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Abstract

Emerging technologies such as augmented reality, lidar, and mobile imaging have

opened a large market for complex, compact, and mass-producible optical systems.

Metasurfaces are a promising building block for such next-generation systems. These

flat optical elements can use subwavelength scatterers to control light, and can be

mass-produced in the same advanced semiconductor foundries that have enabled suc-

cessful scaling of consumer electronics. However, although metasurface functionality

can be experimentally demonstrated, simulating metasurfaces is a central challenge

in metasurface design.

This simulation challenge arises because metasurfaces typically span thousands

of wavelengths in linear dimension, rendering traditional electromagnetic simulation

techniques (e.g. Finite-Di↵erence and Finite-Element methods) intractable. Here,

we present a metasurface simulation distribution strategy that can preserve the sim-

ulation accuracy while allowing scalability to arbitrarily-large areas. Using this dis-

tribution strategy with a GPU-based implementation of the Transition-matrix (T-

matrix) method, we show a record-size 3-dimensional metasurface simulation (over

600� ⇥ 600�) that accurately accounts for scatterer-scatterer interactions signifi-

cantly beyond the commonly-used locally periodic approximation. We then demon-

strate gradient-based optimization of single and multilayer metasurfaces using our

distributed T-matrix method. Finally, we discuss using the distribution strategy

with Finite-Di↵erence Time-Domain solvers to handle arbitrary scatterer geometries.
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1.1 Scalability challenge for general-purpose full-wave electromag-

netic solvers. Simulation time vs simulation volume for a general-
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increase in simulation time as the simulation volume increases. Al-

though these general-purpose solvers can be useful for simulating pas-

sive silicon photonics devices and some active devices, the large simu-

lation volumes necessary to simulate full metasurfaces are intractable

for these general-purpose solvers. The inset images for the silicon pho-

tonics devices are from [57] (left) and [2] (right). The inset images for

active and nonlinear devices are from [25] (Copyright Optica 2019 -

reprinted with permission) (top) and [91] (Copyright Springer Nature

2005. Reprinted with permission.) (bottom). The inset image for

metasurfaces is from [4] (Copyright Springer Nature 2015. Reprinted
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1.2 Meta-atom library response curve and generation process.

Meta-atom library response curve of transmission and phase vs ra-

dius for meta-atom cells consisting of silicon cylinders with height with

height 220 nm, radii range of 175-280 nm, lattice period of 666 nm,

and background refractive index 1.66; source wavelength of 1340 nm

(from [33]). The upper panel depicts the computation of the transmis-

sion and phase values for the cylinder radius indicated by the vertical

dashed line in the response curve – the unit-cell of the cylinder is sim-

ulated with periodic boundary conditions to give the field that would

be obtained from an infinite array of this cylinder. From this unit-cell

field, a single complex value for the transmission response is computed

– the transmission is the absolute value and the phase is the angle of

this complex number. This process is repeated for a set of cylinder

radii and the transmission and phase values are interpolated to arrive

at the library response curve. . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Aperiodic metalens design process from periodic scatterer li-

brary. (a) Schematic of the phase di↵erence required for a metasurface

to transform an incoming plane wavefront to a spherical wavefront con-

verging to a point at a distance f away from the metasurface – this

metasurface is referred to as a metalens with focal length f . (b) Re-

quired phase change to implement a 30 ⇥ 30µm metalens with focal

length 20µm in a background with index 1.66. (c) Schematic of the

aperiodic metalens assembled by sampling the scatterer response li-

brary from Fig. 1.2 to determine the cylinder radius for each scatterer. 6
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1.4 Example computation of metalens focusing e�ciency using

the phase-sampling LPA approach. Simulation of the metalens

from Fig. 1.3 (left box) by computing the metasurface near-field by

sampling the periodic library response curve from Fig. 1.2 (center box),

and propagating this near-field to the focal-plane using an FFT (right

box). The metalens e�ciency is obtained by calculating the fraction of

the incident power is contained within the circle of radius 3 ⇥ FWHM

depicted in white in the right box. . . . . . . . . . . . . . . . . . . . . 7

1.5 Example computation of metalens focusing e�ciency using

the field-stitching LPA approach. Simulation of the metalens from

Fig. 1.3 (left box) by computing the metasurface near-field by stitching

together the unit-cell periodic simulation fields (as done in the top box

of Fig. 1.2) (center box), and propagating this near-field to the focal-

plane using an FFT (right box). The metalens e�ciency is obtained

by calculating the fraction of the incident power is contained within

the circle of radius 3 ⇥ FWHM depicted in white in the right box. . . 8

1.6 Example computation of metalens focusing e�ciency using

a full-wave FDTD simulator. Simulation of the metalens from

Fig. 1.3 (left box) by computing the metasurface near-field through an

FDTD simulation of the full metasurface (center box), and propagating

this near-field to the focal-plane using an FFT (right box). The met-

alens e�ciency is obtained by calculating the fraction of the incident

power is contained within the circle of radius 3 ⇥ FWHM depicted in

white in the right box. . . . . . . . . . . . . . . . . . . . . . . . . . . 9
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2.1 Nyquist sampling of bandlimited incident field. Schematic of

Nyquist sampling of the incident electric field, which is bandlimited to

the light-cone because it is propagating. . . . . . . . . . . . . . . . . 14

2.2 Padding study showing spatial locality of the jinc source. Per-

cent error in scattered field power versus spatial-extent of metasurface

included in the simulation for a single jinc source placed 10 µm (green),

5 µm (blue), and 0.5 µm (black) from the metasurface. The full meta-

surface is a 25 µm ⇥ 25 µm metalens with focal length of 10 µm, and

the surface size on the x-axis of this convergence plot refers to the

spatial-extent around the center of this metasurface that is included in

the simulation – the metalens scatterer library is shown in Fig. B.1b.

The y-axis relative error is computed assuming the simulation includ-

ing the full metasurface is the converged result. . . . . . . . . . . . . 15

2.3 Subregion size and padding. Schematic of the definition of sub-

region size and padding for the subregion simulations. The subregion

size (depicted by the blue rectangle) defines the number of jinc sources

included in a given subregion simulation. This size is chosen based on

available computational resources. The padding size (depicted by the

dotted-red rectangle) is additional area included in the subregion sim-

ulation to account for the full extent of the subregion’s outermost jinc

sources. This padding area overlaps with adjacent subregions and is

determined by a jinc source localization study like the one performed

in Fig. 2.2. The total linear dimension of each subregion simulation is

then subregion
size

+ 2⇥ padding. . . . . . . . . . . . . . . . . . . . . 16
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2.4 Low-overhead parallelization scheme to allow simulation of

arbitrarily large metasurfaces. Schematic of the simulation distri-

bution scheme — the incident field is first sampled and represented as

a superposition of jinc sources, and then smaller groups of jinc sources

and the locally surrounding metasurface regions are simulated on in-

dependent GPUs. This scheme is very low-overhead because the GPU

compute-nodes only need to communicate once when the subregion

information is distributed and once when the subregion simulations

complete. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Parallelization method scales linearly with number of com-

pute nodes. Total simulation time versus number of V100 GPU’s

used for simulation for a 50 µm (black), 100 µm (blue), and 300 µm

(green) metasurface. All metasurfaces have focal length of 25µm and

are designed from a library of silicon cylinders with height 940 nm,

radii range of 50-250 nm, lattice period of 1070 nm, air background,

and source wavelength of 1550 nm (based on scatterer library from[5])

– the metalens scatterer library is shown in Fig. B.1b. . . . . . . . . . 18

3.1 Basis functions for metasurface simulations. (a) Depiction of

the position-domain discretization used when applying most general-

purpose electromagnetic solvers to metasurface simulation. (b) Depic-

tion of spherical harmonic basis for metasurface simulation. Since the

subwavelength scatterers composing a metasurface do not introduce

large angular momenta, this basis provides a more compact system of

equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
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3.2 Application of T-matrix method on spherical harmonic basis

functions. (a) Schematic of T-matrix method applied to a single scat-

terer. The incident and scattered fields are expressed on the spherical

harmonic basis functions, and the T-matrix is analytically computed

from the permittivity and geometry of the scatterer. (b) Schematic of

T-matrix method applied to multiple scatterers. The scattered field

from all other scatterers is incorporated into the incident field for a

given scatterer, yielding a linear system of equations for the scattered

field coe�cients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 GPU Parallelization for T-matrix simulation. Schematic of the

distribution of the matrix-vector product on the left side of Eq. 3.9

across a GPU, such that this linear system of equations can be solved

implicitly using GMRES for better e�ciency. Each thread (grouped as

thread blocks) is assigned to perform the computation of the product

between one row and the vector with the thread computing any matrix-

elements required and discarding them once the computation is done.

The matrix ⌦ is of size NF ⇥NF and the vector s is of size NF ⇥ 1,

where N is the number of scatterers and F is the number of spherical

basis functions – a total of N ⇥ F GPU threads are launched. . . . . 27
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3.4 CPU vs GPU Implementation of T-matrix simulation. Com-

parison of the solve time between the CPU and GPU implementations

for a 2D array of cylinders located at randomly chosen positions within

a rectangle of the specified linear dimensions. The error bars indicate

the spread in the solve time in between 10 di↵erent randomly chosen

configurations of the cylinders for the same linear dimension. Note that

both GPU and CPU simulations are performed with GMRES with a

residual of 10�6. All the GPU simulations were performed on GTX

Titan Black with 6GB memory. This figure is reproduced here from [86]. 28

xvii



3.5 Comparison of T-matrix method simulations with locally-periodic

assumption (LPA) simulations. (a) E�ciency versus focal length

for 25 µm ⇥ 25 µm metasurfaces designed from a library of high-aspect

ratio scatterers with a large period (silicon cylinders with height 940

nm, radii range of 50-250 nm, lattice period of 1070 nm, and air back-

ground; source wavelength of 1550 nm – based on scatterer library

from [5]) — e�ciencies are computed using the T-matrix approach

(blue dots), the commonly-used LPA phase sampling approach (black

curve), and the LPA field-stitching method (green curve). The met-

alens e�ciency is defined as the ratio of the power within a circle of

radius 3 ⇥ FWHM in the focal plane to the power incident on the

metasurface. The T-matrix and LPA-stitching methods agree fairly

well here because the scatterers are high-aspect ratio and the lattice

constant is large, hence the interactions between neighboring scatter-

ers is negligible. (b) E�ciency versus focal length for 15 µm ⇥ 15

µm metasurfaces designed from a library of low-aspect ratio scatterers

with a small period (silicon cylinders with height 220 nm, radii range

of 175-280 nm, lattice period of 666 nm, and background refractive in-

dex 1.66; source wavelength of 1340 nm – using scatterer library from

[33]) — e�ciencies are computed using the T-matrix approach (blue

dots), the commonly-used LPA phase sampling approach (black curve),

and the LPA field-stitching method (green curve). The metalens e�-

ciency is defined as the ratio of the power within a circle of radius 3 ⇥

FWHM in the focal plane to the power incident on the metasurface.

The T-matrix and LPA-stitching methods do not agree here because

the scatterers are low-aspect ratio and the lattice constant is small,

hence the interaction between neighboring scatterers is significant. . . 30
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3.6 Large-area 1mm⇥ 1mm (645�⇥ 645�) metalens simulation.

(a) Center portion of the simulated 1mm⇥ 1mm metalens with focal

length 0.4mm (NA = 0.78) designed from a library of silicon cylinders

with height 940 nm, radii range of 50-250 nm, lattice period of 1070

nm, air background, and source wavelength of 1550 nm (based on scat-

terer library from[5]). The metasurface consists of 874,225 scatterers.

(b) X-component of the electric field in the focal plane of the large-

area metalens. The lens e�ciency is calculated to be 52%, where lens

e�ciency is defined as the ratio of the power within a circle of radius 3

⇥ FWHM in the focal plane to the power incident on the metasurface.

(c) Computation time for the key stages of the large-area 1 mm ⇥ 1

mm metasurface simulation: top row – computing the Look-Up Tables

(LUT) used to e�ciently perform T-matrix simulation (Section 3.3);

middle row – computing the T-matrices (Section 3.3) and solving the

resulting linear system of equations for the scattered field coe�cients

(Eq. 3.8); bottom row – computing the E and H fields from the scat-

tered field coe�cients for each desired detector point (Eq. 3.2). The

simulation is performed on 48 V100 GPUs and is distributed between

these compute nodes using a subregion size of 20 µm ⇥ 20 µm and a

padding of 6.5 µm, resulting in 2601 subregion simulations. . . . . . . 32
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3.7 Metalens design as an optimization problem. Schematic of the

metalens design problem posed as an optimization problem. We start

with an incident field, a design area for the metasurface, and a target

field at the detector plane. We then iteratively optimize the design in

the metasurface design area to improve its ability to generate our de-

sired target detector field profile. For the metalens design problem, this

target detector field profile (�(x) could be the gaussian field depicted

here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.8 Optimization-based metasurface design procedure. Schematic

of a single iteration in the iterative procedure for optimization-based

metasurface design. In the forward pass of this process, the parametriza-

tion of the metasurface design area is passed into the metasurface sim-

ulator, which passes its computed fields to the objective function for

evaluation. In the backward pass of this process, the gradient of the

objective function with respect to the field is passed back to the sim-

ulator, which computes the gradient of the field with respect to the

metasurface parameters. Using the chain rule, the final result of this

backward pass is the gradient of the objective function with respect

to the metasurface parameters. This gradient is used to update the

metasurface design such that the objective function is improved. . . . 34
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3.9 GPU thread-allocation schemes for adjoint gradient computa-

tion. Schematic of the GPU thread allocation schemes, in which each

colored rectangle depicts a GPU thread. M is the number of position

components, N is the number of scatterers, and F is the number of

spherical basis functions. (a) Scheme for @a
@qi

, @s
@qi

, and @�i
@qi

– a total of

M ⇥N ⇥ F GPU threads are launched. (b) Scheme for @�i
@qi

s – a total

of M ⇥ N ⇥ F GPU threads are launched. The banded structure of

@�i
@qi

is a result of Eq. 3.28. (c) Scheme for @�i
@pi

s – a total of M ⇥N ⇥F

GPU threads are launched. The banded structure of @�i
@pi

is a result of

Eq. 3.30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.10 Padding study for Huygens metasurface scatterer library. Per-

cent error in scattered field power versus spatial-extent of metasurface

included in the simulation for a single jinc source placed 0.1 µm from

the metasurface. The full metasurface is a 20 µm ⇥ 20 µm metal-

ens with focal length of 14 µm composed of scatterers from the low

aspect-ratio library in Fig. 3.5b (silicon cylinders with height 220 nm,

radii range of 175-280 nm, lattice period of 666 nm, and background

refractive index 1.66; source wavelength of 1340 nm – using scatterer

library from [33]). The surface size on the x-axis of this convergence

plot refers to the spatial-extent around the center of this metasurface

that is included in the simulation. The y-axis relative error is com-

puted assuming the simulation including the full metasurface is the

converged result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
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3.11 Distributed Gradient-based optimization improvement of met-

alens design. (a) Schematic of the cylindrical metasurface scatterers

in the initial metalens design and the 9 subregions used for the dis-

tributed optimization (subregion size of 10 µm ⇥ 10 µ m, and padding

size of 6 µ m). Fig. 3.10 is used to determine the padding size of 6 µ

m. This initial metasurface is a 30 µm ⇥ 30 µm metalens with focal-

length 20 µm designed from the low-aspect ratio scatterer library in

Fig. 3.5(b) using the traditional metasurface design approach.(b) Lens

e�ciency versus optimization iteration, where lens e�ciency is defined

as the ratio of the power within a circle of radius 3 ⇥ FWHM in the fo-

cal plane to the power incident on the metasurface. The metalens is 15

µm ⇥ 15 µm in size, and is optimized for x-polarized light only. In 35

optimization iterations, the metalens e�ciency is almost doubled. The

inset shows the X-component of the electric field in the focal plane be-

fore optimization (left) and after optimization (right). (c) Histograms

of the distance between the final scatterer positions and the initial

scatterer positions (left) and the absolute radius di↵erence between

the final scatterer cylinders and the initial scatterer cylinders (right).
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3.12 Compute-time for the distributed gradient-based metalens
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green – solving the linear system of equations for the scattered field

coe�cients (Eq. 3.8); red – computing the E and H fields from the

scattered field coe�cients for each desired detector point (Eq. 3.2);

purple – total time for forward simulation.(b) Computation time vs

optimization iteration for the key stages of the gradient calculation:

blue – solving the linear system of equations for the adjoint vector (Eq.

3.19); orange – computing the required finite-di↵erence derivatives and

using the adjoint vector to calculate the gradient with respect to the x

and y position of each scatterer center (Eq. 3.21); green – computing

the required finite-di↵erence derivatives and using the adjoint vector

to compute the gradient with respect to the radius of each scatterer

(Eq. 3.26); red – total time for all required gradient computation. . . 45
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the double-layer scatterer library. Percent error in scattered field

power versus spatial-extent of metasurface included in the simulation
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µm, and the surface size on the x-axis of this convergence plot refers to

the spatial-extent around the center of this metasurface that is included

in the simulation. The y-axis relative error is computed assuming the

simulation including the full metasurface is the converged result. . . . 46
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3.14 Distributed gradient-based double-layer metalens optimiza-

tion. (a) Schematic of the initial double-layer metalens design. The

metalens scatterers are Si cylinders with radii between 50-250 nm, and

thickness and lattice constant of 730 nm and 670 nm, respectively.

The illumination wavelength is 1340 nm and the background material

is glass. The side length of the device and the NA of the metalens were

fixed at 40 µm and 0.5, respectively. We created the bottom layer using

the conventional metasurface lens design. Then, we added the upper

layer composed of uniform array of nanoposts having a radius of 130

nm. The distance between the centers of the layers was 1.5 µm. (b)

Absolute e�ciency of the double-layered metalens versus optimization

iteration, where the e�ciency is defined as the ratio of the power within

a circle of radius 3 ⇥ FWHM in the focal plane to the power incident

on the metasurface. All positions and radii of scatterers in both layers

are simultaneously optimized using the gradients in order to improve

the e�ciency. The inset shows the intensity of the x-component of

the electric field in the focal plane before optimization (left) and after
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3.16 Changing from spherical to spheroidal basis functions to ad-

dress aspect-ratio limitation. (a) Schematic showing the minimum
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4.2 FDTD as a subregion solver. Schematic of using FDTD as the
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Chapter 1

Introduction

Being able to achieve full phase control of optical fields is a central challenge in optical

engineering, with diverse applications in imaging, sensing, augmented, and virtual re-

ality systems [50, 9]. Traditionally, free-space phase control has been accomplished via

refractive optics, wherein the di↵erent phases are achieved by varying the path length

of light propagating inside a high index material. However, the curved surfaces needed

for phase control in this refraction-based approach result in bulky elements that can-

not be mass-produced in semiconductor foundries. This large-footprint and expensive

production is very problematic for many of the next-generation technologies, such as

augmented reality, lidar, and mobile imaging, that require compact-footprint optical

elements and are meant to be consumer devices.

The past decades have seen a rapid development of metasurface-based optical el-

ements that exploit collective scattering properties of subwavelength structures for

phase-shaping the incoming fields and are significantly more compact and integrable

when compared to the conventional refractive optical elements [13, 100, 18, 39, 46, 49,

52]. Metasurfaces can provide phase control of electromagnetic fields in an utlrathin,

flat footprint – this flat footprint allows mass-production via semiconductor foundries,

1
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which dramatically reduces the price of manufacturing. Additionally, because meta-

surfaces can implement arbitrary phase-masks on the incoming light, they can be de-

signed for multiple functionalities. This compact footprint, mass-producibility, and

design flexibility make metasurfaces promising building blocks for next-generation

optical technologies.

There have been many promising experimental demonstrations of implementing

functionalities critical to next-generation technologies using metasurfaces. Metasur-

faces have been used to create OLED displays with the ultra-high pixel density re-

quired to preserve resolution in the small footprint of augmented-reality glasses [44],

and to implement a see-through display for augmented-reality [49]. Metasurfaces

whose response can be actively tuned have been demonstrated for beam steering

[68, 51, 38], for use in Lidar systems. Metasurfaces capable of full-Stokes polarime-

try [7, 30] and edge detection [98, 100] have been demonstrated for mobile imag-

ing and computation applications. There are even startup companies, such as met-

alenz (www.metalenz.com), producing commercial metasurfaces mass-produced in

foundries for mobile imaging and facial recognition.

1.1 Metasurface simulation bottleneck

Electromagnetic simulation is a key element of optical device design, particularly

because electromagnetic simulation is an excellent predictor for device experimental

performance [72]. General-purpose electromagnetic solvers such as Finite-Di↵erence

Time-Domain (FDTD) [87], Finite-Di↵erence Frequency-Domain (FDFD) [76], or Fi-

nite Element Method (FEM) [75] are the most commonly-used simulation approaches

because they are widely available in both commercial and open-source form and they

can handle a diverse range of applications. However, the simulation time and required
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memory for these general-purpose solvers very rapidly increase as the simulation vol-

ume increases (Fig. 1.1). Indeed, these general-purpose solvers discretize the spatial

domain of the simulation, giving a scaling of O(l2) where l is the linear dimension.

The grid-size for this discretization depends on the wavelength and refractive index,

and is typically smaller than �

10n where � is the shortest simulation wavelength and

n is the largest refractive index. This presents a challenge for simulating metasur-

faces, since practical metasurfaces are 102 - 103 � in the linear dimension, making it

impractical to use these general-purpose solvers.

Figure 1.1: Scalability challenge for general-purpose full-wave electromag-
netic solvers. Simulation time vs simulation volume for a general-purpose full-wave
finite-di↵erence solver, showing the extremely rapid increase in simulation time as the
simulation volume increases. Although these general-purpose solvers can be useful
for simulating passive silicon photonics devices and some active devices, the large
simulation volumes necessary to simulate full metasurfaces are intractable for these
general-purpose solvers. The inset images for the silicon photonics devices are from
[57] (left) and [2] (right). The inset images for active and nonlinear devices are from
[25] (Copyright Optica 2019 - reprinted with permission) (top) and [91] (Copyright
Springer Nature 2005. Reprinted with permission.) (bottom). The inset image for
metasurfaces is from [4] (Copyright Springer Nature 2015. Reprinted with permis-
sion.).
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1.2 Locally-periodic metasurface design and sim-

ulation

The most commonly adopted metasurface-design strategy proceeds in two steps. first,

a library of meta-atoms is generated by varying a few geometric paramters specifying

the meta-atom, and a library response curve for transmission and phase is computed

from periodic simulations of these meta-atoms (Fig. 1.2). These periodic simulations

are very e�cient because the meta-atom dimensions are typically sub-wavelength.

Since metasurfaces are often 102 - 103 � in the linear dimension, the field variations

within a single meta-atom cell are ignored and instead a single value for the trans-

mission and phase response is computed for the meta-atom by integrating over the

cell.

Next, an aperiodic meta-surface is generated by laying out the periodic meta-atoms

corresponding to the target spatially-varying phase profile [61, 3, 69, 93, 1, 6, 23, 31].

Fig. 1.3 illustrates this process for implementing a focusing phase-profile to design a

metalens.

Then, the goal is to estimate the performance of the metasurface design. The

most common performance metric used for metalenses is focusing e�ciency, which is

defined as the ratio of the power within a circle of radius 3 ⇥ FWHM in the focal

plane to the power incident on the metasurface. FWHM refers to the Full-Width at

Half-Maximum, which is defined as �

2NA
– � is the operating wavelength and NA is

the Numerical Aperture defined as
L
2 nbgq

f2+(L
2 )

2 , where L is the metasurface side-length,

f is the focal length of the desired lens, and nbg is the index of the material in which

the scatterers are embedded. In order to compute the desired performance metric,

such as the focusing e�ciency, the we must compute the optical fields after they pass

through the metasurface. In the following two sections (Sec. 1.2.1 and Sec. 1.2.2),

we discuss the two most common methods for this computation.
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Figure 1.2: Meta-atom library response curve and generation process. Meta-
atom library response curve of transmission and phase vs radius for meta-atom cells
consisting of silicon cylinders with height with height 220 nm, radii range of 175-280
nm, lattice period of 666 nm, and background refractive index 1.66; source wavelength
of 1340 nm (from [33]). The upper panel depicts the computation of the transmission
and phase values for the cylinder radius indicated by the vertical dashed line in the
response curve – the unit-cell of the cylinder is simulated with periodic boundary
conditions to give the field that would be obtained from an infinite array of this
cylinder. From this unit-cell field, a single complex value for the transmission response
is computed – the transmission is the absolute value and the phase is the angle of
this complex number. This process is repeated for a set of cylinder radii and the
transmission and phase values are interpolated to arrive at the library response curve.

1.2.1 Phase sampling

This approach is extremely computationally e�cient, making it the most popular

method for metasurface simulation today. Here, we simply sample the library response
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Figure 1.3: Aperiodic metalens design process from periodic scatterer li-
brary. (a) Schematic of the phase di↵erence required for a metasurface to transform
an incoming plane wavefront to a spherical wavefront converging to a point at a dis-
tance f away from the metasurface – this metasurface is referred to as a metalens
with focal length f . (b) Required phase change to implement a 30⇥ 30µm metalens
with focal length 20µm in a background with index 1.66. (c) Schematic of the aperi-
odic metalens assembled by sampling the scatterer response library from Fig. 1.2 to
determine the cylinder radius for each scatterer.

curve similar to the one in Fig. 1.2 to obtain the transmission and phase response

for each meta-atom in the metasurface. We use the transmission and phase to obtain

a field value te
i� just above each meta-atom – this is called the near-field. Then,

through multiplication of the free-space propagator in k-space, we propagate this

near-field to the focal-plane and use this focal-plane field to compute the focusing

e�ciency performance metric. For the metalens example in Fig. 1.3, we arrive at a

focusing e�ciency of 87% using this phase sampling approach (Fig. 1.4). However,
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in computing this focusing e�ciency, we have relied on two key assumptions in this

approach to reduce the computational complexity – approximating the scatterer-

scatterer interaction through periodic simulation of each meta-atom, and ignoring

the field variations within a single meta-atom cell.

Figure 1.4: Example computation of metalens focusing e�ciency using the
phase-sampling LPA approach. Simulation of the metalens from Fig. 1.3 (left
box) by computing the metasurface near-field by sampling the periodic library re-
sponse curve from Fig. 1.2 (center box), and propagating this near-field to the focal-
plane using an FFT (right box). The metalens e�ciency is obtained by calculating
the fraction of the incident power is contained within the circle of radius 3 ⇥ FWHM
depicted in white in the right box.

1.2.2 Field stitching

This approach removes one of the two key assumptions we made in the simple phase

sampling approach discussed in Section 1.2.1. Here, we still rely on the locally-

periodic approximation in which we attempt to account for scatterer-scatterer inter-

action through periodic simulation of each meta-atom. However, we no longer ignore

the field variations within a single meta-atom cell – instead, we perform the periodic

simulation for each meta-atom cell and store the full field above the cell. Then, we
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obtain the near-field by tiling together these meta-atom cell fields. Once again, we

propagate this near-field to the focal-plane to compute the focusing e�ciency. For the

metalens example in Fig. 1.3, we arrive at a focusing e�ciency of 60% using this field

stitching approach (Fig. 1.5). Thus, when we remove the single-value approximation

in Section 1.2.1, our estimated focusing e�ciency drops from 87% to 60%.

Figure 1.5: Example computation of metalens focusing e�ciency using the
field-stitching LPA approach. Simulation of the metalens from Fig. 1.3 (left box)
by computing the metasurface near-field by stitching together the unit-cell periodic
simulation fields (as done in the top box of Fig. 1.2) (center box), and propagating
this near-field to the focal-plane using an FFT (right box). The metalens e�ciency
is obtained by calculating the fraction of the incident power is contained within the
circle of radius 3 ⇥ FWHM depicted in white in the right box.

The metalens from Fig. 1.3 that we have been simulating in Fig. 1.4 and Fig.

1.5 is much smaller than a metasurface of practical interest (linear dimension of

30µm, as opposed to the mm to cm scale linear dimension of practical metasurfaces).

This allows us to remove the locally-periodic approximation as well by applying the

general-purpose electromagnetic solver FDTD to this metalens – when we do so, we

obtain a focusing e�ciency of only 16% (Fig. 1.6). However, as we have noted in Fig.

1.1, it is impossible to apply a general-purpose electromagnetic solver like FDTD to
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a practical metasurface due to the large simulation volume required.

Figure 1.6: Example computation of metalens focusing e�ciency using a
full-wave FDTD simulator. Simulation of the metalens from Fig. 1.3 (left box)
by computing the metasurface near-field through an FDTD simulation of the full
metasurface (center box), and propagating this near-field to the focal-plane using an
FFT (right box). The metalens e�ciency is obtained by calculating the fraction of
the incident power is contained within the circle of radius 3 ⇥ FWHM depicted in
white in the right box.

Thus, current metasurface simulation faces a tradeo↵ between computational ef-

ficiency and accuracy – techniques that rely on the locally-periodic approximation

are scalable but not accurate in cases where the phase profile is rapidly-varying (for

example, high-NA lens profiles) or sensitive to broken periodicity (for example, meta-

surfaces based on resonant e↵ects like the metasurface in Fig. 1.3, 3.5b, and 3.11).

General-purpose electromagnetic solvers provide accurate simulation results but are

not scalable to the large-areas required for practical metasurfaces.

1.3 Other metasurface design approaches

Generating the metasurface library for the commonly-used design approach discussed

in Section 1.2 becomes increasingly di�cult for multi-functional design problems. For



CHAPTER 1. INTRODUCTION 10

instance, while it is usually not di�cult to generate a library for designing a simple

phase-mask operating at a few operating modes [81, 6, 45], it becomes increasingly

di�cult to scale up the number of modes since the same metasurface is required to

simultaneously satisfy multiple design conditions corresponding to the di↵erent in-

put modes. Fully automating design of metasurfaces can provide a potential solution

to this problem. Gradient-based optimization has been successful in designing in-

tegrated optical elements that are more compact, robust and high performing than

their classical counterparts [63, 92, 90, 41, 77, 27, 72, 85].

However, due to the large size-scale of practically-interesting metasurfaces (Fig.

1.1), inverse-design approaches that use discrete general-purpose electromagnetic

solvers to simulate and design the full surface are limited to small design areas or

a small number of optimization iterations [12, 59], or restrict the parameter space

through a specific symmetry that allows for fast simulations [15, 56, 16]. Conse-

quently, nearly all the current methods for inverse-designing large-scale 3D metasur-

faces rely on approximate electromagnetic simulations of the metasurface locally using

either periodic or radiation boundary conditions [52, 55, 70, 17, 78, 71, 54, 79, 8, 96,

42, 43, 10], which do not accurately account for interactions between di↵erent meta-

atoms. These approaches are thus fundamentally limited to designing metasurfaces

with slow phase variations due to the implicit local approximation. A coupled-mode

formalism can also be applied for metasurface simulation and optimization [99] but

this approach is not guaranteed to yield exact fields, particularly for metasurfaces

with multiple low quality-factor modes.

1.4 Thesis overview

In this thesis, we propose and demonstrate a numerically accurate simulation strat-

egy that can be used to design and analyze large-area metasurfaces (Chapter 2). Our
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strategy relies on a distribution of the simulation method where the simulation time

scales linearly with the compute resources. This is achieved by a Nyquist-sampling

decomposition of the fields incident on the metasurface, similar to that used recently

to characterize the discrete impulse response of aperiodic metasurfaces [89]. Our

distribution strategy, by ensuring minimal communication between compute nodes,

allows for a linear reduction in the simulation time with the number of compute

nodes, indicating that arbitrarily large metasurfaces can be simulated in reasonable

time with su�ciently large number of compute nodes. On each compute node, we

implement a GPU-based transition-matrix (T-matrix) simulation[95, 94, 97] (Chapter

3). Though there are GPU-optimized FDTD implementations that allow fast simula-

tion of unit-cells up to 100 � ⇥ 100 � [40], these approaches do not currently provide

a low-overhead means of parallel simulation distribution. We demonstrate numeri-

cally accurate simulations of metasurfaces of size 1mm ⇥ 1 mm at a wavelength of

1.55µm (about 645� ⇥ 645�) on a cluster of 48 GPU nodes. With this distributed

T-matrix solver, we demonstrate the ability to e�ciently compute the gradients with

respect to both the geometry and the positions of the meta-atoms for both single-

and multi- layer metasurfaces, thus enabling the application of optimization-based

design to large-scale multi-layer metasurfaces. Finally, we demonstrate our distri-

bution strategy with an FDTD subregion solver, enabling large-area simulation and

optimization of arbitrary metasurface configurations (Chapter 4).



Chapter 2

Low-overhead distribution method

for large-area simulation

2.1 Nyquist Sampling of Propagating Incident Field

To simulate millimeter-scale metasurfaces, it is essential to parallelize the simulation

method across multiple compute nodes. In order to be scalable, however, this par-

allelization scheme should introduce only a modest communication overhead in the

simulation as this communication overhead can potentially o↵set any time savings

achieved due to the parallelization ([88, 37, 28]).

For metasurface simulations, however, by utilizing the property that the incident

fields generated by far-field sources will be within the light-cone in the k�space, a

parallelization strategy can be devised that requires minimal communication between

the compute nodes. The fundamental principle behind this parallelization is to repre-

sent the bandlimited incident field by its samples using the Nyquist sampling theorem

[48]. More precisely, consider an incident field propagating along the z�direction —

12
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the transverse polarization of this field, ET

inc
(x, y, z) at any z can be expressed as

ET

inc
(x, y, z) =

X

i,j

ET

inc
(xi, yj, z)fi,j(x, y) (2.1)

where xi, yj = i�/2, j�/2 with � being the wavelength in the background medium,

and fi,j(x, y) is a jinc function [34] centered at (xi, yj). The jinc function [34] centered

at (xi, yj) is defined in Eq. 2.2, where j1(·) is the first order spherical bessel function

and k0 is the wavenumber for the background medium.

jinc
i,j
(x, y) =

j1

✓
k0

q
(x� xi)

2 + (y � yj)
2

◆

k0

q
(x� xi)

2 + (y � yj)
2

(2.2)

Each term in the Nyquist decomposition can be considered to be an independent

source, which falls o↵ to zero with distance (Fig. 2.1), and the response of a meta-

surface to these individual sources can be obtained by considering only a spatially-

truncated portion of the metasurface in the simulation.

2.2 Locality of Incident Field Samples

The spatial locality of the incident field Nyquist samples is numerically demonstrated

in Fig. 2.2, in which we consider the scattered power obtained on exciting a meta-

surface with a single jinc source as a function of the size of the metasurface included

in the simulation. As the size of the metasurface is increased, the scattered power

converges, indicating that a local simulation is su�cient to capture the metasur-

face response. The size of the metasurface to achieve a particular accuracy in the

simulation is governed by di↵raction of the jinc source by the time it reaches the

metasurface.
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Figure 2.1: Nyquist sampling of bandlimited incident field. Schematic of
Nyquist sampling of the incident electric field, which is bandlimited to the light-cone
because it is propagating.

2.3 Parallelization using Nyquist Samples

To parallelize the simulation, we can then divide up the jinc sources that compose

the incident electric field into smaller groups, and simulate the local response of the

metasurface for each source group by performing an independent solve on a single

compute node. Since the jinc sources are spatially-localized, we only need to consider

a spatially-truncated subregion of the metasurface to compute its response to a given

group of jinc sources. The total size of the subregion simulation is determined by two

factors: the chosen subregion size and the required padding. The subregion size de-

termines how many jinc sources will be included in each subregion simulation, and is

chosen with the available computational resources in mind. Choosing a smaller sub-

region size will result in a larger number of faster and cheaper subregion simulations.

Choosing a larger subregion size will result in a smaller number of more expensive

subregion simulations. The padding size is the extra area included around the subre-

gion to ensure that the e↵ect of the jinc sources on the outer edge of the subregion is
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Truncated Surface size (um) 

Response to a single Jinc Field

Figure 2.2: Padding study showing spatial locality of the jinc source. Percent
error in scattered field power versus spatial-extent of metasurface included in the
simulation for a single jinc source placed 10 µm (green), 5 µm (blue), and 0.5 µm
(black) from the metasurface. The full metasurface is a 25 µm ⇥ 25 µm metalens
with focal length of 10 µm, and the surface size on the x-axis of this convergence plot
refers to the spatial-extent around the center of this metasurface that is included in
the simulation – the metalens scatterer library is shown in Fig. B.1b. The y-axis
relative error is computed assuming the simulation including the full metasurface is
the converged result.

fully captured. This padding area overlaps with the adjacent subregions, and its size

is determined by performing the jinc source spatial-localization study illustrated in

Fig. 2.2. Fig. 2.3 depicts the subregion size and padding for a group of jinc sources.

The subregion simulations performed on each compute node are of linear dimen-

sion subregion
size

+ 2 ⇥ padding – a smaller, computationally-tractable size. After

having performed all the subregion simulations, the electric fields obtained can be

added together to compute the total electric field due to the linearity of Maxwell’s
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Figure 2.3: Subregion size and padding. Schematic of the definition of subregion
size and padding for the subregion simulations. The subregion size (depicted by
the blue rectangle) defines the number of jinc sources included in a given subregion
simulation. This size is chosen based on available computational resources. The
padding size (depicted by the dotted-red rectangle) is additional area included in the
subregion simulation to account for the full extent of the subregion’s outermost jinc
sources. This padding area overlaps with adjacent subregions and is determined by
a jinc source localization study like the one performed in Fig. 2.2. The total linear
dimension of each subregion simulation is then subregion

size
+ 2⇥ padding.

equations. Importantly, this parallelization strategy is very low-overhead in that it

only requires communication between the compute nodes once at the start and once

at the end of the simulation – the parallelization scheme is depicted in Fig. 2.4.

We use RabbitMQ (https://www.rabbitmq.com) to create a queue of the meta-

surface subregion simulations and manage the distribution of these simulations to the

available GPU compute nodes in a fault-tolerant manner. The RabbitMQ message-

passing interface handles both the distribution of the subregion simulations and the

collection and summation of the resulting fields. In the event that a subregion simula-

tion does not successfully complete (for example, if a GPU compute node dies during

computation), the subregion simulation remains in the queue to be executed by the
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Figure 2.4: Low-overhead parallelization scheme to allow simulation of arbi-
trarily large metasurfaces. Schematic of the simulation distribution scheme — the
incident field is first sampled and represented as a superposition of jinc sources, and
then smaller groups of jinc sources and the locally surrounding metasurface regions
are simulated on independent GPUs. This scheme is very low-overhead because the
GPU compute-nodes only need to communicate once when the subregion information
is distributed and once when the subregion simulations complete.

next available compute-node worker.

2.4 Distribution method performance

In order to simulate millimeter and centimeter scale metasurfaces, we needed a simula-

tion distribution method that is both scalable and accurate. In this section, we assess

our distribution method’s performance. We study the scalability of our method by

benchmarking the simulation time as a function of the number of GPU’s used, and

find that the total simulation time scales as 1/Nnodes (Fig. 2.5). This is because

the distribution method is low-overhead and because each compute node performs
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roughly the same amount of compute. This 1/Nnodes scaling implies that, given suf-

ficient compute, this method can be used to simulate arbitrarily-large metasurfaces.

Timing Benchmarks

Figure 2.5: Parallelization method scales linearly with number of compute
nodes. Total simulation time versus number of V100 GPU’s used for simulation for
a 50 µm (black), 100 µm (blue), and 300 µm (green) metasurface. All metasurfaces
have focal length of 25µm and are designed from a library of silicon cylinders with
height 940 nm, radii range of 50-250 nm, lattice period of 1070 nm, air background,
and source wavelength of 1550 nm (based on scatterer library from[5]) – the metalens
scatterer library is shown in Fig. B.1b.

As shown in Fig. 2.2, the accuracy of the single-node subregion simulation can be

preserved by using an appropriate truncated surface size because of the spatial-locality

of the jinc sources. The appropriate truncated surface size depends on the scatterer

library, the number of layers, and the jinc source distance from the metasurface – it

can be e�ciently determined by performing the study in Fig. 2.2 for the metasurface
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design parameters of interest.

Now that we have verified that our distribution method is scalable and preserves

the accuracy of the single-node simulator, we must deploy a single-node simulator

that is e�cient and that accurately captures the scatterer-scatterer interactions. In

Chapter 3, we discuss using the transition-matrix method on spherical harmonic basis

functions as the single-node simulator. In Chapter 4, we discuss using FDTD as the

single-node simulator.



Chapter 3

Spherical harmonic

transition-matrix method as

single-node simulator

3.1 Motivation

Most of the general-purpose electromagnetic solvers like FDTD and FDFD work on

the position basis, meaning that the Maxwell operator needs an element for each

spatial point (Fig. 3.1a). For the case of metasurfaces, however, this is not the

optimal basis. Since metasurfaces are composed of subwavelength scatterers that

cannot introduce large angular momenta, working on the spherical harmonic basis

functions provides a more compact description of the system (Fig. 3.1b). A more

detailed mathematical description of the spherical harmonic basis functions can be

found in Appendix A.1.

20
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Figure 3.1: Basis functions for metasurface simulations. (a) Depiction of the
position-domain discretization used when applying most general-purpose electromag-
netic solvers to metasurface simulation. (b) Depiction of spherical harmonic basis for
metasurface simulation. Since the subwavelength scatterers composing a metasurface
do not introduce large angular momenta, this basis provides a more compact system
of equations.

3.2 Compact system of equations

The transition-matrix (T-matrix method) approach is depicted in Fig. 3.2. We begin

by expressing the incident and scattered fields from the ith single scatterer on the

spherical harmonic basis functions:

E(i)
inc(x� x(i)) =

X

j

a
(i)
j
R�j(x� x(i))

E(i)
inc(x� x(i)) = a(i)TR�(x� x(i)) (3.1)

E(i)
sca(x� x(i)) =

X

j

s
(i)
j
�j(x� x(i))

E(i)
sca(x� x(i)) = s(i)

T

�(x� x(i)) (3.2)

The incident field coe�cients from Eq. 3.1 can be related to the scattered field

coe�cients from Eq. 3.2 by the T-matrix:

s(i) = T(i)a(i) (3.3)
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The T-matrix depends only on the scatterer permittivity and geometry, and is com-

puted analytically using the Null-field method detailed in [26].

Collective scattering from multiple scatterers can then be addressed by including

the field scattered by all other scatterers in the incident field for a given scatterer:

E(i)
inc(x� x(i)) = a(i)TR�(x� x(i)) +

X

n 6=i

s(n)
T

�(x� x(n)) (3.4)

However, the basis functions in Eq. 3.4 are now written with respect to di↵erent

coordinate system centers. Translation coe�cients for the spherical harmonic basis

functions (⇠), the details of which can be found in Appendix A.1.2, remedy this by

allowing a basis function written with respect to one coordinate origin to be shifted

to another coordinate origin:

�(x� x(n)) = ⇠(i)(x(n)
,x(i))R�(x� x(i)) (3.5)

Using the translation coe�cients defined in Eq. 3.5, we can rewrite Eq. 3.4 as:

E(i)
inc(x� x(i)) = a(i)TR�(x� x(i)) +

X

n 6=i

s(n)
T

⇠(i)(x(n)
,x(i))R�(x� x(i))

E(i)
inc(x� x(i)) =

 
a(i) +

X

n 6=i

⇠(i)(x(n)
,x(i))

T

s(n)
!T

R�(x� x(i)) (3.6)

Now that we have expressed the total incident field on the ith scatterer all in

terms of basis functions centered on the ith scatterer in Eq. 3.6, we can apply Eq.
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3.3 to obtain the coe�cients of the field scattered from this ith scatterer:

s(i) = T(i)

 
a(i) +

X

n 6=i

⇠(i)(x(n)
,x(i))

T

s(n)
!

T(i)�1
s(i) �

X

n 6=i

⇠(i)(x(n)
,x(i))

T

s(n) = a(i) (3.7)

We can then write Eq. 3.7 in matrix form as:

2

6666666664

T�1
1 �⇠T (x1,x2) �⇠T (x1,x3) . . . �⇠T (x1,xN)

�⇠T (x2,x1) T�1
2 �⇠T (x2,x3) . . . �⇠T (x2,xN)

�⇠T (x3,x1) �⇠T (x3,x2) T�1
3 . . . �⇠T (x3,xN)

...
...

...
. . .

...

�⇠T (xN ,x1) �⇠T (xN ,x2) �⇠T (xN ,x3) . . . T�1
N

3

7777777775

| {z }
⌦

2

6666666664

s1

s2

s3
...

sN

3

7777777775

| {z }
s

=

2

6666666664

a1

a2

a3

...

aN

3

7777777775

| {z }
a

(3.8)

The matrix⌦ in the above system of equations is referred to as the ‘Maxwell operator‘,

since it is equivalent to expressing the frequency domain Maxwell’s equations on the

vector spherical wavefunction basis. Appendix A.2 details the expansion of the jinc

source from Eq. 2.1 on the spherical harmonic basis functions to compute the vector

a on the right-hand side of Eq. 3.8.

As can be seen in Appendix A.1.1, the spherical harmonic basis functions on which

the incident and scattered fields are expressed are indexed by the orbital number l

and the magnetic number m, with l 2 {0, 1, 2 . . . }, m 2 {�l,�l + 1, . . . l � 1, l}.

Since the subwavelength scatterers composing a metasurface cannot introduce large

angular momenta, the expansions of the incident and scattered fields Eqs. 3.1 and

3.2 can be truncated to a finite number of terms by ignoring contributions of basis

functions with l > lmax – this corresponds to using 2lmax(lmax + 2) basis functions.
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Indeed, we find that a fairly small lmax = 6 yields accurate results for metasurface

simulations. Thus, with only 96 basis functions for each scatterer, we can accurately

capture the scattering properties.

To summarize, the problem of solving the Maxwell’s equations has been reduced

to the problem of solving the linear system:

⌦s = a (3.9)

3.3 Numerical implementation

From a numerical perspective, the linear system in Eq. 3.8 is severely ill conditioned

due to the transition matrices being close to singular for small scatterers. This issue

can be mitigated using the following block diagonal preconditioner M:

M =

2

6666666664

T1

T2

T3

. . .

TN

3

7777777775

(3.10)

Instead of solving ⌦s = a(0), we solve M⌦s = Ma(0) (a system of equations similar

to those found in [60]). Validation simulations for our T-matrix simulation method

implementation are shown in Appendix Fig. A.1 — we see good agreement between

the T-matrix method, FDTD, and FDFD simulations.

We compute the T-matrices for each scatterer using the null-field method from

[26]. We use a numerical discretization of 0.0025 microns for evaluating the surface

integrals to compute the T-matrices, and we use lmax = 6 for truncating the spherical
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Figure 3.2: Application of T-matrix method on spherical harmonic basis
functions. (a) Schematic of T-matrix method applied to a single scatterer. The
incident and scattered fields are expressed on the spherical harmonic basis functions,
and the T-matrix is analytically computed from the permittivity and geometry of
the scatterer. (b) Schematic of T-matrix method applied to multiple scatterers. The
scattered field from all other scatterers is incorporated into the incident field for a
given scatterer, yielding a linear system of equations for the scattered field coe�cients.

harmonic basis functions on which we express the incident and scattered fields.

To obtain a more computationally-e�cient implementation of the T-matrix method,

we implement several optimizations often used in the field of computational engineer-

ing. First, we use an iterative algorithm (GMRES) to solve the system of equations

resulting from the T-matrix formalism — a major advantage of using iterative algo-

rithms is that they only require matrix-vector products which we program in a fully
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parallelized manner on GPUs. Furthermore, the computation of the T-matrix of the

individual meta-atoms as well as of the coupling coe�cients requires computing spe-

cial functions which can be time consuming. In our implementation, we precompute

lookup tables for these special functions before the start of the T-matrix simulation

which significantly cuts down the run-time of the full simulation.

Accelerating the solution of the resulting system of linear equations given in Eq.

3.9 using hardware accelerators such as GPUs has been an immensely successful

approach in scaling up partial di↵erential equation solvers. In this section, we describe

a simple approach to implement the transition matrix simulation on GPUs — in

particular, there are two issues that we address using common approaches from the

field of computational engineering:

1. Speeding up matrix solve: The matrix solve using GMRES relies on the ability

to perform matrix vector products (i.e. if we are solving Ax = b using GMRES,

we need to be able to compute the product of the matrix A with an arbitrary

vector x). For a N ⇥N dense matrix, this computation is an O(N2) operation,

and consequently speeding up this operation is a key component of scaling up

the simulator to larger systems.

2. Memory obstacle in precomputing the full matrix : The implementation de-

scribed in the previous section constructs the full Maxwell operator explicitly

as a matrix, and then performs the matrix vector products. While this might

work for small scale simulations (⇡ 15 µm in linear dimension for subwavelength

silicon scatterers while using a machine with 8 GM RAM), for larger simula-

tions the matrix would become too large to store in memory. So as to obviate

this issue, we would like to be able to perform matrix-vector products without

explicitly constructing the matrix.

To this end, we implement the matrix vector product with the Maxwell operator as
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a GPU operation (Fig. 3.3). The matrix elements are computed while performing the

matrix-vector product and discarded once the computation involving those elements

have been performed. While computing the kth element of the matrix-vector product,

the inner product of the kth row of the matrix with the vector needs to be computed —

in our implementation, we assign one GPU thread to handle one such inner product

so as to parallelize the matrix-vector product operation. This matrix-vector product

operation can then be used along with GMRES to fully solve the system of equations

— we implement the operations in GMRES other than the matrix-vector product

operation using the CUBLAS library [64].

Figure 3.3: GPU Parallelization for T-matrix simulation. Schematic of the
distribution of the matrix-vector product on the left side of Eq. 3.9 across a GPU,
such that this linear system of equations can be solved implicitly using GMRES for
better e�ciency. Each thread (grouped as thread blocks) is assigned to perform
the computation of the product between one row and the vector with the thread
computing any matrix-elements required and discarding them once the computation
is done. The matrix ⌦ is of size NF ⇥NF and the vector s is of size NF ⇥ 1, where
N is the number of scatterers and F is the number of spherical basis functions – a
total of N ⇥ F GPU threads are launched.

Fig. 3.4 shows a comparison between the matrix solve time between a CPU im-

plementation of the solution of Eq. 3.9 and a GPU implementation of the solution

of Eq. 3.9. Both the implementations use lookup tables and interpolation — note
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that in the CPU solve time, we include the time taken for constructing the Maxwell

operator and then solving Eq. 3.9 using GMRES. We observe a 10⇥ speedup on using

the GPU implementation over the CPU implementation. We also do a rough compar-

ison between our GPU implementation of the T-matrix method and the commercially

available FDTD software Lumerical [84] in Appendix Fig. A.2 and find our T-matrix

method solver is several orders of magnitude faster.

Figure 3.4: CPU vs GPU Implementation of T-matrix simulation. Compar-
ison of the solve time between the CPU and GPU implementations for a 2D array
of cylinders located at randomly chosen positions within a rectangle of the specified
linear dimensions. The error bars indicate the spread in the solve time in between 10
di↵erent randomly chosen configurations of the cylinders for the same linear dimen-
sion. Note that both GPU and CPU simulations are performed with GMRES with a
residual of 10�6. All the GPU simulations were performed on GTX Titan Black with
6GB memory. This figure is reproduced here from [86].
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3.4 Comparison with locally-periodic approxima-

tion

To demonstrate that our full metasurface simulation approach captures meta-atom

interactions beyond the Locally-Periodic Approximation (LPA), we compare the T-

matrix simulation method with the two commonly-used LPA approaches from Section

1.2. Fig. 3.5 compares the T-matrix simulation method with the LPA phase-sampling

approach from Section 1.2.1 and the LPA field-stitching approach from Section 1.2.2.

For high aspect ratio scatterers, we find that while the simple phase-sampling method

significantly deviates from the T-matrix method, the field stitching method does

not. However, for small aspect-ratio scatterers, which are expected to have larger

inter meta-atom interactions, both the LPA approximations significantly deviate from

the T-matrix method [33]. These results are a strong indication of the ability of

the T-matrix method to capture meta-atom interactions and accurately simulate the

metasurface response.

3.5 Very large-area metasurface simulations

Given a su�ciently large number of compute nodes, we expect our simulation strat-

egy to be able to handle arbitrarily-large problems. Here, we present the simulation

of a metasurface of size 1mm ⇥ 1mm (about 645� ⇥ 645�) (Fig.3.6a-b) performed

on a compute cluster of 48 V100 GPU nodes in about 10 hours. This total time is

broken down into the compute times for the key simulation parts in Fig. 3.6c. To

our knowledge, this is the largest 3-dimensional metasurface simulation that accu-

rately captures scatterer-scatterer interaction and makes no symmetry assumptions

regarding the scatterer distribution. To perform the distributed simulation, we used

a subregion size of 20 µm ⇥ 20 µm and selected a padding of 6.5 µm based on the jinc



CHAPTER 3. SINGLE-NODE SOLVER: T-MATRIX METHOD 30

Figure 3.5: Comparison of T-matrix method simulations with locally-
periodic assumption (LPA) simulations. (a) E�ciency versus focal length for 25
µm ⇥ 25 µm metasurfaces designed from a library of high-aspect ratio scatterers with
a large period (silicon cylinders with height 940 nm, radii range of 50-250 nm, lattice
period of 1070 nm, and air background; source wavelength of 1550 nm – based on
scatterer library from [5]) — e�ciencies are computed using the T-matrix approach
(blue dots), the commonly-used LPA phase sampling approach (black curve), and
the LPA field-stitching method (green curve). The metalens e�ciency is defined as
the ratio of the power within a circle of radius 3 ⇥ FWHM in the focal plane to the
power incident on the metasurface. The T-matrix and LPA-stitching methods agree
fairly well here because the scatterers are high-aspect ratio and the lattice constant
is large, hence the interactions between neighboring scatterers is negligible. (b) E�-
ciency versus focal length for 15 µm ⇥ 15 µm metasurfaces designed from a library of
low-aspect ratio scatterers with a small period (silicon cylinders with height 220 nm,
radii range of 175-280 nm, lattice period of 666 nm, and background refractive index
1.66; source wavelength of 1340 nm – using scatterer library from [33]) — e�cien-
cies are computed using the T-matrix approach (blue dots), the commonly-used LPA
phase sampling approach (black curve), and the LPA field-stitching method (green
curve). The metalens e�ciency is defined as the ratio of the power within a circle
of radius 3 ⇥ FWHM in the focal plane to the power incident on the metasurface.
The T-matrix and LPA-stitching methods do not agree here because the scatterers
are low-aspect ratio and the lattice constant is small, hence the interaction between
neighboring scatterers is significant.
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source spatial-locality study in Fig. 2.2 (d = 0.5 µm). This resulted in 2601 subre-

gion simulations, which we distributed across the 48 V100 GPUs using the RabbitMQ

system described in Section 2.3.
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Figure 3.6: Large-area 1mm⇥ 1mm (645�⇥ 645�) metalens simulation. (a)
Center portion of the simulated 1mm⇥ 1mm metalens with focal length 0.4mm (NA
= 0.78) designed from a library of silicon cylinders with height 940 nm, radii range
of 50-250 nm, lattice period of 1070 nm, air background, and source wavelength of
1550 nm (based on scatterer library from[5]). The metasurface consists of 874,225
scatterers. (b) X-component of the electric field in the focal plane of the large-area
metalens. The lens e�ciency is calculated to be 52%, where lens e�ciency is defined
as the ratio of the power within a circle of radius 3 ⇥ FWHM in the focal plane to the
power incident on the metasurface. (c) Computation time for the key stages of the
large-area 1 mm ⇥ 1 mm metasurface simulation: top row – computing the Look-Up
Tables (LUT) used to e�ciently perform T-matrix simulation (Section 3.3); middle
row – computing the T-matrices (Section 3.3) and solving the resulting linear system
of equations for the scattered field coe�cients (Eq. 3.8); bottom row – computing
the E and H fields from the scattered field coe�cients for each desired detector point
(Eq. 3.2). The simulation is performed on 48 V100 GPUs and is distributed between
these compute nodes using a subregion size of 20 µm ⇥ 20 µm and a padding of 6.5
µm, resulting in 2601 subregion simulations.
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3.6 Optimization framework

As discussed in Section 1.3, gradient-based optimization is a promising approach to

e�ciently explore the extremely vast number of design degrees of freedom a↵orded by

large-area metasurfaces like the metalens in Section 3.5. For example, the problem

of designing a metalens could be posed in an optimization framework as depicted in

Fig. 3.7.

Figure 3.7: Metalens design as an optimization problem. Schematic of the
metalens design problem posed as an optimization problem. We start with an incident
field, a design area for the metasurface, and a target field at the detector plane. We
then iteratively optimize the design in the metasurface design area to improve its
ability to generate our desired target detector field profile. For the metalens design
problem, this target detector field profile (�(x) could be the gaussian field depicted
here.

An essential ingredient for optimization-based design of metasurfaces is an ef-

ficient evaluation of the gradient of the figure of merit with respect to the design

parameters. A particularly useful method to evaluate gradients is based on adjoint-

sensitivity analysis [47, 73] which analytically di↵erentiates through Maxwell’s equa-

tions and computes the gradients with respect to all the design parameters with a

cost proportional to only two electromagnetic simulations (Fig. 3.8).
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Figure 3.8: Optimization-based metasurface design procedure. Schematic of a
single iteration in the iterative procedure for optimization-based metasurface design.
In the forward pass of this process, the parametrization of the metasurface design
area is passed into the metasurface simulator, which passes its computed fields to the
objective function for evaluation. In the backward pass of this process, the gradient of
the objective function with respect to the field is passed back to the simulator, which
computes the gradient of the field with respect to the metasurface parameters. Using
the chain rule, the final result of this backward pass is the gradient of the objective
function with respect to the metasurface parameters. This gradient is used to update
the metasurface design such that the objective function is improved.

The distributed T-matrix simulation method is also amenable to distributed ad-

joint sensitivity analysis and can allow for scalable evaluation of the gradient of a

performance metric defined on the electric fields scattered from the metasurface with

respect to both the meta-atom shape and positions. An e�cient implementation of

the gradient computation allows us to use gradient-based optimization algorithms to

optimize the performance of metasurfaces much like that done with inverse-design of

silicon photonics devices. In the following subsection, we derive the adjoint expression

for the gradient with respect to the meta-atom position and geometry.

3.6.1 Adjoint for position and geometry gradients.

Suppose that we have N scatterers located at x1,x2 . . .xN . Moreover, the geometry

of the scatterers are dependent on parameters p1, p2 . . . pM (e.g. these parameters can

be the radii of the cylindrical meta-atoms, or the lengths and breadths rectangular



CHAPTER 3. SINGLE-NODE SOLVER: T-MATRIX METHOD 35

meta-atoms). Consider a performance metric O which takes the following form:

O = f (Esca(pi, qi)) (3.11)

Our goal will be to derive the expressions for @O

@qi
and @O

@pi
. To begin, we note that

qi and pi are real values, Esca is complex-valued, and we assume f is real-valued. We

can then apply the concept of the Wirtinger derivative, using @O

@qi
as an example (the

same applies to @O

@pi
).

@O

@qi
=

@f

@Esca

@Esca

@qi
+

@f
⇤

@Esca
⇤
@Esca

⇤

@qi
⇤

@O

@qi
= 2Re

✓
@f

@Esca

@Esca

@qi

◆
(3.12)

As a concrete example of a practical performance metric O, we can consider the

commonly-used overlap objective. Here, the function f would be defined as:

f (Esca) = |�̂⇤(x) · Esca(x)|
2 (3.13)

where �̂⇤(x) = �⇤(x)dxdy, �(x) is a vector function of space that has information

of the desired field profile (for example, this could be a gaussian field profile for

a metalens design problem as depicted in Fig. 3.7), dx and dy are the detector

point discretizations in x and y respectively, and Esca is the field scattered by the

metasurface. Then for this overlap objective function, we have:

@f

@Esca

= (�̂⇤(x) · Esca(x))
⇤ �̂⇤(x) (3.14)
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Position gradient.

The goal of this section is to compute the gradient of the objective function with

respect to the scatterer positions in the metasurface. From Eq. 3.12, we begin with:

@O

@qi
= 2Re

✓
@f

@Esca

@Esca

@qi

◆
(3.15)

Since we have the expression for @f

@Esca
in Eq. 3.14, we now need to derive an

expression for @Esca
@qi

.

Esca = s · �

@Esca

@qi
=

@s

@qi
· �+ s ·

@�

@qi
(3.16)

We can simplify the first term on the right side of the Eq. 3.16:

@

@qi
(⌦s = a)

@⌦

@qi
s+⌦

@s

@qi
=
@a

@qi

@s

@qi
= ⌦�1

✓
@a

@qi
�
@⌦

@qi
s

◆
(3.17)

Then inserting Eq. 3.16 and 3.17 into Eq. 3.15, we have:

@O

@qi
= 2Re

✓
@f

@Esca

� �T⌦�1

✓
@a

@qi
�
@⌦

@qi
s

◆
+ sT

i

@f

@Esca

�
@�

i

@qi

◆
(3.18)

where � denotes element-wise vector multiplication.

It seems that computing the gradient requires computation of ⌦�1 — this would

be a prohibitively expensive simulation that would render the gradient computation
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impractical. Note however, in the gradient computation, we only require the com-

putation of vT⌦�1 = [⌦�Tv]T and not the full inverse ⌦�1. This is equivalent to

solving the following system of equations:

⌦T↵ = v (3.19)

Eq. 3.19 is labelled as the adjoint simulation, and it needs to be performed once at

each step of the optimization (importantly, note that this simulation does not depend

on the variable with respect to which the gradient is being computed). Here, v is

called the adjoint source and is defined as:

v =
@f

@Esca

T

� � (3.20)

Thus, our final expression for the position gradient is:

@O

@qi
= 2Re

✓
↵T

✓
@a

@qi
�
@⌦

@qi
s

◆
+ sT

i

@f

@Esca

�
@�

i

@qi

◆
(3.21)

Radius gradient.

The goal of this section is to compute the gradient of the objective function with

respect to the geometry of the scatterers in the metasurface. From Eq. 3.12, we

begin with:

@O

@qi
= 2Re

✓
@f

@Esca

@Esca

@pi

◆
(3.22)

Once again, since we have the expression for @f

@Esca
in Eq. 3.14, we now need to

derive an expression for @Esca
@pi

.
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Esca = s · �

@Esca

@pi
=

@s

@pi
· �+ s ·

@�

@pi
(3.23)

Since the basis function vector � does not depend on the scatterer geometry,

s · @�
@pi

= 0. Thus, we only need to simplify the first term on the right-hand side of

Eq. 3.23:

@

@pi
(⌦s = a)

@⌦

@pi
s+⌦

@s

@pi
=
@a

@pi

@s

@pi
= ⌦�1

✓
@a

@pi
�
@⌦

@pi
s

◆
(3.24)

Since the vector of incident field coe�cients a does not depend on the scatterer

geometry, @a
@pi

= 0. Inserting Eq. 3.23 into Eq. 3.22, we have:

@O

@qi
= 2Re

✓
�

@f

@Esca

� �T⌦�1@⌦

@pi
s

◆
(3.25)

Applying the same adjoint method in Eq. 3.19 with the same adjoint source from

Eq. 3.20, we can rewrite Eq. 3.25 in its final form:

@O

@qi
= 2Re

✓
�↵T

@⌦

@pi
s

◆
(3.26)

Computational implementation of gradients.

We use central-di↵erence finite-di↵erence to numerically compute all required partial

derivatives for the gradient expressions in Eq. 3.21 and Eq. 3.26. For example, @a
@qi

is
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computed as follows:

@a

@qi
=

a(x[q] + dl)� a(x[q]� dl)

2dl
(3.27)

@s
@qi

and @�i
@qi

are computed in the same way as shown in Eq. 3.27.

Recalling the definition of ⌦ from Eq. 3.7, we can see that computing its deriva-

tives requires taking the derivatives of T(i) and ⇠(i)(x(n)
,x(i)).

For @⌦
@qi

, we have:

@T(i)

@qi
= 0 (3.28)

@⇠(i)(x(j)
,x(k))

@qi
=

8
>>>>><

>>>>>:

0 j, k 6= i

⇠(i)(x(j)[q]+dl,x(k))�⇠(i)(x(j)[q]�dl,x(k))
2dl j = i

⇠(i)(x(j)
,x(k)[q]+dl)�⇠(i)(x(j)

,x(k)[q]�dl)
2dl k = i

(3.29)

For @⌦
@pi

, we have:

@⇠(i)(x(j)
,x(k))

@qi
= 0 (3.30)

@T(i)

@pi
=

8
><

>:

0 j 6= i

T(i)(p[i]+dl)�T(i)(p[i]�dl)
2dl j = i

(3.31)

We parallelize all these finite-di↵erence derivative computations in Eq. 3.27, 3.28,

and 3.30 across GPU threads due to memory and speed considerations. These finite-

di↵erence derivatives must be computed for each design degree of freedom for each

scatterer for each spherical basis function. However, because the matrices and vectors

involved in these computations are sparse, we can slightly modify the GPU thread-

allocation scheme depicted in Fig. 2.4 that parallelizes over spherical basis function
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to also parallelize with respect to design degree of freedom and scatterer. Fig. 3.9a

depicts the GPU thread-allocation scheme used for @a
@qi

, @s
@qi

, and @�i
@qi

. Fig. 3.9b depicts

the GPU thread-allocation scheme used for @⌦
@qi

s. Finally, Fig. 3.9c depicts the GPU

thread-allocation scheme used for @⌦
@pi

s.

Combining this multi-GPU gradient computation with the multi-GPU forward

simulation, we have opened the door to gradient-based optimization over the many

degrees of freedom a↵orded by arbitrarily large metasurfaces. In particular, our

method allows optimizing both the shape and position of the scatterers composing

the large-area metasurface — optimizing the scatterer positions is very di�cult for

any inverse-design approach that relies on a periodicity assumption. We interface our

distributed metasurface solver with the photonic optimization framework software

SPINS (https://github.com/stanfordnqp/spins-b) [85] to perform the inverse-design.

3.7 Distributed optimization of low aspect-ratio

metalens

Although thin low-aspect ratio metasurfaces (Huygens metasurfaces) are of inter-

est because they are more amenable to large-scale fabrication, they have not found

widespread adoption due to their very limited e�ciencies and angular responses [33].

These thin metasurfaces rely on overlapping electric and magnetic resonances to cre-

ate phase-shifts spanning the required 2⇡ range. As such, they are very sensitive

to scatterer-scatterer interactions and are di�cult to design and model using tra-

ditional periodic-approximation approaches. Our ability to accurately model the

scatterer-scatterer e↵ects in our metasurface inverse-design may allow discovery of

more practical Huygens metasurfaces [65, 11].

As a proof-of-concept for this Huygens metasurface design use-case, we perform
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Figure 3.9: GPU thread-allocation schemes for adjoint gradient computa-
tion. Schematic of the GPU thread allocation schemes, in which each colored rectan-
gle depicts a GPU thread. M is the number of position components, N is the number
of scatterers, and F is the number of spherical basis functions. (a) Scheme for @a

@qi
,

@s
@qi

, and @�i
@qi

– a total of M ⇥N ⇥F GPU threads are launched. (b) Scheme for @�i
@qi

s

– a total of M ⇥ N ⇥ F GPU threads are launched. The banded structure of @�i
@qi

is

a result of Eq. 3.28. (c) Scheme for @�i
@pi

s – a total of M ⇥ N ⇥ F GPU threads are

launched. The banded structure of @�i
@pi

is a result of Eq. 3.30.

a distributed gradient-based optimization with respect to both the positions and the

radii of the cylindrical meta-atoms composing a metalens initially designed with the

same scatterer library used in Fig. 3.5(b). In order to properly define the subregions
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for the distributed optimization, we first perform a jinc spatial localization study

(padding study) in Fig. 3.10 for the Huygens metasurface library following a similar

approach to Fig. 2.2. From this study, we determine that a total truncated surface

size of 12µm (corresponding to a padding size of 6µm - see Fig. 2.3)is su�cient to

capture the response of the Huygens scatterer library to a single jinc source placed

0.01µm from the metasurface.

Figure 3.10: Padding study for Huygens metasurface scatterer library. Per-
cent error in scattered field power versus spatial-extent of metasurface included in
the simulation for a single jinc source placed 0.1 µm from the metasurface. The full
metasurface is a 20 µm ⇥ 20 µm metalens with focal length of 14 µm composed of
scatterers from the low aspect-ratio library in Fig. 3.5b (silicon cylinders with height
220 nm, radii range of 175-280 nm, lattice period of 666 nm, and background refrac-
tive index 1.66; source wavelength of 1340 nm – using scatterer library from [33]).
The surface size on the x-axis of this convergence plot refers to the spatial-extent
around the center of this metasurface that is included in the simulation. The y-axis
relative error is computed assuming the simulation including the full metasurface is
the converged result.

Then, in Fig. 3.11, we use our distributed gradient-based optimization to itera-

tively improve a cost function evaluating the amount of power within a spot at the

focal plane for a 30 µ m ⇥ 30 µm Huygens metalens with focal-length 20 µm. The
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distributed optimization was performed on 9 T4 GPUs with the metalens divided into

9 subregions (subregion size of 10 µm ⇥ 10 µ m, and padding size of 6 µ m). The

metalens has a very high NA of 0.996 and the optimization improves the e�ciency of

the metalens by about 2 ⇥, giving a final e�ciency of about 24%.

The forward simulations performed took an average of about 120 GPU-min and

the gradient computations with respect to radius and position took an average of 150

GPU-min. Fig. 3.12 shows the timing of key stages for the forward simulation (a)

and the adjoint gradient computation (b). The computation time remains constant

across iterations, except for one peak in which 4 of the 9 T4 GPU workers had died

and needed to be restarted. As a result, the computation time increased by about

40% until the workers were restarted. However, the optimization was still able to

proceed when the workers died and the workers were able to be restarted without

interrupting the optimization – this illustrates the fault tolerance of the RabbitMQ

subregion distribution queue we use, as mentioned in Section 2.3. Additionally, Fig.

3.12b shows that the gradient with respect to scatterer position degrees of freedom

is slower to compute than the gradient with respect to scatterer geometry degrees of

freedom – this is due to the fact that a larger number of finite-di↵erence derivatives

are needed for the position gradient (Eq. 3.21 vs. Eq. 3.26).

3.8 Distributed optimization of multi-layered met-

alens

Designing multi-layered metasurfaces through the traditional periodic-approximation

library approach is quite challenging due to the increased complexity of the unit-cells.

The conventional design approach based on the lookup table causes significant degra-

dation in the multilayered devices’ performance due to the multiple scattering between
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Figure 3.11: Distributed Gradient-based optimization improvement of met-
alens design. (a) Schematic of the cylindrical metasurface scatterers in the initial
metalens design and the 9 subregions used for the distributed optimization (subregion
size of 10 µm ⇥ 10 µ m, and padding size of 6 µ m). Fig. 3.10 is used to determine
the padding size of 6 µ m. This initial metasurface is a 30 µm ⇥ 30 µm metalens with
focal-length 20 µm designed from the low-aspect ratio scatterer library in Fig. 3.5(b)
using the traditional metasurface design approach.(b) Lens e�ciency versus optimiza-
tion iteration, where lens e�ciency is defined as the ratio of the power within a circle
of radius 3 ⇥ FWHM in the focal plane to the power incident on the metasurface.
The metalens is 15 µm ⇥ 15 µm in size, and is optimized for x-polarized light only. In
35 optimization iterations, the metalens e�ciency is almost doubled. The inset shows
the X-component of the electric field in the focal plane before optimization (left) and
after optimization (right). (c) Histograms of the distance between the final scatterer
positions and the initial scatterer positions (left) and the absolute radius di↵erence
between the final scatterer cylinders and the initial scatterer cylinders (right). As can
be seen in these histograms, both the scatterer positions and radii change as a result
of the optimization.

the layers and near-field interactions [59]. As a result, the design of multi-layered

metasurfaces requires advanced optimization techniques to achieve high-performance
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Figure 3.12: Compute-time for the distributed gradient-based metalens op-
timization iterations. (a) Computation time vs optimization iteration for the key
stages of the forward simulation: blue, orange – computing the limits and values
(respectively) for the Look-Up Tables (LUT) used to e�ciently perform T-matrix
simulation (Section 3.3); green – solving the linear system of equations for the scat-
tered field coe�cients (Eq. 3.8); red – computing the E and H fields from the scattered
field coe�cients for each desired detector point (Eq. 3.2); purple – total time for for-
ward simulation.(b) Computation time vs optimization iteration for the key stages of
the gradient calculation: blue – solving the linear system of equations for the adjoint
vector (Eq. 3.19); orange – computing the required finite-di↵erence derivatives and
using the adjoint vector to calculate the gradient with respect to the x and y position
of each scatterer center (Eq. 3.21); green – computing the required finite-di↵erence
derivatives and using the adjoint vector to compute the gradient with respect to the
radius of each scatterer (Eq. 3.26); red – total time for all required gradient compu-
tation.

beyond single-layer metasurfaces.

Here, we demonstrate applying our distributed optimization to a multi-layered

metasurface composed of higher aspect-ratio Si cylindrical scatterers embedded in

SiO2. Since this scatterer library does not rely on overlapping electric and magnetic

resonances to achieve full 2⇡ phase coverage like the Huygens library from Section

3.7, a thicker set of scatterers (730 nm thickness, 670 nm square lattice constant,

radii between 50-250 nm, source wavelength 1340 nm) is required because the phase

coverage is now obtained non-resonantly through propagation in the scatterer.
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To perform the distributed optimization, we first use the single jinc source spatial-

locality study for this double-layer higher-aspect ratio silicon in SiO2 cylinder scat-

terer library to determine the padding size of 7.5µm (Fig. 3.13).

Figure 3.13: Padding study showing spatial locality of the jinc source for
the double-layer scatterer library. Percent error in scattered field power versus
spatial-extent of metasurface included in the simulation for a single jinc source placed
500 nm from the metasurface. The full metasurface is a 20 µm ⇥ 20 µm metasurface
with focal length of 10 µm, and the surface size on the x-axis of this convergence
plot refers to the spatial-extent around the center of this metasurface that is included
in the simulation. The y-axis relative error is computed assuming the simulation
including the full metasurface is the converged result.

We generated the initial condition for the optimization by adding a uniform array

of nanoposts 1.5µm above a conventionally-designed metalens, with side length of

40µm and NA of 0.5 (Fig. 3.14a). We choose a subregion size of 7.5µm⇥ 7.5µm and

use the padding size of 7.5µm determined in Fig. 3.13 – this results in 16 subregions

that we distribute across 8 NVIDA T4 GPUs. The forward and adjoint simulations

took an average of ⇠960 GPU-min per iteration and we performed 18 iterations in

total. One can boost the simulation speed by using the high-end GPUs and increasing
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the number of the GPUs. In Fig. 3.14b, we can see the optimization improves the

e�ciency of the metalens by ⇠12% in absolute value (⇠ 20% in relative value), giving

a final e�ciency of about ⇠ 77%.

Figure 3.14: Distributed gradient-based double-layer metalens optimization.
(a) Schematic of the initial double-layer metalens design. The metalens scatterers
are Si cylinders with radii between 50-250 nm, and thickness and lattice constant
of 730 nm and 670 nm, respectively. The illumination wavelength is 1340 nm and
the background material is glass. The side length of the device and the NA of the
metalens were fixed at 40 µm and 0.5, respectively. We created the bottom layer using
the conventional metasurface lens design. Then, we added the upper layer composed
of uniform array of nanoposts having a radius of 130 nm. The distance between
the centers of the layers was 1.5 µm. (b) Absolute e�ciency of the double-layered
metalens versus optimization iteration, where the e�ciency is defined as the ratio
of the power within a circle of radius 3 ⇥ FWHM in the focal plane to the power
incident on the metasurface. All positions and radii of scatterers in both layers are
simultaneously optimized using the gradients in order to improve the e�ciency. The
inset shows the intensity of the x-component of the electric field in the focal plane
before optimization (left) and after optimization (right).

Combining the multi-GPU gradient computation with the multi-GPU forward

simulation, this distributed optimizer uniquely enables gradient-based optimization

of the large scale devices over the many degrees of freedom a↵orded by arbitrarily

large multi-layered metasurfaces.
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3.9 Limitations

Although implementing the T-matrix approach on the spherical harmonic functions

results in a compact linear system of equations (Sec. 3.1) that accurately captures

scatterer-scatterer interactions (Sec. 3.4), it does impose two main limitations on

the types of metasurface systems that can be simulated. The first limitation is that,

because we are working on the spherical harmonic basis functions, the bounding

spheres of adjacent scatterers must not intersect. For low aspect-ratio scatterers like

the Huygens library in Section 3.7, neighboring scatterers may be put very close

together without their bounding spheres intersecting (Fig. 3.15a). However, for high

aspect-ratio scatterers like the silicon scatterers in Section 3.8, neighboring scatterers

must be kept far away from each other to keep the bounding spheres separate (Fig.

3.15b). This scatterer-separation constraint greatly restricts the degrees of freedom,

hence limiting the e�ciencies that can be obtained – for example, this is part of the

reason the higher aspect-ratio metalens in Sec. 3.8 only saw a focusing e�ciency

improvement of about 1.2⇥ after optimization, while the focusing e�ciency of the

low aspect-ratio Huygens metalens in Sec. 3.7 was doubled after optimization.
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Figure 3.15: Aspect-ratio limitation resulting from spherical harmonic basis
functions. (a) Schematic of the bounding spheres of two adjacent low aspect-ratio
scatterers. These scatterers can be placed arbitrarily close together without their
bounding spheres overlapping. (b) Schematic of the bounding spheres of two adjacent
high aspect-ratio scatterers. These scatterers must maintain a large separation to
ensure their bounding spheres do not overlap.

One way of addressing this limitation is to move from working on the vector

spherical basis functions to working on the vector spheroidal basis functions. The

advantage of the vector spheroidal basis functions is that the focal length of the

coordinate system can be chosen such that the bounding spheroid allows high aspect-

ratio scatterers to be placed close together (Fig. 3.16). An approach for implementing

the T-matrix method on the vector spheroidal basis functions is detailed in Appendix

A.4. However, as can be seen in Appendix A.4.3 and A.4.4, implementing e�cient

computation of the vector spheroidal basis functions is a major undertaking.
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Figure 3.16: Changing from spherical to spheroidal basis functions to ad-
dress aspect-ratio limitation. (a) Schematic showing the minimum distance be-
tween two adjacent high aspect-ratio scatterers when using spherical harmonic basis
functions. The scatterers must be far enough apart that their bounding spheres do
not overlap. (b) Schematic of the bounding spheroids of two adjacent high aspect-
ratio scatterers. With spheroidal basis functions, the focal length of the coordinate
system can be chosen per the scatterer geometry such that arbitrary aspect-ratios
and scatterer separations can be handled.

In addition to the aspect-ratio limitation, substrates and any other kind of infinite

surface are extremely challenging to handle with the spherical or the spheroidal basis

functions. One approach to handling substrates is to use Sommerfield integrals and

associated layer Green’s functions [14] but this is very computationally complex and

expensive. In order to retain the benefit of the computational e�ciency of our T-

matrix implementation, this single-node solver should be applied to lower aspect-

ratio scatterer libraries embedded in a homogeneous background material. For a

more general-purpose single-node solver, we also investigate using FDTD in Chapter

4.



Chapter 4

FDTD as single-node simulator

4.1 Motivation

We explore FDTD as a single-node simulator because it is a flexible, general-purpose

solver that can handle arbitrary geometries and substrates – hence addressing the

limitations that come with the T-matrix method on spherical harmonic functions in

Chapter 3. As it is a very general simulation approach, there are a number of commer-

cial FDTD implementations (including Lumerical [84], Flexcompute [40], and Comsol

[24]) and some open-source FDTD implementations (including meep [66]). These im-

plementations vary as far as ease-of-use, flexibility, and computational e�ciency. We

choose to use meep [66] for this work because of its open-source nature, which is

helpful for debugging purposes.

4.2 Low-overhead distribution with FDTD

Most existing FDTD implementations do o↵er parallelization across CPU or GPU

compute nodes. This parallelization is done by separating the simulation spatial do-

main into regions, each of which are handled by a given compute-node. However,

51
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because computation of finite-di↵erence derivatives for spatial points on the bound-

ary of each region requires information from spatial points in adjacent regions, the

compute-nodes must communicate information at every iteration of the simulation

(Fig. 4.1a). Hence, this standard approach is not low-overhead, which can result in

the problem depicted in Fig. 4.1b in which adding more compute nodes eventually

increases the compute time because the node communication becomes the dominant

cost. Additionally, FDTD has simulation size limitations imposed by the memory

necessary for the spatial and temporal evolution of the fields. Thus, scaling FDTD

to the mm and cm scales required for simulation and optimization of practical meta-

surfaces necessitates a di↵erent approach to parallelization.
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Figure 4.1: Standard FDTD spatial parallelization approach. (a) Schematic
of the typical spatial region parallelization approach employed with FDTD (adap-
ated from [80]). The red edges of each spatial region indicate that these boundary
points need information from the adjacent spatial regions in order to compute the
necessary finite di↵erences. Thus, the compute nodes must all communicate with
their adjacent nodes at every simulation iteration. (b) Example of the phenomenon
where adding more compute nodes eventually results in an increase in the simulation
runtime because the cost of the node communications required at every iteration be-
comes dominant
(https://meep.readthedocs.io/en/latest/Parallel Meep).

In order to enable the FDTD solver to scale to very large-area metasurface sim-

ulations, we propose and demonstrate using FDTD as the subregion solver in our

distribution approach detailed in Chapter 2 (Fig. 4.2). This allows the FDTD simu-

lations to remain at the size scales that are tractable from a memory standpoint and

that can be e�ciently further parallelized through the standard spatial parallelization

approach.
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Figure 4.2: FDTD as a subregion solver. Schematic of using FDTD as the
subregion solver in our low-overhead distribution approach detailed in Chapter 2.
The incident field is sampled at the Nyquist sampling rate, the resulting jinc sources
are grouped, and the metasurface is split into subregions based on the spatial-locality
of the jinc sources. These subregions are simulated in parallel using FDTD with the
standard spatial parallelization also applied.

4.3 Jinc source as a Total-Field Scattered-Field

In order to employ FDTD as the subregion solver in our low-overhead distribution

scheme, we must formulate the jinc source as an FDTD source.
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4.3.1 Nyquist Sampling of Time-dependent Transverse Inci-

dent Field

Consider an incident field propagating along the +z axis and described by its trans-

verse components as a function of transverse coordinate (x, y) at z = zt. Then, at

z = zt, we have:
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If we assume that this incident field is produced by a source that is either far from

the metasurface or paraxial, we know it is only made up of propagating components.

Since there are no evanescent components, we know:
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Assume this incident field is a pulse, so it has a finite frequency range decided by the

pulse duration:

ET

inc(kx, ky,!) = 0 if ! /2 [!min,!max] (4.4)

Then we know all kx and ky satisfy k
2
x
+ k

2
y
 !

2
max

/c
2, and Eq. 4.1 becomes:

ET

inc(x, y, z = zt, t) =
1

(2⇡)3

Z

k2x+k2y
!2
max
c2

Z
!max

!min

ET

inc(kx, ky,!)e
i(kxx+kyy�!t)dkxdkyd!

(4.5)
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So, at every time t, this incident field is bandlimited in k-space. Since the incident field

is bandlimited in k-space, we can apply the Nyquist sampling theorem to perfectly

reconstruct the field from samples of the field as long as we sample finely enough. For

a given !, the Nyquist sampling rate would be �

2 . So, with our range of frequencies

! 2 [!min,!max], the finest sampling rate will be determined by !max since that

corresponds to the smallest wavelength. Since the Nyquist sampling theorem allows

for sampling finer than the Nyquist rate, we will sample everything at this finest

sampling rate. Applying the Nyquist sampling theorem with this sampling rate, we

can write our field in terms of its samples as:

ET

inc(x, y, z = zt, t) =
1X

i,j=�1

ET

inc(xi, yj, z = zt, t)
j1(kmax⇢i,j)

kmax⇢i,j
(4.6)

where xi =
i�min

2 , yj =
j�min

2 , ⇢i,j =
p
(x� xi)2 + (y � yj)2, and ET

inc(xi, yj, z = zt, t)

are the field samples.

4.3.2 TFSF Source with Jinc Formulation for FDTD

Using the equivalence principle in Eq. 4.7, we can formulate the Nyquist-sampled

incident field from Eq. 4.6 as a Total-Field Scattered-Field (TFSF) source for FDTD.

2

4J

K

3

5 = �(@⌦)

2

4 n⇥H

�n⇥ E

3

5 (4.7)

Eq. 4.7 means that by specifying the electric and magnetic currents given by the

tangential components of the desired electric and magnetic fields on the planes of a

box surrounding the metasurface (Fig 4.3), we can exactly produce the desired electric

and magnetic fields of the jinc source inside the box with no di↵raction e↵ects.

In Eq. 4.6, we expressed ET

inc(x, y, z = zt, t) for the jinc source formulation. We
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Figure 4.3: Total-field scattered-field (TFSF) FDTD source schematic. By
the equivalence principle in Eq. 4.7, the tangential components of desired electric
and magnetic fields on a given plane can be used to specify a current source that
will produce the desired fields. However, if only a single-plane is specified, di↵raction
e↵ects will occur at the edges of the plane. By instead specifying 6 TFSF source
planes, these di↵raction e↵ects can be avoided because the fields cancel out everywhere
except inside the box. Thus, by specifying a TFSF source box enclosing a given
metasurface subregion, the desired incident field for a single or group of jinc sources
can be generated.

now need to determine full expressions for Einc(x, y, z, t) and Hinc(x, y, z, t) in order

to supply the required field components on all 6 planes of the TFSF box.

4.3.3 Determining full vector expression for E and H Fields

In Eq. 4.6, we know how to compute ET

inc(x, y, z = zt, t) because we sample our desired

incident-field description on the tangential plane located at z = zt. As can be seen in

Fig. 4.3, we must have expressions for the x̂, ŷ, and ẑ incident-field components as

functions of (x, y, z) – thus, we must compute the normal component of the field from

this known tangential component and generalize the tangential component expression
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so it can be computed at any z in the domain.

General Expression for x̂ and ŷ E-field Components

Writing the jinc source in its Fourier representation (which is a sum of plane waves),

Equation 4.6 becomes:

ET

inc(x, y, z = zt, t) =
1X

i,j=�1

ET

inc(xi, yj, z = zt, t)
1

2⇡

✓
⇡

kmax

◆2

(4.8)

Z

k2x+k2yk2max

e
i(kx(x�xi)+ky(y�yj))dkxdky

Fourier transforming ET

inc(xi, yj, z = zt, t), we have:

ET

inc(x, y, z = zt, t) =
1X

i,j=�1


1

2⇡

Z
!max

!min

�
ET

inc(xi, yj, z = zt,!)e
�i!t (4.9)

 
⇡

2kmax
2

Z

k2x+k2yk2max

e
i(kx(x�xi)+ky(y�yj))dkxdky

!
d!

!#

We can then rewrite Eq. 4.9 so it can be evaluated at arbitrary z locations

(rather than just at z = zt) by introducing a z-propagation term on the plane wave

components:

ET

inc(x, y, z, t) =
1X

i,j=�1


1

2⇡

Z
!max

!min

�
ET

inc(xi, yj, z = zt,!)e
�i!t (4.10)

 
⇡

2kmax
2

Z

k2x+k2yk2max

e
i(kx(x�xi)+ky(y�yj)+kz(z�zt))dkxdky

!
d!

!#

Now, we make the following coordinate transformation to polar coordinates in

order to simplify the integral over k.

kx = kcos✓ , ky = ksin✓ , dkxdky = kdkd✓ (4.11)
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Applying this coordinate transformation from Eq. 4.11, Eq. 4.9 becomes:

ET

inc(x, y, z, t) =
1X

i,j=�1


1

2⇡

Z
!max

!min

�
ET

inc(xi, yj, z = zt,!)e
�i!t (4.12)

 
⇡

2kmax
2

Z
kmax

0

Z 2⇡

0

e
i

✓
kcos✓(x�xi)+ksin✓(y�yj)+

q
(!

c )
2�k2(z�zt)

◆

kd✓dk

!
d!

!#

Focusing first on the integral over ✓, let us define I✓:

I✓ =

Z 2⇡

0

e
i(kcos✓(x�xi)+ksin✓(y�yj))d✓ (4.13)

We rewrite the x� xi and y � yj as follows:

x� xi = rcos↵ , y � yj = rsin↵ (4.14)

r =
q

(x� xi)2 + (y � yj)2 , ↵ = tan
�1

✓
y � yj

x� xi

◆
(4.15)

Plugging Eq. 4.14 into Eq. 4.13, we have:

I✓ =

Z 2⇡

0

e
i(krcos✓cos↵+krsinsin↵)

d✓ =

Z 2⇡

0

e
ikr(cos(✓�↵))

d✓ (4.16)

To solve this integral, we use the following integral formula for Bessel functions

of the first kind:

Jn(z) =
1

⇡

Z
⇡

0

cos(zsin✓ � n✓)d✓ =
1

2⇡in

Z 2⇡

0

e
izcos�

e
in�

d� and J�n(x) = (�1)nJn(x)

(4.17)

Matching the integral in Eq. 4.16 with the Bessel integral form in Eq. 4.17, we
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can write:

I✓ = 2⇡J0(kr) (4.18)

Plugging the result in Eq. 4.18 into Eq. 4.12, we have:

ET

inc(x, y, z, t) =
1

2⇡

1X

i,j=�1

(4.19)

"Z
!max

!min

 
ET

inc(xi, yj, z = zt,!)e
�i!t

 
⇡
2

kmax
2

Z
kmax

0

J0(kr)e
i

✓q
(!

c )
2�k2(z�zt)

◆

kdk

!
d!

!#

General Expression for ẑ E-field Components

Now, we want to calculate En

inc from ET

inc. Since we have written ET

inc as a superposi-

tion of plane waves (Eq. 4.10), we can use the divergence theorem to determine the

coe�cients of En

inc from ET

inc (because plane waves have no normal component, since

they are propagating planes):

k ·A = 0 , so, An = �
kt ·At

kn
(4.20)

The normal component for us is the z direction, so we have:

Az = �
(kxAx + kyAy)

kz
= �

(kxAx + kyAy)q
!2

c2
� k2

x
� k2

y

(4.21)
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Plugging the expression for ET

inc from Eq. 4.10 into Eq. 4.21 as At, we have:

EZ

inc(x, y, z, t) =
1

(2⇡)2

1X

i,j=�1

Z
!max

!min

e
�i!t

Z

k2x+k2yk2max

(4.22)

�
(kxET

inc,x
(xi, yi, z = zt,!) + kyE

T

inc,y
(xi, yi, z = zt,!))q

!2

c2
� k2

x
� k2

y

e
i

✓
kx(x�xi)+ky(y�yj)+

q
!2

c2
�k2x�k2y(z�zt)

◆

dkxdkyd!

�
ẑ

Applying the coordinate transformation from Eq. 4.11, Eq. 4.22 becomes:

EZ

inc(x, y, z, t) =
1

(2⇡)2

1X

i,j=�1

Z
!max

!min

e
�i!t

Z
kmax

0

�
k
2

q
!2

c2
� k2

(4.23)

Z 2⇡

0

�
cos✓E

T

inc,x
(xi, yi, z = zt,!) + sin✓E

T

inc,y
(xi, yi, z = zt,!)

�

e
i

✓
kcos✓(x�xi)+ksin✓(y�yj)+

q
!2

c2
�k2(z�zt)

◆

d✓dkd!

�
ẑ

Focusing first on the integral over ✓, let us define I✓,x and I✓,y as:

I✓,x =

Z 2⇡

0

cos✓e
i(kcos✓(x�xi)+ksin✓(y�yj))d✓ (4.24)

I✓,y =

Z 2⇡

0

sin✓e
i(kcos✓(x�xi)+ksin✓(y�yj))d✓ (4.25)

Plugging Eq. 4.14 into Eq. 4.24, we now have:

I✓,x =

Z 2⇡

0

cos✓e
i(krcos✓cos↵+krsinsin↵)

d✓ =

Z 2⇡

0

cos✓e
ikr(cos(✓�↵))

d✓ (4.26)

I✓,y =

Z 2⇡

0

sin✓e
i(krcos✓cos↵+krsinsin↵)

d✓ =

Z 2⇡

0

sin✓e
ikr(cos(✓�↵))

d✓ (4.27)

Defining ✓
0 = ✓ � ↵ and using the formulas cos✓ = 1

2

�
e
i✓ + e

�i✓
�
and sin✓ =
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1
2i

�
e
i✓
� e

�i✓
�
, we can write Eq. 4.26 as:

I✓,x =

Z 2⇡�↵

�↵

1

2

⇣
e
i(✓0+↵) + e

�i(✓0+↵)
⌘
e
ikrcos(✓0)

d✓
0 = (4.28)

1

2

✓
e
i↵

Z 2⇡�↵

�↵
e
i✓0
e
ikrcos(✓0)

d✓
0
◆
+

✓
e
�i↵

Z 2⇡�↵

�↵
e
�i✓0

e
ikrcos(✓0)

d✓
0
◆�

I✓,y =

Z 2⇡�↵

�↵

1

2i

⇣
e
i(✓0+↵)

� e
�i(✓0+↵)

⌘
e
ikrcos(✓0)

d✓
0 = (4.29)

1

2i

✓
e
i↵

Z 2⇡�↵

�↵
e
i✓0
e
ikrcos(✓0)

d✓
0
◆
�

✓
e
�i↵

Z 2⇡�↵

�↵
e
�i✓0

e
ikrcos(✓0)

d✓
0
◆�

Matching the integrals in Eq. 4.28 with the Bessel integral form in Eq. 4.17, we

can write:

I✓,x =
1

2

�
e
i↵2⇡iJ1(kr)

�
+

✓
e
�i↵2⇡

i
J�1(kr)

◆�
(4.30)

= 2⇡iJ1(kr)


1

2

�
e
i↵ + e

�i↵
��

= 2⇡icos(↵)J1(kr)

I✓,y =
1

2i

�
e
i↵2⇡iJ1(kr)

�
�

✓
e
�i↵2⇡

i
J�1(kr)

◆�
(4.31)

= 2⇡iJ1(kr)


1

2i

�
e
i↵

� e
�i↵
��

= 2⇡isin(↵)J1(kr)

Plugging the expressions from Eq. 4.30 into Eq. 4.23, we now have:

EZ

inc(x, y, z, t) =
i

(2⇡)

1X

i,j=�1

Z
!max

!min

e
�i!t

Z
kmax

0

(4.32)

�
J1(kr)k2

q
!2

c2
� k2

e
i
q

!2

c2
�k2(z�zt)

�
cos↵E

T

inc,x
(xi, yi, z = zt,!) + sin↵E

T

inc,y
(xi, yi, z = zt,!)

�
dkd!

�
ẑ

(4.33)

The integrand in Eq. 4.30 becomes singular when k = !

c
. To remove this singu-

larity, we will eventually do a variable transformation. We begin by first splitting the
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k-integral into two integrals:

EZ

inc(x, y, z, t) =
i

(2⇡)

1X

i,j=�1

Z
!max

!min

e
�i!t

�
cos↵E

T

inc,x
(xi, yi, z = zt,!) + sin↵E

T

inc,y
(xi, yi, z = zt,!)

�

(4.34)
0

@
Z !

c

0

�
J1(kr)k2

q
!2

c2
� k2

e
i
q
(!

c )
2�k2(z�zt)

dk +

Z
kmax

!
c

iJ1(kr)k2

q
k2 �

!2

c2

e
�
q

k2�(!
c )

2
(z�zt)

dk

1

A d!

�
ẑ

Now, we introduce the following variables that we will use to transform the two

k-integrals in Eq. 4.34 such that we have no discontinuity:

k =
!

c
sin� and dk =

!

c
cos�d� (4.35)

k =
!

c
sec and dk =

!

c
sec tan d (4.36)

Plugging the trig substitutions from Eq. 4.35 into Eq. 4.34, we have:

EZ

inc(x, y, z, t) =
i

(2⇡)

1X

i,j=�1

Z
!max

!min

✓⇣
!

c

⌘2
e
�i!t (4.37)

�
cos↵E

T

inc,x
(xi, yi, z = zt,!) + sin↵E

T

inc,y
(xi, yi, z = zt,!)

�⇣
(4.38)

Z ⇡
2

0

�J1

✓
!rsin�

c

◆
e
i !c cos�(z�zt)sin

2
�d�+

Z
arcsec(!max

! )

0

iJ1

✓
!rsec 

c

◆
e
�!

c tan (z�zt)sec
3
 d 

⌘
d!

◆�
ẑ

Computation Approach for E-field Components

As we have derived in Eq. 4.19 and Eq. 4.37, the full expressions for our E-field jinc

source as a function of (x, y, z, t) are:
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Einc(x, y, z, t) = (4.39)

1

2⇡

1X

i,j=�1

Z
!max

!min

✓
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⇡
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ẑ

For simpler and more e�cient implementation, we will make an approximation

where we only evaluate the k-integral in Eq. 4.39 at ! = !cen, so that we can

pull it out of the integral over ! and have the remaining !-integral be the inverse

Fourier transform of the incident field samples. This approximation should be valid

for narrow-band sources or when we only care about the response at a single frequency.

With this approximation, the full expressions for our E-field jinc source as a function
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of (x, y, z, t) become:

Einc(x, y, z, t) = (4.40)

1
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where r =
p

(x� xi)2 + (y � yj)2, ↵ = tan
�1
⇣

y�yj

x�xi

⌘
, � = arcsin

⇣
kc

!cen

⌘
.

We note that the k-integrals in Eq. 4.40 have an evanescent component when

k >
!cen
c
. To make this explicit and give the final expression we compute, we split
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the k-integrals into two parts:

Einc(x, y, z, t) = (4.42)
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where r =
p

(x� xi)2 + (y � yj)2, ↵ = tan
�1
⇣

y�yj

x�xi

⌘
, � = arcsin

�
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�
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�
.

Determining full vector expression for H-Field

Up until this point, we have written all expressions for the electric-field – however, we

must also provide tangential components for the magnetic-field to create the TFSF

planar currents. All the previous derivation is actually not specific to electric-field,

so one approach we can take is to also Nyquist-sample the desired magnetic-field of

the source in our given transverse plane and use Eq. 4.42 to compute the necessary

tangential components for the TFSF source.

An alternative approach is to computing the required H-field components is to use

the expression for Einc(x, y, z, t) in Eq. 4.40 to compute Hinc(x, y, z, t) starting with
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Maxwell’s equations:

r⇥ E = �µ
@H

@t
, assuming time dependence e

�i!t: FFT [H]j = �
i

!jµ
FFT [r⇥ E]

j

(4.43)

Hinc(x, y, z, t) = IFFT


�

i

!µ
� FFT [r⇥ E]

�

(4.44)

where � denotes element-wise product between the elements of the vector � i

!µ
and

FFT [r⇥ E].

Another approach to numerically calculating Hinc(x, y, z, t) from Einc(x, y, z, t) is

to do a cumulative numerical integral of Einc(x, y, z, t) over time:

Hinc(x, y, z, t) = �
1

µ

Z
t

0

(r⇥ Einc(x, y, z, t)dt) (4.45)

This numerical integration approach in Eq. 4.45 should be faster in O(n) rather than

the O(nlogn) for the FFT approach in Eq. 4.43.

Finally, the fastest approach to computing Hinc(x, y, z, t) from Einc(x, y, z, t) is to

approximate only at wcen - however, this is an approximation that will only work

when the frequency bandwidth is small:

Hinc(x, y, z, t) = �
i

!cenµ
r⇥ Einc(x, y, z, t) (4.46)

4.3.4 Jinc TFSF: Single-source fields

We implement the TFSF source corresponding to the jinc field using Eq. 4.42 to

obtain the required E and H field tangential components. Fig. 4.4 shows a TFSF

source box generating the field of a single-jinc source within the box and no field

everywhere else.
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Figure 4.4: Spatial-locality study with TFSF jinc source. Schematic of the
FDTD simulation setup for a TFSF source that generates the field for a single jinc
source. The TFSF source box is completely contained within the FDTD simulation
region – PML boundary conditions surround the FDTD simulation region. The field
from a horizontal slice (blue plane) and vertical slice (magenta plane) through the
simulation center is shown, and the familiar jinc spatially-localized field pattern is
observed inside the TFSF box, and no field is observed outside the box.

Using this single-jinc TFSF source, we can then perform a spatial-locality padding

study similar to that of Fig. 2.2, Fig. 3.13, and Fig. 3.10. As shown in Fig. 4.5a-

b, we choose a scatterer library consisting of high aspect-ratio silicon rectangular

posts placed close together in a background of air – we would not have been able to

simulate surfaces composed of these scatterers using the T-matrix method on spherical

harmonic functions from Chapter 3 because of the intersection of their bounding

spheres. We choose to work with this scatterer library to highlight the flexibility we

gain from working with FDTD as the single-node simulator. Once again, we see a

convergence in the relative error between the simulation of a full metasurfaces and

the simulation of a truncated metasurface when excited by the field of a single jinc
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source (Fig. 4.5c).

Figure 4.5: FDTD simulation fields for a TFSF source corresponding to a
single jinc source. (a) Schematic of the rectangular pillar scatterers (3.68 refractive
index, height 1050 nm, lattice constant 700 nm, side length 50-200 nm) used in this
spatial-locality study. The dashed lines show the bounding spheres of the scatterers to
highlight that this scatterer library violates the bounding sphere separation constraint
from the spherical harmonic T-matrix method in Section 3.9. (b) Schematic of the
spatial-locality study setup – the metasurface is enclosed in a TFSF source box that
generates the field of a single jinc source as in Fig. 4.4. (c) Percent error in scattered
field power versus spatial-extent of metasurface included in the simulation for a single
jinc source placed 0.1 µm from the metasurface. The full metasurface is a 15 µm ⇥

15 µm metalens with focal length of 20 µm composed of scatterers described in (a),
excited with wavelength 1550 nm in background index of 1. The surface size on the
x-axis of this convergence plot refers to the spatial-extent around the center of this
metasurface that is included in the simulation. The y-axis relative error is computed
assuming the simulation including the full metasurface is the converged result.
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4.4 Distributed metalens simulation

Now that we are able to generate jinc fields for an FDTD simulation using the TFSF

formulation and we can perform spatial-locality studies, we are ready to perform a

distributed simulation using FDTD as the single-node solver. We use the same high

aspect-ratio scatterer library from Fig. 4.5 and select a padding of 4µm based on this

study. Using a subregion size of 8µm⇥8µm, we perform a distributed simulation of a

30µm⇥ 30µm metalens with focal length 20µm – this results in 16 subregions, which

we distributed across 64 CPU’s to perform a parallelized meep FDTD simulation

across 4 CPU’s (Fig. 4.6a). We compute a final focusing e�ciency for this metal-

ens of 72% (Fig. 4.6b), showing good agreement with the 75% focusing e�ciency we

compute with a lumerical FDTD simulation of the same metalens. This successful dis-

tributed simulation using the FDTD jinc TFSF source opens the door to performing

full simulation and optimization of a wide range of large-area metasurfaces.
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Figure 4.6: Distributed metalens simulation. (a) Schematic of the metalens
simulated. The metalens is 30µm ⇥ 30µm with focal length 20µm (NA = 0.6), and
is composed of scatterers from the library described in Fig. 4.5a. The subregions for
the distributed simulation are of size 8µm⇥ 8µm with padding of 4µm, resulting in
16 subregions. (b) X-component of the electric field at the focal plane of the metalens
– the e�ciency is calculated to be 72%.



Chapter 5

Conclusion and Outlook

We have demonstrated a scalable distribution method to accurately simulate arbitrar-

ily large-area metasurfaces. Our method uses the Nyquist sampling theorem to allow

parallel distribution of compute across multiple compute nodes, on which a T-matrix

method with spherical harmonic functions solver or an FDTD solver is used to simu-

late the subregion. With our distribution approach applied with the T-matrix method

subregion solver, we show a roughly 1
NGPU

scaling of the total simulation time and

demonstrate that our method accurately accounts for all scatterer interactions. We

demonstrate our ability to apply our distribution method to the computation of the

gradient with respect to all design parameters, and use this gradient information to

optimize a performance metric such as the focusing e�ciency. With our distribution

method applied with an FDTD subregion solver, we demonstrate the ability handle a

far wider range of metasurface geometries (for example, high aspect-ratio scatterers

with small lattice constants and substrates). Additionally, the recent developments of

ultra-e�cient hardware-specialized FDTD solvers such as [40] make the use of FDTD

as the subregion solver in our distribution method extremely promising for scaling

to very large-areas. Our simulation distribution method provides a solution to the

long-standing problem of simulating large-area metasurfaces and opens the door to

72
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gradient-based optimization of the full metasurface, taking advantage of all the de-

sign degrees of freedom. This is especially important as we consider very high-NA

metasurfaces and moving to thick, multi-layer metasurfaces.

High-NA metasurfaces are very sought-after for augmented-reality displays, mi-

croscopy, and mobile imaging. However, as discussed in [16], the commonly-used

unit-cell metasurface design approach from Section 1.2 does not provide the number

of degrees of freedom necessary for high-NA lenses. This can be empirically observed

in the limited e�ciencies achieved to-date in experimental demonstrations of high-NA

metalenses [53, 5, 67, 13]. Instead, we must push the ”unit-cell” to become the whole

metasurface to open the door to e�cient and high-NA lenses – thus, the ability to

simulate and optimize the full metasurface opens the possibility of discovering high-

NA metalens designs with e�ciencies high enough for practical use. Our method for

full metasurface optimization is likely to also benefit the discovery of metasurfaces

with highly e�cient operation at several discrete modes - for example, metasurfaces

that focus a few discrete wavelengths to di↵erent points [70].

For applications such as multi-color imaging and aberration correction, metasur-

face designs are required to operate e�ciently at a high number of modes. However,

as discussed in [62, 74], time bandwidth product bounds imply that there is a trade-

o↵ between bandwidth of a design and the minimum required thickness. As a result,

moving to multi-layer metasurfaces [59] or fully-3D thick metasurfaces [12] is likely

necessary for achieving high e�ciency across many modes or for broadband operation.

However, moving to thick metasurfaces introduces many more degrees of freedom to

an already very large design problem. The e�cient parameter space exploration pro-

vided by gradient-based optimization with the adjoint method will be critical for

design of practical thick metasurfaces [55].

Metasurfaces o↵er a compact and cost-e↵ective platform for implementing the

complex optical functionalities demanded by next-generation technologies such as
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augmented reality, lidar, and mobile imaging. By applying our distributed adjoint

optimization approach using a fast FDTD subregion solver such as [40], novel free-

form multilayer or thick metasurface structures could be designed to provide func-

tionality and performance beyond the current unit-cell-based state of the art. We

expect that optimizing large-area and large-volume metasurfaces as a whole using

our distribution method will produce devices that help realize technologies such as

augmented-reality glasses that actually do fit in the footprint of standard glasses, and

complex structured-light systems for mobile phone facial-recognition or robotics. The

full-volume metasurface design space is unexplored territory with much promise for

the next generation of compact optical devices.



Appendix A

Transition-matrix simulation

method

A.1 Vector spherical wavefunctions

A.1.1 Definition

Here, we define the vector spherical harmonic functions that we use to provide a

compact description of the incident and scattered fields for the T-matrix method.

We follow appendix B of [26] and appendix D of [86], which may be referenced for

further details.

We begin with the frequency-domain scalar helmholtz equation for homogenous

media in Eq. A.1, where k = !
p
"/c is the wavenumber of the medium with permit-

tivity ".

r
2
�(x) + k

2
�(x) = 0 (A.1)

Applying separation of variables, we find that the spherical wavefunctions �l,m(kbx)
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and R�l,m(kbx) defined below are solutions to Eq. A.1:

�l,m(kx) = h
(1)
l
(kr)P |m|

l
(cos ✓) exp(im') (A.2a)

R�l,m(kx) = jl(kr)P
|m|
l

(cos ✓) exp(im') (A.2b)

where l 2 {0, 1, 2 . . . }, m 2 {�l,�l + 1, . . . l � 1, l}, (r, ✓,') are the spherical co-

ordinates of the point x, h(1)
l
(x) is the spherical hankel function of the first kind,

jl(x) is the spherical bessel function and P
|m|
l

(x) is the normalized associated leg-

endre polynomial. Note that each solution of the scalar wave function is indexed

by two numbers — the orbital index l and the magnetic index m. R indicates the

wavefunction’s behavior at the origin — R�l,m(kx) evaluates to 0 at the origin while

�l,m(x) diverges at the origin. Additionally, �l,m(kx) captures spherical waves radiat-

ing to infinity (used to express the scattered field in the T-matrix formalism), while

R�l,m(kx) captures spherical standing waves (used to express the incident field in the

T-matrix formalism).

Next, we can use each of the scalar spherical harmonic functions from Eq. A.2 to

compute two vector spherical harmonic functions that correspond to two independent

polarizations that satisfy the frequency-domain Maxwell’s equations in homogenous

media A.3.

r⇥r⇥ E(x)� k
2E(x) = 0 (A.3)

r · E(x) = 0

These vector spherical harmonic functions, denoted by �l,m,p(kbx) andR�l,m,p(kbx)
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(where p 2 {0, 1} is the polarization index), are expressed as:

2

4 �l,m,p=0(kx)

R�l,m,p=0(kx)

3

5 =
1p

2l(l + 1)
r

2

4 �l,m(kx)

R�l,m(kx)

3

5⇥ x (A.4a)

2

4 �l,m,p=1(kx)

R�l,m,p=1(kx)

3

5 =
1

k
r⇥

2

4 �l,m,p=0(kx)

R�l,m,p=0(kx)

3

5 (A.4b)

where l 2 {1, 2, 3 . . . }, m 2 {�l,�l+1 . . . l�1, l} and p 2 {0, 1}. The vector spherical

harmonic functions form a basis for the solutions of the vector helmholtz equation

(Eq. A.3), and an orthogonality condition can be constructed for them on the surface

of an arbitrarily chosen sphere as detailed in [26].

We can express the incident field for the T-matrix method on the regular vector

spherical wavefunctions:

Einc(x) =
X

l,m,p

al,m,pR�l,m,p(kbx) (A.5)

We can express the scattered field for the T-matrix method on the radiating vector

spherical wavefunctions:

Esca(x) =
X

l,m,p

sl,m,p�l,m,p(kbx) (A.6)

A.1.2 Translation coe�cients

The spherical harmonic translation theorem relates vector spherical wavefunctions

defined with respect to two di↵erent origins to each other [26, 29]. This is necessary

for including the field scattered from all other scatterers in the incident field for a
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given scatterer (Section 3.2):

Einc,j(x) = Einc(x) +
NX

i=1
i 6=j

X

l,m,p

sl,m,p;i�l,m,p(kb(x� xi)) (A.7)

The translation theorem is expressed as:

�l,m,p(k(x� xa)) =
X

l0,m0,p0

⇠l,m,p;l0,m0,p0(k(xa � xb))�l0,m0,p0(k(x� xb)) (A.8)

where

⇠l,m,p;l0,m0,p0(x) = �p,p0↵l,m;l0,m0(x) + (1� �p,p0)�l,m;l0,m0(x) (A.9)

and with (r,', ✓) as the spherical coordinates of the vector x:

↵l,m;l0,m0(x) = exp(i(m�m
0)')

l+l
0X

q=|l�l0|

a5(l,m|l
0
,m

0
|q)h(1)

q
(r)P |m�m

0|
q

(cos ✓) (A.10a)

�l,m;l0,m0(x) = exp(i(m�m
0)')

l+l
0X

q=|l�l0|+1

b5(l,m|l
0
,m

0
|q)h(1)

q
(r)P |m�m

0|
q

(cos ✓)

(A.10b)
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where:

↵(l,m|l
0
,m

0
|p) =i

|m�m
0|�|m|�|m0|+l

0�l+p(�1)m�m
0

(A.11a)

⇥ [l(l + 1) + l
0(l0 + 1)� p(p+ 1)]

p
2p+ 1

⇥

s
(2l + 1)(2l0 + 1)

2l(l + 1)(l0 + 1)

0

@ l l
0

p

m �m
0

m
0
�m

1

A

0

@ l l
0

p

0 0 0

1

A

�(l,m|l
0
,m

0
|p) =i

|m�m
0|�|m|�|m0|+l

0�l+p(�1)m�m
0

(A.11b)

⇥

p
(l + l0 + 1 + p)(l + l0 + 1� p)(p+ l � l0)(p� l + l0)(2p+ 1)
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0
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0
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0
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0
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0
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A (A.12)

is the Wigner-3j symbol [58]. With this addition theorem, Einc,j(x) can be rewritten

as:

Einc,j(x) =
X

l,m,p

al,m,p;jR�l,m,p(kb(x� xj)) (A.13)

where

al,m,p;j = a
(0)
l,m,p;j +

NX

i=1
i 6=j

X

l0,m0,p0

⇠l0,m0,p0;l,m,p(kb(xj � xi))sl0,m0,p0;i (A.14)
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A.2 Implementing jinc source on vector spherical

harmonic basis

In order to implement the Nyquist-sampling-based-parellelization scheme described

above, it is necessary to be able to simulate the response of the metasurface to a

collection of jinc sources using the T-matrix method. This requires the ability to

expand the jinc sources on the vector spherical wavefunctions (Eq. 3.8). In this

section, we mathematically develop such an expansion.

Consider a jinc source at z = z0 propagating in the +z direction and centered at

xt

0 = (x0, y0) in the transverse plane. The transverse electric field at z = z0 is given

by:

ET (xT
, z = z0) = AT

j1(k0|xT
� xT

0 |)

k0|xT � xT

0 |
(A.15)

where j1(·) is the first order spherical bessel function and AT = Axx̂ + Ayŷ is the

transverse polarization of the jinc field. Alternatively, in the fourier representation,

ET (x, y, z = z0) =
AT

2⇡

Z

|kT |<k0

exp[ikT
· (xT

� xT

0 )]d
2kT (A.16)

Propagating each plane-wave component, we obtain:

E(x, y, z) =
1

2⇡

Z

|kT |<k0

A(kT ) exp(ikT
· (xT

� xT

0 )) exp(ikz(z � z0))d
2kT (A.17)

where kz =
q
k2
0 � kT

· kT and

A(kT ) = AT
� ẑ

kT
·AT

kz(k
T )

(A.18)

Changing the integration variable to ↵, � (0  ↵  2⇡ and 0  �  ⇡/2) where
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kT (�,↵) = k0 sin �(x̂ cos↵ + ŷ sin↵) and therefore kz(k
T ) ⌘ kz(�,↵) = k0 cos �,

A(kT ) ⌘ A(�,↵) = x̂Ax+ŷAy�ẑ tan �(Ax cos↵+Ay sin↵) and d
2kT = k

2
0 sin � cos �d↵d�.

Moreover, each plane wave can be expanded into a sum of vector spherical harmonic

wavefunctions [26]:

A(�,↵) exp(ikT (�,↵) · (xT
� xT

0 )) exp(ikz(�,↵)(z � z0))

= exp[ik(�,↵) · (x0
0 � x0)]

X

l,m,p

al,m,p(�,↵)R�l,m,p(k0(x� x0
0)) (A.19)

where

al,m,p=0(�,↵) = �
4il exp(�im↵)p

2l(l + 1)

⇥
im⇡|m|

l
(�)(�̂ ·A(�,↵)) + ⌧ |m|

l
(�)(↵̂ ·A(�,↵))

⇤
(A.20a)

al,m,p=1(�,↵) = �
4il+1 exp(�im↵)p

2l(l + 1)

⇥
⌧ |m|
l

(�)(�̂ ·A(�,↵))� im⇡|m|
l

(�)(↵̂ ·A(�,↵))
⇤

(A.20b)

where ml,m(·, ·) and nl,m(·, ·) are vector spherical harmonics with orbital index l

and azimuthal index m. Therefore,

E(x) =
X

l,m,p

al,m,pR�l,m,p(k0(x� x0
0)) (A.21)

where al,m,p are given by:

al,m,p =
1

2⇡

Z
⇡/2

�=0

Z 2⇡

↵=0

al,m,p(�,↵) exp[ik(�,↵) · (x
0
0 � x0)] sin � cos �d↵d� (A.22)

In the remainder of this section, we will evaluate the integral over ↵ analytically, and

the resulting expression can then be numerically integrated over �. To do so, it will
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be convenient to define a function �m(⇠, ⌘, ⇢) by:

�m(⇠, ⌘, ⇢) =
1

2⇡

Z 2⇡

0

exp(�im↵) exp[i⇢ cos(↵� ⇠)] cos(↵� ⌘)d↵ (A.23)

�m(⇠, ⌘, ⇢) can be evaluated analytically: making a change of variables to ↵0 = ↵ �

⇠ + ⇡/2, we obtain:

�m(⇠, ⌘, ⇢) =
i
m exp(�im⇠)

2⇡

Z 5⇡/2�⇠

⇡/2�⇠
exp(�im↵

0) exp(i⇢ sin↵0) sin(↵0 + ⇠ � ⌘)d↵0

=
i
m�1 exp(�im⇠)

4⇡

Z 2⇡

0

exp(�im↵
0) exp(i⇢ sin↵0)

(exp(i(↵0 + ⇠ � ⌘))� exp(�i(↵0 + ⇠ � ⌘)))d↵0

=
i
m�1 exp(�im⇠)

2


exp{i(⇠ � ⌘)}Jm�1(⇢)� exp{�i(⇠ � ⌘)}Jm+1(⇢)

�

(A.24)

wherein we have used the identity:

Jm(⇢) =
1

2⇡

Z 2⇡

0

exp[i⇢ sin ✓ �m✓]d✓ (A.25)

Additionally, note that �̂ = (x̂ cos↵+ŷ sin↵) cos ��ẑ sin � and ↵̂ = �x̂ sin↵+ŷ cos↵.

Therefore:

�̂ ·A(�,↵) = sec �(Ax cos↵ + Ay sin↵) (A.26a)

↵̂ ·A(�,↵) = �Ax sin↵ + Ay cos↵ (A.26b)

Finally, let x0
0�x0 ⌘ (r0, ✓0,'0), and therefore k(�,↵) ·(x0

0�x0) = k0r0(cos � cos ✓0+

sin � sin ✓0 cos(↵� '0)).
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1. Consider the computation of al,m,p=0. Using Eq. A.20a, we obtain:

al,m,p=0(�,↵) sin � cos � = �
4il exp(�im↵)p

2l(l + 1)

⇥
(im⇡|m|

l
(�)Ax + ⌧

|m|
l

(�) cos �Ay) cos↵

+ (im⇡|m|
l

(�)Ay � ⌧
|m|
l

(�) cos �Ax) sin↵
⇤
sin �

(A.27)

and therefore

1

2⇡

Z 2⇡

0

al,m,p=0(�,↵) exp[ik(�,↵) · (x0 � x0
0)] sin � cos �d↵ = �

4il exp(ik0r0 cos � cos ✓0) sin �p
2l(l + 1)

⇥


(im⇡|m|

l
(�)Ax + ⌧

|m|
l

(�) cos �Ay)�m(�0, 0, k0r0 sin � sin ✓0)+

(im⇡|m|
l

(�)Ay � ⌧
|m|
l

(�) cos �Ax)�m(�0, ⇡/2, k0r0 sin � sin ✓0)

�

(A.28)

2. Consider the computation of al,m,p=1. Using Eq. A.20b, we obtain:

al,m,p=1(�,↵) sin � cos � = �
4il+1 exp(�im↵)p

2l(l + 1)

⇥
(⌧ |m|

l
(�)Ax � im⇡

|m|
l

(�)Ay cos �) cos↵

+(⌧ |m|
l

(�)Ay + im⇡
|m|
l

(�)Ax cos �) sin↵
⇤

(A.29)

and therefore

1

2⇡

Z 2⇡

0

al,m,p=1(�,↵) exp[ik(�,↵) · (x0 � x0
0)] sin � cos �d↵ =

�
4il+1 exp(ik0r0 cos � cos ✓0) sin �p

2l(l + 1)

⇥
⇥
(⌧ |m|

l
(�)Ax � im⇡

|m|
l

(�)Ay cos �)�m(�0, 0, k0r0 sin � sin ✓0)

+ (⌧ |m|
l

(�)Ay + im⇡
|m|
l

(�)Ax cos �)�m(�0, ⇡/2, k0r0 sin � sin ✓0)
⇤

(A.30)
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It can be noted that the numerical integration over � can be accelerated by using

lookup tables for the various special functions involved in the computation. Further-

more, we also parallelize the computation of the jinc sources on GPU to accelerate it

with one thread being assigned to compute al,m,p for a single choice of (l,m, p) with

respect to a chosen scatterer.

Finally, we remark that since the jinc sources are spatially limited, we only need

to simulate the metasurface locally to compute its response to the jinc source. In

order to estimate how local this simulation needs to be, a padding study like the one

in Figure 2.2 should be performed.

A.3 Spherical T-matrix validation and benchmark

In this Appendix, we validate and benchmark our implementation of the T-matrix

method against the common FDTD software Lumerical [84].

Validation simulations for our T-matrix simulation method implementation are

shown in Supplementary Figure A.1 — we see good agreement between the T-matrix

method, FDTD, and FDFD simulations.

Fig. A.2 shows a comparison of the simulation time of our implementation when

compared to commercially available FDTD solvers [84]. We note that this is not a

strictly rigorous benchmark, as the parallelization settings are not exactly the same

between our software and Lumerical – the purpose of this comparison is only to

roughly put our simulation times in context of a simulation tool the reader is likely

familiar with. Our software is able to simulate a 60 ⇥ 60 µm
2 large metasurface in

1-1.5 hours on a single GPU core (Nvidia V100). As seen in the inset in Fig. A.2,

the bulk of the simulation time is spent in the linear system solve.
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a) b)

Figure A.1: Validation of our T-matrix implementation. (a) Scatterers used for
the validation simulation — the scatterers are illuminated with a plane wave and have
a refractive index of 3.5. (b) Electric field magnitudes for the x, y, and z components
of the scattered fields from the T-matrix method simulation (top), FDFD simulation
(middle), and FDTD simulation (bottom).

A.4 Vector spheroidal wavefunctions

While the vector spherical wavefunctions can be used for an e�cient description of

the scattered field for subwavelength scatterers, there are several drawbacks of this

choice of basis functions. Firstly, the computation of the transition matrices for high

aspect ratio scatterers is ill conditioned when the vector spherical wavefunctions are

employed. Furthermore, the solution to the multiple-scattering problem in spherical

coordinates is no longer valid if two scatterers are close enough for the bounding

sphere of one scatterer to contain the origin of the second scatterer. Using vector

spheroidal wavefunctions for the representing the scattering properties of the individ-

ual scatterers resolved both of these problems. The derivations in Sections A.4.1 and

A.4.2, and the implementation in Section A.4.3 were done by Rahul Trivedi.

Unlike their spherical counterparts, vector spheroidal harmonics have not been

significantly used for the solution of Maxwell’s equations. Previous works have either
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Figure A.2: Timing benchmarks for our T-matrix implementation. Simula-
tion time versus simulation size for this single-GPU T-matrix method and for FDTD.
The T-matrix method simulation was performed on a single V100 GPU, while the
FDTD simulation was performed with Lumerical FDTD (Lumerical FDTD solutions,
www.lumerical.com) [84] on 8 CPUs with 32 GB RAM and mesh accuracy level 3.
The inset breaks down the total simulation time for the 20 ⇥ 20 µm surface into
the GMRES solve time (76.6%), the time to compute the T-matrices (17.1%), and
all other computation (e.g. computing the incident field coe�cients on the spherical
harmonic basis functions and expanding the scattered field coe�cients on the basis
functions to compute the scattered electric field; 6.2%).

been specialized to solving scattering from spheroidal scatterers [83, 19, 82, 20], or

have not considered multiple scattering problems [35, 36]. In this section, we extend

the formalism presented in [35], which deals with scattering from a single arbitrary

shaped scatterer in vector spheroidal wavefunctions, to multiple scattering problems

that are key to enable metasurface simulations using vector spheroidal wavefunctions.

Subsection A.4.1 introduces the solutions of the scalar and vector Helmholtz equations

in the spheroidal coordinates and their important properties, and subsection A.4.2
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provides a solution to the multiple scattering problem in spheroidal coordinates.

A.4.1 Solution to vector Helmholtz equation in spheroidal

coordinates

The prolate spheroidal coordinates describe the coordinates of a point with parame-

ters (⇠, ⌘,�) where ⇠ 2 [1,1), ⌘ 2 (�1, 1) and � 2 [0, 2⇡). These are related to the

cartesian coordinates via:

x = f

p
(⇠2 � 1)(1� ⌘2) cos� (A.31a)

y = f

p
(⇠2 � 1)(1� ⌘2) sin� (A.31b)

z = f⇠⌘ (A.31c)

Here we have introduced a parameter f which will be the focal length of the spheroidal

coordinate system. Note that � is identical to the azimuthal angle used in spherical

and cylindrical coordinate systems. A few simple observations can easily be made

about the spheroidal coordinate systems from Eq. A.31. Surface of constant ⇠ form

ellipsoids with major axis being along the ‘z’ direction:

z
2

⇠2
+

x
2 + y

2

⇠2 � 1
= f

2 (A.32)

Furthermore, in the limit of ⇠ ! 1, this ellipsoid tends to a sphere of radius f⇠.

Similarly, surfaces of constant ⌘ form hyperboloids with major axis being along the

‘z’ direction:

z
2

⌘2
�

x
2 + y

2

1� ⌘2
= f

2 (A.33)
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Note that ⌘ and �⌘ correspond to the same hyperboloid — the sign of ⌘ merely

determines whether the point lies in the region z > 0 or z < 0.

The scalar helmholtz equation at wavenumber k is given by:

r
2
 (x) + k

2
 (x) = 0 (A.34)

The scalar helmholtz equation is separable in the prolate spheroidal coordinates.

Similar to its solutions in the spherical coordinates, its solutions are indexed by two

quantum numbers, l and m, and are given by:

 l,m(x) = Rl,m(⇠)Sl,m(⌘) exp(im�) (A.35)

Rl,m(⇠) and Sl,m(⌘) correspond to the ‘radial’ and ‘polar’ parts of the wavefunction

and satisfy the following di↵erential equations:

(⇠2 � 1)
d
2

d⇠2
Rl,m(⇠) + 2⇠

d

d⇠
Rl,m(⇠) +

✓
h
2
⇠
2
�

m
2

⇠2 � 1

◆
Rl,m(⇠) = Al,mRl,m(⇠) 8 ⇠ 2 (1,1)

(A.36a)

(1� ⌘
2)

d
2

d⌘2
Sl,m(⌘)� 2⌘

d

d⌘
Sl,m(⌘)�

✓
h
2
⌘
2 +

m
2

1� ⌘2

◆
Sl,m(⌘) = Al,mSl,m(⌘) 8 ⌘ 2 (�1, 1)

(A.36b)

where h = kf and Al,m are separation constants that are introduced while applying

the separation of variables method on the scalar helmholtz equation. Note that in

general Al,m, Sl,m(⌘) and Rl,m(⇠) depend on h. Several general properties of Sl,m(⌘)

and Rl,m(⌘) to aid the following sections can be immediately deduced:

1. From Eq. A.36 that Sl,m and Rl,m can be chosen to depend only on |m|.



APPENDIX A. TRANSITION-MATRIX SIMULATION METHOD 89

2. From Eq. A.36b, it follows that Sl,m can be chosen so as to satisfy:

Z 1

�1

Sl,m(⌘)Sl0,m(⌘)d⌘ = �l,l0 (A.37)

3. There are two linearly independent solutions to Eq. A.36a — we will label

them by jel,m(⇠) and nel,m(⇠). Out of these two solutions, jel,m(⇠) is regular at

⇠ = 1 while nel,m(⇠) is singular at ⇠ = 1. Furthermore, they have the following

asymptotic forms:

lim
⇠!1

jel,m(⇠) !
1

h⇠
sin


h⇠ � (l + 1)

⇡

2

�
(A.38a)

lim
⇠!1

nel,m(⇠) !
1

h⇠
cos


h⇠ � (l + 1)

⇡

2

�
(A.38b)

Furthermore, we can construct an “outgoing” solution he
(1)
l,m

(⇠) = nel,m(⇠) +

ijel,m(⇠) which has the asymptotic form:

lim
⇠!1

hel,m(⇠) !
exp(ih⇠)

h⇠
(A.39)

From the solutions of the scalar Helmholtz equation, we can construct the solutions

of the vector Helmholtz equation, which is given by:

r⇥r⇥ ~F (~x) = k
2 ~F (~x) (A.40)

There are many ways of this construction, here we use the one which bears closest

resemblance to the construction of vector spherical harmonics.

�l,m,p=0(~x) = r⇥ (~x l,m(~x)) = ~x⇥r l,m(~x) (A.41a)

�l,m,p=1(~x) =
r⇥ �l,m,p=0(x)

k
(A.41b)
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It can also be seen that:

�l,m,p=0(x) = �
r⇥ �l,m,p=1(x)

k
(A.42)

Furthermore, for each (l,m, p), there will be a regular and singular (outgoing) solution

for �l,m,p. We will denote the regular solution by a prefix ‘Re’ and the singular solution

by a prefix ‘Si’ — consequently, the solutions to Helmholtz equation are S�l,m,p(x)

and R�l,m,p(x). We point out that the singular solutions to Helmholtz equation

satisfy Eq. A.40 except for at x 6= 0. Of particular interest are the asymptotic forms

for �l,m,p. These can be evaluated using Eq. A.41 and are given by:

lim
⇠!1

�l,m,p=0(x) =

✓
�

p
1� ⌘2

d

d⌘
Sl,m(⌘)�̂+

imSl,m(⌘)p
1� ⌘2

⌘̂

◆
Rl,m(⇠)e

im� +O

✓
1

⇠2

◆

(A.43a)

lim
⇠!1

�l,m,p=1(x) =

✓
imSl,m(⌘)p

1� ⌘2
�̂+

p
1� ⌘2

d

d⌘
Sl,m(⌘)⌘̂

◆
d

d⇠
Rl,m(⇠)e

im� +O

✓
1

⇠2

◆

(A.43b)

where Rl,m(⇠) is jel,m(⇠) for the regular solution and hel,m(⇠) for the singular solution.

We immediately notice that as ⇠ ! 1, the two vector spheroidal wavefunctions

become orthogonal to each other at each point in space.

A.4.2 Multiple scattering problem in spheroidal coordinates

As a starting point for the solution of the multiple-scattering problem, we establish

some relationships between the vector spheroidal wavefunctions.Suppose ~F1(x) and

~F2(x) are two vector fields and � is some volume in space, then we can define the
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following functional between the two vector fields:

F�[~F1,
~F2] =

Z

@�

⇥
~F1 ⇥ (r⇥ ~F2)� ~F2 ⇥ (r⇥ ~F1)

⇤
· d~S (A.44)

If ~F1 and ~F2 satisfy Eq. A.40 at all points inside the volume �, then a straightforward

application of Gauss’ law gives F(~F1,
~F2) = 0. The following relationships between

the vector spheroidal wavefunctions can then be deduced:

(a) We thus immediately deduce that along any closed volume �:

F[R�l,m,p(x� x0),R�l0,m0,p0(x� x0
0)] = 0 (A.45)

for any vectors x0 and x0
0. Note that we have used the fact that if ~F (x) satisfies

Eq. A.40 at all points in space, so does ~F (x� x0) 8 x0.

(b) Consider next the evaluation of F�[�l,m,p(x),�l0,m0,p0(x)] in a volume � that

contains the origin. Note that if � does not contain the origin, then the func-

tional would evaluate to 0. To do so, we construct a volume �1 as shown

in Fig. A.3a. Clearly, since the volume �1 � � does not contain the origin,

F�1��[�l,m,p(x),�l0,m0,p0(x)] = 0. Furthermore,

F�1��[�l,m,p(x),�l0,m0,p0(x)] = F�1 [�l,m,p(x),�l0,m0,p0(x)]� F�[�l,m,p(x),�l0,m0,p0(x)]

(A.46)

from which it immediately follows that:

F�[�l,m,p(x),�l0,m0,p0(x)] = F�1 [�l,m,p(x),�l0,m0,p0(x)] (A.47)

While evaluating the functional on �1, we can greatly simplify our calcu-

lation and use the far field forms in Eq. A.43. Furthermore, as ⇠ ! 1,
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O
O O'

a) b)

Figure A.3: Schematics for computing the functional F@�[·, ·] — Setup for establishing
the relations the functional between vector spheroidal wavefunctions with the a) same
center and b) displaced centers.

d~S = ⇠̂f
2
⇠
2
d⌘d�. We now consider the various combinations of the values

of p and p
0:

• p = p
0 = 0: In this case,

F�1 [�l,m,0(x),�l0,m0,0(x)]

= lim
⇠0!1

kf
2
⇠
2
0

Z

@�1

⇥
�l,m,0(x)⇥ �l0,m0,1(x)� �l0,m0,0(x)⇥ �l,m,1(x)

⇤
· ⇠̂d⌘d�

= kf
2
�m,�m0⌦l,l0;m


lim
⇠0!1

⇠
2
0

✓
Rl,m(⇠0)

d

d⇠0
Rl0,m(⇠0)�Rl0,m(⇠0)

d

d⇠0
Rl,m(⇠0)

◆�

(A.48)

where

⌦m

l,l0 = �

Z 1

�1


(1� ⌘

2)
d

d⌘
Sl,m(⌘)

d

d⌘
Sl0,m(⌘) +

m
2

1� ⌘2
Sl,m(⌘)Sl0,m(⌘)

�
d⌘

= Al,m�l,l0 +

Z 1

�1

h
2
⌘
2
Sl,m(⌘)Sl0,m(⌘)d⌘ (A.49)

From Eq. A.48, it immediately follows that:
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F�[S�l,m,0(x),S�l,m,0(x)] = 0 (A.50a)

F�[R�l,m,0(x),S�l,m,0(x)] = �f�m,�m⌦
m

l,l0 (A.50b)

• p = p
0 = 1: This case is very similar to the previous one, with the final

result being:

F�[S�l,m,0(x),S�l,m,0(x)] = 0 (A.51a)

F�[R�l,m,0(x),S�l,m,0(x)] = �f�m,�m⌦
m

l,l0 (A.51b)

• p = 0, p0 = 1: In this case, using the asymptotic forms for the vector

wavefunctions, we immediately see that:

F�1 [�l,m,0(x),�l,m,1(x)]

= lim
⇠0!1

�kf
2
⇠
2
0

Z

@�1


�l,m,0(x)⇥ �l0,m0,0(x) + �l,m,1(x)⇥ �l0,m0,1(x)

�
· ⇠̂d⌘d�

= lim
⇠0!1

�kf
2
⇠
2
0�m,�m0


im

Z 1

�1

d

d⌘
(Sl,m(⌘)Sl0,m(⌘))d⌘

��


d

d⇠0
Rl,m(⇠0)

d

d⇠0
Rl0,m(⇠0) +Rl,m(⇠0)Rl0,m(⇠0)

�
(A.52a)

It can be noted from Eq. A.36b that ifm 6= 0, then the di↵erential equation

has a singularity at ⌘ = ±1 and consequently Sl,m(±1) = 0. Therefore, we

immediately conclude that the RHS of Eq. A.52 evaluates to 0. Therefore,

F�[S�l,m,0(x),S�l0,m0,1(x)] = 0 (A.53a)

F�[R�l,m,0(x),S�l0,m0,1(x)] = 0 (A.53b)

• p = 1, p0 = 0: Following a procedure similar to that of p = 0, p0 = 1, it is
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immediately evident that

F�[S�l,m,1(x),S�l0,m0,1(x)] = 0 (A.54a)

F�[R�l,m,1(x),S�l0,m0,1(x)] = 0 (A.54b)

(c) We finally consider the situation shown in Fig. A.3b — we wish to compute

F�[S�l,m,p(x� x0
0),R�l0,m0,p0(x)] and F�[S�l,m,p(x� x0

0),R�l0,m0,p0(x)] where O

is assumed to be at the origin and O
0 has coordinates given by the vector x0

0.

Note that since � does not enclose O
0, it follows that S�l,m,p(x � x0

0) is not

singular within �. Consequently, it immediately follows that

F�[S�l,m,p(x� x0
0),R�l0,m0,p0(x)] = 0 (A.55)

Consider now the evaluation of F�[S�l,m,p(x � x0
0),S�l0,m0,p0(x)]: To do so, we

consider an ellipsoid �0 chosen such that 8x 2 @�0, |x| < |x0
0|. Furthermore,

both S�l,m,p(x� x0
0) and S�l0,m0,p0(x) are regular within �� �0. Therefore:

F�[S�l,m,p(x� x0
0),S�l0,m0,p0(x)] = F�0 [S�l,m,p(x� x0

0),S�l0,m0,p0(x)] (A.56)

Now, 8x 2 @�0, from translation theorem [21]:

S�l,m,p(x� x0
0) =

X

l⇤,m⇤

⌧
p

l,m;l⇤,m⇤(x0
0)R�l⇤,m⇤,p(x) (A.57)

Therefore, from Eqs. A.56, A.50 and A.51, it follows that:

F�[S�l,m,p(x� x0
0),S�l0,m0,p0(x)] = �f�p,p0

X

l⇤

⌧
p

l,m;l⇤,�m0⌦m
0

l⇤,l0 (A.58)
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For ease of notation, the above results can be summarized as:

F�[S��(x;h),R��0(x;h)] = M�,�0(h) (A.59a)

F�[S��(x;h),S��0(x+ ~d;h)] = D�,�0(~d;h) (A.59b)

where we have collected the indices (l,m, p) into �, and also displayed the dependence

of the spheroidal wavefunctions on h = kf . Furthermore, if we compactly express the

translation coe�cients via T�0,�(~d) where:

S��(x+ ~d;h) =
X

�0

T�0,�(~d;h)R��0(x;h) (A.60)

then we have the relationship

D�,�0(~d;h) =
X

µ

M�,µ(h)Tµ,�0(~d;h) (A.61)

For truncation with a finite number of spheroidal basis function, it will be convenient

to introduce matrices M(h), D(~d;h) and T(~d;h) formed from M�,�0(h), D�,�0(~d;h)

and T�,�0(~d;h) which would then satisfy:

D(~d;h) = M(h)T(~d;h) (A.62)

Finally, we consider N scatterers centered at ~x1, ~x2 . . . ~xN . We assume that the

focal length f of the ellipsoidal coordinate system is chosen so that the bounding

ellipsoids of the scatterers do not intersect with each other. We will denote by @�i

the surface of the i
th scatterer and by @�+

i
the surface of the bounding ellipsoid for

the i
th scatterer. Without proof, we assume that the scattered field in the region
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outside all the bounding ellipsoids can be expressed as the following superposition:

~Esca(~x) =
NX

i=1

X

�

s
i

�
S��(~x� ~xi) (A.63)

The scatterers are illuminated by a plane wave Einc(x) which can be described by:

Einc(x) =
X

�

a
i

�
R��(x� xi) (A.64)

Furthermore, we will denote by E(x) the solution to Maxwell’s equations in all space.

Clearly, in the region outside the bounding ellipsoids of all the scatterers, E(x) =

Esca(x) + Einc(x). Furthermore, since both E(x) and Esca(x) + Einc(x) do not have

any singularities in the region between @�i and @�
+
i
, it follows that:

F@�i [E(x),R��(x� xi)] = F
@�+

i
[Esca(x) + Einc(x),R��(x� xi)] (A.65a)

F@�i [E(x),S��(x� xi)] = F
@�+

i
[Esca(x) + Einc(x),S��(x� xi)] (A.65b)

Substituting the expressions for E(x) and Einc(x), we obtain:

F@�i [E(x),R��(x� xi)] =
X

µ

M�,µ(hb)s
i

µ
(A.66a)

F
@�+

i
[E(x),S��(x� xi)] = �

X

µ

M�,µ(hb)a
i

µ
�

X

j 6=i

X

µ

s
j

µ
D�,µ(xi � xj;hb) (A.66b)

Furthermore, we expand E(x) at the surface @�i in terms of R��(x� xi; kif):

E(x) =
X

�

b
i

�
R��(x� xi; kif) (A.67)
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Introducing Q
i

�,µ
and Q̂

i

�,µ
via:

Q
i

�,µ
= F@�i [R�µ(x� xi; kif),R��(x� xi; kbf)] and

Q̂
i

�,µ
= F@�i [R�µ(x� xi; kif),S��(x� xi; kbf)] (A.68)

we obtain:

Qibi = Msi (A.69a)

Q̂
i

bi = �M ~A
i
�

X

j 6=i

MTi(xi � xj)s
j (A.69b)

which are the desired transition matrix equations. Note that these are identical to

the transition matrix equation for spherical coordinates, with the transition matrix

given by Ti = �M�1Qi[Q̂
i

]�1M.

A.4.3 Implementation of Spheroidal Scalar Wavefunctions

Separation of variables on the scalar Helmholtz equation yields the following di↵er-

ential equation with respect to the coordinate ⌘:

d

dx


(1� x

2)
d

dx
S
m(x)

�
�

✓
h
2
x
2 +

m
2

1� x2

◆
S
m(x) = �

m
S
m(x) for x 2 [�1, 1]

(A.70)

Here, �m and S
m(x) are both to be determined. Note that the di↵erential equation

only depends on the magnitude of m. Consequently, we will choose S�m(x) = S
m(x)

and �m = �
�m and henceforth in this section, we will assumem to be non-negative. In

order to solve this di↵erential equation, we expand S
m(x) into a sum of the associated
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Legendre polynomials Pm

l
(x):

S
m(x) =

1X

r=0

d
e

m,r
P

m

m+2r(x) +
1X

r=0

d
o

m,r
P

m

m+2r+1(x) (A.71)

Note that the P
m

l
(x) satisfy:

d

dx


(1� x
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d

dx
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(x)

�
�

m
2

1� x2
P

m

l
(x) = l(l + 1)Pm

l
(x) for x 2 [�1, 1] (A.72)

Next, we would like to evaluate the coe�cients de/om,r. To obtain a relationship between

these coe�cients from Eqs. A.71 and A.70, it is necessary to express x2
P

m

l
(x) in terms

of Pm

l
(x). The starting point for this is the following recursion for the associated

legendre polynomials:

xP
m

l
(x) =

l �m+ 1

2l + 1
P

m

l+1(x) +
l +m

2l + 1
P

m

l�1(x) (A.73)

where it is assumed that Pm

l
(x) = 0 for l < m. Repeated application of this recursion

allows us obtain:

x
2
P

m

l
(x) =

(l �m+ 1)(l + 2�m)

(2l + 1)(2l + 3)
P

m

l+2(x) +


(l �m+ 1)(l + 1 +m)

(2l + 1)(2l + 3)
+

(l +m)(l �m)

(2l + 1)(2l � 1)

�
P

m

l
(x)+

(l +m)(l � 1 +m)

(2l + 1)(2l � 1)
P

m

l�2(x) (A.74)

Using this recursion along with Eqs. A.70 and A.71, we obtain the following recursions:

�
m

r
d
e

m,r�1 + (↵m

r
� �

m)de
m,r

+ �
m

r
d
e

m,r+1 = 0 (A.75a)

�
m

r+1/2d
o

m,r�1 + (↵m

r+1/2 � �
m)do

m,r
+ �

m

r+1/2d
o

m,r+1 = 0 (A.75b)
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where

↵
m

x
= (m+ 2x)(m+ 2x+ 1) + h

2


(2x+ 1)(2m+ 2x+ 1)

(2m+ 4x+ 1)(2m+ 4x+ 3)
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2x(2m+ 2x)

(2m+ 4x+ 1)(2m+ 4x� 1)

�

(A.76a)

�
m

x
= h

2 2x(2x� 1)

(2m+ 4x� 3)(2m+ 4x� 1)
(A.76b)

�
m

x
= h

2 (2m+ 2x+ 2)(2m+ 2x+ 1)

(2m+ 4x+ 5)(2m+ 4x+ 3)
(A.76c)

To compute �m from the recursion in Eq. A.75, we rewrite it as an eigenvalue equation.

Noting from definition of �m

x
that �m

0 = �
m

1/2 = 0, it follows that
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(A.77a)
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(A.77b)

These are the two eigenvalue problems that need to be solved (after truncation)

in order to setup the spheroidal wavefunctions. We will refer to the first one as

the even eigenvalue problem and the second one as the odd eigenvalue problem.

The eigenvectors and eigenvalues obtained will be indexed by the orbital number

l � m — the scheme of assignment of the orbital number is as follows: the solution

corresponding to the smallest eigenvalue of the even problem will be assigned l = m,

that corresponding to the smallest eigenvalue of the odd problem will be assigned

l = m+ 1, that corresponding to the second smallest eigenvalue of the even problem
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l = m + 1 and so on. Note that with this assignment scheme, a solution for which

l�m is even corresponds to the first eigenproblem and a solution for which l�m is

odd corresponds to the second eigenproblem.

For the purposes of computation of the hankel-like radial wavefunction in spheroidal

coordinates, it is necessary to be able to compute the values of the coe�cients do/em,r

for negative values of r. Consider extending d
e

m,r
to negative r. Noting from Eq. A.76

that �m�m�1 = 0. This immediately implies that de
m,r

= 0 8 r < �m. To evaluate de
m,r

for �m  r  �1, we use Eq. A.75 to obtain a system of equations for de
m,r

:
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(A.78)

Here, de
m,0 has already been evaluated via the solution of the eigenvalue problem in

Eq. A.77. Similarly, noting from Eq. A.76 that �m�m�1/2 = 0 and therefore d
o

m,r
=

0 8 r < �m. To evaluate do
m,r

for �m  r  �1, we use Eq. A.75 to obtain a system
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of equations for do
m,r

:

2

6666666664

↵
m

�1/2 � �
m

�
m

�1/2 0 0 . . . 0 0

�
m

�3/2 ↵
m

�3/2 � �
m

�
m

�3/2 0 . . . 0 0

0 �
m

�5/2 ↵
m

�5/2 � �
m

�
m

�5/2 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . �
m

�m+1/2 ↵
m

�m+1/2 � �
m

3

7777777775

2

6666666666666664

d
o

m,�1

d
o

m,�2

d
o

m,�3

d
o

m,�4

...

d
o

m,�(m�1)

d
o

m,�m

3

7777777777777775

=

2

6666666666666664

��
m

�1/2d
o

m,0

0

0

0

. . .

0

0

3

7777777777777775

(A.79)

For the purpose of computing the hankel-like radial function, it is necessary to eval-

uate a complementary eigenvector components. This is defined by

�o/e

m,p
= lim

x!0

d
o/e

m,�m�p+x

x
8 p � 1 (A.80)

where the limit is understood to be taken of an extension of the closed form solution

to d
o/e

m,r over all real numbers.

Consider first the evaluation of �e

m,p
: Note from Eq. A.75 for r = �m � 1 + x
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that:
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m)de
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It is also worthwhile noting from Eq. A.76 that

�
m

�m�1+x
= �

2xh2

(2m� 1)(2m+ 1)
(A.82)

Noting that limx!0 d
e

m,�m+x
= d

e

m,�m
6= 0, it follows from Eq. A.81 that:
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d
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Similarly, using Eq. A.75 for r = �m � p + x for p > 1, dividing by x and taking

limit of x ! 0 we obtain:
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m)�e

m,p
+ �

m
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Eqs. A.81 and A.84 can be collected into a system of equation that can be truncated

and solved:

2

6666664

↵
m

�m�1 � �
m

�
m

�m�1 0 0 . . .

�
m

�m�2 ↵
m

�m�2 � �
m

�
m

�m�2 0 . . .

0 �
m

�m�3 ↵
m

�m�3 � �
m

�
m

�m�3 . . .

...
...

...
...

. . .

3

7777775

2

6666666664

�e

m,1

�e

m,2

�e

m,3

�e

m,4

...

3

7777777775

=
2h2

d
e

m,�m

(2m� 1)(2m+ 1)

2

6666666664

1

0

0

0
...

3

7777777775

(A.85)

Similarly, consider the evaluation of �o

m,p
: Note from Eq. A.75 for r = �m�1+x
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that
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It is also worthwhile noting from Eq. A.76 that

�
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2xh2

(2m� 3)(2m� 1)
(A.87)

Therefore,
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It also follows from Eq. A.75 that for p > 1 that
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Collective these into a system of equations, which can be truncated and solved:
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Spheroidal Angular Functions Radial Bessel Functions Radial Neumann Functions

Figure A.4: Implementation of spheroidal special functions and their comparison
against available lookup tables.

Once the eigenproblem is known, we can construct the ‘bessel-like’ radial wave-

functions as well using the following formula: If l �m is even, then

R
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and if l �m is odd, then
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with
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(A.91d)

The construction of the ‘neumann-like’ radial wavefunctions, which are required

for computing the outgoing solutions of the wave-equation, we perform an analytical

continuation on S
m

l
(⌘) to ⌘ being more than 1. Fig. A.4 shows our implementation

of these special functions along with comparison against documented lookup tables

of function values available in literature.

A.4.4 Implementation of Spheroidal Vector Wavefunctions

Here, we describe a method for computing the vector spheroidal wavefunctions, �p=0

and �p=1, from the scalar spheroidal wavefunctions (Eq. A.41) using the spheroidal

special functions implemented in Fig. A.4. Then, we discuss computing the coe�-

cients for the incident field and the translation coe�cients on the spheroidal basis

functions using the incident field and translation coe�cients on the spherical vector

wavefunctions (as described in Section A.1). Since the implementation of the vec-

tor spherical wavefunctions is more straightforward and can be built on pre-existing

e�cient special function libraries, it is advantageous to harness as much of this infras-

tructure as possible for the vector spheroidal wavefunction coe�cient computation.
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Expanding Eq. A.41, we have:

�⇠

p=0 = �
f
2
m⌘i 

g�g⌘

��

p=0 =
f
2

g⇠g⌘

✓
⌘
@ 

@⇠
� ⇠

@ 

@⌘

◆

�⌘

p=0 =
f
2
m⇠i 

g�g⇠
(A.92)

�⇠

p=1 =
1

kg⌘g�

✓
�
g⌘f

2
m

2
⇠ 

g�g⇠

◆
�

@

@⌘

✓
g�f

2

g⇠g⌘

✓
⌘
@ 

@⇠
� ⇠

@ 

@⌘

◆◆�

��

p=1 =
1

kg⇠g⌘


@

@⌘

✓
�
g⇠mif 2

⌘ 

g⌘g�

◆
�

@

@⇠

✓
g⌘f

2
mi⇠ 

g⇠g�

◆�

��

p=1 =
1

kg⇠g�


@

@⇠

✓
g�f

2

g⇠g⌘

✓
⌘
@ 

@⇠
� ⇠

@ 

@⌘

◆◆
�

✓
g⇠f

2
m

2
⌘ 

g⌘g�

◆�
(A.93)

where ~g is the gradient of x with components:
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(A.94)

The scalar spherical wavefunction  in Eq. A.92 is defined in terms of the

spheroidal special functions from Fig. A.4 for standing basis (basis for incident field)

as:

 l,m(x) = RadialBessell,m(⇠)Angularl,m(⌘) exp(im�) (A.95)

The scalar spherical wavefunction  in Eq. A.92 is defined in terms of the

spheroidal special functions from Fig. A.4 for propagating basis (basis for scattered
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field) as:

 l,m(x) = [RadialBessell,m(⇠) + i ⇤RadialNeumannl,m(⇠)]Angularl,m(⌘) exp(im�)

(A.96)

As defined in [22], we can express spherical wavefunctions • ~R�l,m(r, ✓,�) as a sum

of spheroidal wavefunctions ~R�l,m(h; ⌘, ⇠,�) as follows:

• ~R�l,m(r, ✓,�) =
10X

b=|m|,|m|+1
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(h) ~R�l,m(h; ⌘, ⇠,�) (A.97)

where �l,m
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(h) is defined as:

�l,m

b,m
(h) = ib�l
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d
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l�|m|(h) (A.98)

•
Nl,m and Nb,m are the normalization factors of the associated Legendre func-

tions for the spherical wavefunction computation and the normalization factors of

the spheroidal angle function S
(1)
ml

for the spheroidal wavefunction computation [32],

respectively:
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(A.99)

The conversion in Eq. A.97 allows us to compute the spheroidal basis incident

field coe�cients from the incident field coe�cients on the spherical basis functions
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(whose computation procedure is detailed in Section A.2):

al,m =
10X

b=|m|,|m|+1

⇣
•
ab,m�

b,m

l,m
(h)
⌘

(A.100)

A similar conversion can be applied to compute the translation coe�cients on

the spheroidal basis from the spherical basis translation coe�cients. Then, with the

incident field and translation coe�cients, the spheroidal vector wavefunctions, and

the transition matrices computed on the spheroidal basis, T-matrix simulations can

be performed on the spheroidal basis.



Appendix B

Scatterer libraries

Fig. B.1 shows the response curves for all the scatterer libraries used in the main

text. The low aspect-ratio Huygens library in Fig. B.1a was used for the intro-

duction example demonstrating the limitations of the periodic approximation meta-

surface simulation approach (Fig. 1.2, 1.3, 1.4, 1.5, and 1.6), the comparison of

the T-matrix method with locally-periodic simulations for many di↵erent NA metal-

enses (Fig. 3.5b), and the distributed single-layer metalens optimization (Fig. 3.10,

3.11, and 3.12). The higher aspect-ratio silicon-in-air with larger lattice separation

in Fig. B.1b was used for the comparison of the T-matrix method with locally-

periodic simulations for many di↵erent NA metalenses (Fig. 3.5a), the jinc source

spatial-locality demonstration (Fig. 2.2), the scalability study of the low-overhead

distribution method (Fig. 2.5), and the very large-area metalens simulation (Fig.

3.6). The higher aspect-ratio silicon-in-sapphire with smaller lattice separation in

Fig. B.1c was used for the double-layer metalens optimization (Fig. 3.13 and 3.14).

The high aspect-ratio square post library in Fig. B.1d was used for the distributed

FDTD metalens simulation (Fig. 4.5 and 4.6).
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Figure B.1: Response curves for all scatterer libraries. (a) Transmission and
phase response for the scatterer library based on[5], consisting of silicon cylinders
with height 940 nm, radii range of 50-250 nm, square lattice period of 1070 nm, air
background, and plane wave source wavelength of 1550 nm. (b) Transmission and
phase response for the scatterer library based on [33], consisting of silicon cylinders
with height 220 nm, radii range of 175-280nm, square lattice period of 666 nm, back-
ground refractive index of 1.66, and plane wave source wavelength of 1340 nm. (c)
Transmission and phase response for a higher aspect-ratio library based on the scat-
terer library from [33], consisting of silicon cylinders with height 730 nm, radii range
of 50-250 nm, square lattice period of 666 nm, background refractive index of 1.66,
and plane wave source wavelength of 1340 nm. (d) Transmission and phase response
for a high aspect-ratio library, consisting of square posts with refractive index 3.68,
with height 1050 nm, side length range of 100-400 nm, square lattice period of 800
nm, background refractive index of 1, and plane wave source wavelength of 1550 nm.
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