (however, optical coherence may be preserved using resonant excitation, as shown later in

the work). Fig. 3(a) shows the second-order auto-correlation g
(2)(⌧) of the color centers’ collective

emission in the Hanbury Brown and Twiss configuration, where emission into the waveguide is

split between two detectors via a beamsplitter. The sharp peak at zero time delay is a signature

of superradiant emission and the probabilistic generation of entanglement between the two color

centers. This feature has also been observed with up to three waveguide-integrated quantum dots

[162, 163] and a pair of waveguide-integrated silicon vacancy centers in diamond [136, 164]. In

contrast, for cross-correlations between the two waveguide propagation directions, an anti-bunching

interference dip is observed (Fig. 3(b)). This feature is indicative of photon pairs preferentially

leaving the resonator in the same direction.

The experimentally-observed photon statistics are explained by the out-of-phase coupling of the

two emitters to a pair of degenerate clockwise and counterclockwise optical modes of the resonator.

The interaction Hamiltonian for this system can be written as

HI = gA�
†
A
SA + gB�

†
B
SB + h.c., (10.1)

where �A and �B are the lowering operators for emitters A and B, respectively, and gA and gB

are the emitter-cavity coupling strengths; each emitter couples to its own standing wave supermode

SA = (aCW + aCCW)/
p
2 and SB = (e�i�

aCW + e
i�
aCCW)/

p
2, where aCW (aCCW) is the clockwise

(counterclockwise) resonator propagating mode, and phase � corresponds to the emitters’ azimuthal

separation in the resonator. Consider two special cases: (i) for � = (0 mod ⇡), SA = ±SB and the

two emitters couple to the same standing wave mode, resulting in a single-mode interaction[137];

(ii) for � = (⇡/2 mod ⇡), SA and SB are orthogonal, and in the standing wave basis the emitters

are de-coupled. However, because the measurement is performed in the propagating mode basis

{aCW, aCCW} (corresponding to emission to the right and to the left, respectively), the pair of
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Figure 10.4: Superradiant emission of two VSi color centers. (a) Second-order correlation of
the photon emission along one waveguide direction displays bunching at zero time delay, a signature
of superradiance. Inset: zoom-in of the superradiance feature. Error bars represent standard error.
(b) The relative phase � of the emitters impacts the cross-correlation photon statistics between the
opposite waveguide directions and can produce anti-bunched emission. The solid line in a,b is the
numerical fit based on a five-level model [19] of the VSi (normalized to g

(2)(⌧ ! 1) = 1) (c) The
level structure representing the pair of two-level-system emitters decaying into degenerate clockwise
(red arrows) and counterclockwise (blue arrows) optical modes. The corresponding transition rates
are indicated next to the arrows, where � is the unmodified single-emitter decay rate into a propa-
gating mode. (d) Theoretically-predicted phase-dependent cross-correlation between clockwise and
counterclockwise modes for a pair of ideal two-level emitters. The inset shows a schematic of the
mode profile and the two emitters. The placement of the second emitter (relative to the first emitter,
yellow) corresponds to the three cases.

emitters exhibits interference for all values of �. For (� mod ⇡) 6= 0, the cross-correlation between

the two waveguide propagation directions will reveal interference features unique to a multi-mode,

multi-emitter system.

The collective emission behavior can be understood via a cascaded decay diagram shown in

Fig. 10.4(c). Starting with the two-emitter excited state |eei, emission into the clockwise mode

projects the emitters into the superposition state (ei� |egi + |gei)/
p
2. From this state, decay via

clockwise emission proceeds with the superradiant rate 2�, where � is the unmodified single-emitter

decay rate into a propagating mode. In contrast, the rate of counterclockwise emission is modified

by cos2 �, as follows from the transition amplitude hgg| (ei��A + �B)(ei� |egi+ |gei)/
p
2. When
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cos2 � = 0, photons leave the resonator always in the same direction, which corresponds to perfect

antibunching in the cross-correlation. For cos2 � = ±1, the cross-correlation is identical to the

autocorrelation on a single waveguide direction. These cases are illustrated in Fig. 10.4(d). The

correlation measurements (Fig. 10.4(a,b)) are fit to a reduced five-level emitter model [151, 53, 19]

with free parameters of excitation power, �, cavity detuning, and background noise. The presence

of background noise from the above-resonant excitation reduces the interference contrast.

In conclusion, we have demonstrated near-unity cooperativity between a color center and a

microresonator fabricated in a wafer-scalable, CMOS-compatible semiconductor photonics platform.

Additionally, we observe two-photon superradiance between two SiC color centers. The integration

of VSi into state-of-the-art microring resonators [46] and high-confinement photonic crystal cavities

[15] would enable deterministic emitter-photon interactions in SiC. Taken together with the recent

demonstrations of nuclear spin control [154, 145], wide spectral tuning via electric fields [110, 53] and

single-shot readout [165], SiC satisfies the prerequisites to implement a fully-monolithic quantum

photonic processor. The maintained spin-optical coherence of the VSi at elevated temperatures of

up to 20 K [145, 166] o↵ers an additional degree of flexibility for operation with low-cost cryogenic

systems. Finally, the spectral stability of the VSi, despite its substantial dipole moment [53], suggests

that a first-order insensitivity to electric fields is not a prerequisite for color center compatibility

with nanostructures.

10.4 Technological outlook

Most advanced spin-defect experiments to-date rely on the strategy of coupling emitted photons

directly into an optical fiber. However, for applications other than fiber network communications, a

photon in a fiber is not an advantage over a photon in an integrated waveguide: Practical realization

of the key components for quantum networks actually plays to the strengths of integrated photonics

rather than fiber optics. Integrated photonics have already achieved system complexity beyond what

can be practically realized in macroscopic fiber-based devices, integrating hundreds of elements

with mean fidelities of linear components exceeding 99.9% [167]. On-chip integration of single-

photon detectors has seen remarkable progress in recent years [168, 169, 170], and integration with

photonic resonators will likely enable narrowband integrated single photon detection with e�ciencies

exceeding 99% in the near future. The chip-integrated approach may prove to be the most promising

for large-scale quantum systems. This architecture is illustrated in Fig. 10.5.

In this fully-monolithic realization of chip-integrated spin-based quantum technologies, the pho-

ton never leaves the chip, never couples into a fiber or passes through lossy bulk active elements, and

is not subject to system fluctuations inherent in a large-scale macroscopic system. In fact, the photon

never leaves the waveguide into which the quantum node emitted it, because switching, interference,

and detection can all be realized in a waveguide geometry [169, 167]. Compact and e�cient on-chip
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Figure 10.5: Quantum photonic processor.A conceptual diagram demonstrating how the exam-
ple photonic network shown in Fig. 4.1b could be realized in a fully monolithic platform. In order to
account for non-unity fabrication yield, N redundant nodes are fabricated in the place of one node,
and a Nx1 switch (composed of cascaded 2x1 switches) selects one working node.

photon detectors can be placed anywhere in the integrated circuit to convert a (fragile) quantum

signal into a (robust) classical signal which can be routed o↵-chip via standard CMOS electronics

such as vias and buried electrical layers, aiding in the realization of circuit connectivity. The relative

simplicity of the integrated approach is a source of optimism for satisfying the extremely low loss

requirements of useful quantum photonic computation.

SiC-on-insulator is a promising candidate to realize a fully-integrated defect-based quantum

photonic processor, using high Q/V photonic crystal cavities, fast cryogenic optical modulators, and

integrated detectors. In order to overcome the challenge of non-unity yield, each quantum node

may consist of N redundant cavity-coupled spin-defect elements coupled to a bus waveguide. Using

this configuration, one can achieve post-selection without any additional cavity-waveguide losses, by

tuning all but one working node away from the quantum network operation frequency. If necessary,

a similar approach can be employed for post-selection of detectors (which are to be integrated

with low-Q resonators or long waveguides to maximize photon absorption probability). Each node

is electrically interfaced to tune the defect optical transition and to coherently manipulate the

spin. Fast cryogenic modulators and switches based on a directional coupler or resonator drop-filter

configuration can be integrated directly into the SiC platform, taking advantage of its electrooptic

e↵ect. Cryogenic integration based on this approach has only recently been demonstrated [171]. To

increase the bandwidth and decrease the footprint, an additional electro-optically active layer, such

as barium titanate (BaTiO3) [171], can be sputtered and patterned in an adiabatic taper atop the

SiC waveguide to minimize scattering loss. Finally, regardless of the optical frequency of operation

of the quantum processor, e�cient frequency conversion to the telecommunications band using the

strong intrinsic second-order nonlinearity of SiC (12 pm/V) [90] would prepare the optically-encoded
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quantum information for long-distance communication.



Conclusion

In Part I of this Dissertation, we started from the signal-idler quantum comb with a monochromatic

pump to build up a linearized formalism for describing the quantum fluctuations across the comb.

We extended this model to the multimode case describing the dissipative Kerr soliton. We then

used two-photon correlation measurements to validate this model for the below-threshold lines of

soliton crystals and study the correlations of states leading up to soliton formation. Identifying the

validity of the model permitted us to then theoretically study the structure and degree of quadrature

squeezing that exists across the below-threshold modes. Using a multimode squeezing formalism

(Bloch-Messiah decomposition), we found that a soliton crystal microcomb state across its entire

stability region features a high degree of quadrature squeezing in a supermode structure dominated

by two modes. We also found evidence that soliton crystals appear to decay in a coherent manner

as a threshold process: this result establishes that the squeezed supermode analysis of the below-

threshold quantum light is a means to gain further insight into classical comb dynamics. We note

that we have considered the simplest realistic configuration for soliton crystal formation. Additional

work must be done to analyze the e↵ects of Raman scattering [113, 68] and higher order dispersion

on the squeezing structure.

To experimentally test the findings of this work, several techniques may be applied. Measuring

the evolution of second-order photon correlations [46] across the step would validate the existence of

the threshold process as well as the formation of twin quantum combs. Coherence broadening of an

autocorrelation measurement at the end of the soliton crystal step, as observed in Chapter 2, would

provide evidence for the coherent threshold phenomenon. In the same autocorrelation, observation

of a bichromatic beatnote with the coherence of the quantum light would provide evidence for the

twin quantum combs.

Ultrafast imaging [7] could be used to observe the soliton crystal decay and potentially identify

whether the macroscopic state evolution reveals the distinction between the annihilation of soliton

crystals and non-crystallized multi-soliton states. A question of fundamental importance is whether

(N > 3)-FSR soliton crystals decay with specific selection rules. This could be readily studied

with the imaging measurement. Finally, the photonic molecule device proposed here for direct mea-

surement of out-coupled squeezing can be readily fabricated using current experimental capabilities

100
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[46, 72, 8, 66, 70, 71].

This study may also serve as a starting point for exploring the process by which the linearized

model breaks down. The unbounded growth of twin quantum combs in a soliton crystal transitioning

to the single soliton state is an unreconciled discontinuity within the linearized model. The experi-

mental observation of this discontinuity may give insights into the quantum parametric processes in

Kerr microcombs beyond the linearized model [37].

In Part II of this Dissertation, we have described various experimental demonstrations of non-

linear photonics using the SiCOI platform. The second-order nonlinearity was used for resonant

second-harmonic generation (SHG) in microring resonators, and then again for non-resonant SHG

in waveguides designed for supercontinuum generation. The third-order nonlinearity was employed

in Kerr comb and soliton microcomb generation, which enabled the quantum optics study in Part I

of this thesis, as well as supercontinuum generation with the comb extending into the mid-infrared.

Finally, we study multi-emitter multi-mode cavity quantum electrodynamics by collective coupling

of optically-addressable defects mediated by a thin-film whispering gallery mode resonator. As may

have been gathered by the motivations throughout these chapters, SiC is unique in its combination

of several material properties, and, with continued development will likely grow in its appeal both

for technological applications and fundamental studies.

Going forward, an exciting direction is to combine strongly-coupled defects and nonlinear light

generation in the same photonic resonator to explore new physical phenomena that were previously

possible to study only theoretically. For example, below-threshold OPO may be used for generating

entanglement with emitters, where one mode of the signal-idler pair is resonant with an emitter en-

semble [172]. Another direction is in situ generation of a single-mode squeezed state and its coupling

to indistinguishable few-emitter ensembles. Via bichromatic pumping of the neighboring modes and

careful control of the relative detunings, strong degenerate squeezing [64] may be generated in the

resonator mode used for Purcell enhancement of the emitters.
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crystal microcombs,” Optica, vol. 10, no. 6, pp. 694–701, 2023.

[46] M. A. Guidry, D. M. Lukin, K. Y. Yang, R. Trivedi, and J. Vučković, “Quantum optics of
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H. Park, D. Englund, M. Lončar, D. D. Sukachev, et al., “Experimental demonstration of

memory-enhanced quantum communication,” Nature, vol. 580, no. 7801, pp. 60–64, 2020.

[134] N. H. Nickerson, J. F. Fitzsimons, and S. C. Benjamin, “Freely scalable quantum technologies

using cells of 5-to-50 qubits with very lossy and noisy photonic links,” Physical Review X,

vol. 4, no. 4, p. 041041, 2014.

[135] C. E. Bradley, J. Randall, M. H. Abobeih, R. Berrevoets, M. Degen, M. A. Bakker,

M. Markham, D. Twitchen, and T. H. Taminiau, “A ten-qubit solid-state spin register with

quantum memory up to one minute,” Physical Review X, vol. 9, no. 3, p. 031045, 2019.

[136] A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar,

C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, et al., “An integrated diamond

nanophotonics platform for quantum-optical networks,” Science, vol. 354, no. 6314, pp. 847–

850, 2016.



BIBLIOGRAPHY 114

[137] R. E. Evans, M. K. Bhaskar, D. D. Sukachev, C. T. Nguyen, A. Sipahigil, M. J. Burek,

B. Machielse, G. H. Zhang, A. S. Zibrov, E. Bielejec, et al., “Photon-mediated interactions

between quantum emitters in a diamond nanocavity,” Science, vol. 362, no. 6415, pp. 662–665,

2018.

[138] A. L. Crook, C. P. Anderson, K. C. Miao, A. Bourassa, H. Lee, S. L. Bayliss, D. O. Bracher,

X. Zhang, H. Abe, T. Ohshima, et al., “Purcell enhancement of a single silicon carbide color

center with coherent spin control,” Nano Letters, vol. 20, no. 5, pp. 3427–3434, 2020.

[139] A. E. Rugar, S. Aghaeimeibodi, D. Riedel, C. Dory, H. Lu, P. J. McQuade, Z.-X. Shen, N. A.
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