Expression of wingless in the Drosophila embryo: a conserved cis-acting element lacking conserved Ci-binding sites is required for patched-mediated repression.

TitleExpression of wingless in the Drosophila embryo: a conserved cis-acting element lacking conserved Ci-binding sites is required for patched-mediated repression.
Publication TypeJournal Article
Year of Publication1998
AuthorsLessing D, Nusse R
JournalDevelopment
Volume125
Pagination1469–1476
Date PublishedApr
ISSN0950-1991 (Print); 0950-1991 (Linking)
AbstractPatterning of the Drosophila embryo depends on the accurate expression of wingless (wg), which encodes a secreted signal required for segmentation and many other processes. Early expression of wg is regulated by the nuclear proteins of the gap and pair-rule gene classes but, after gastrulation, wg transcription is also dependent on cell-cell communication. Signaling to the Wg-producing cells is mediated by the secreted protein, Hedgehog (Hh), and by Cubitus interruptus (Ci), a transcriptional effector of the Hh signal transduction pathway. The transmembrane protein Patched (Ptc) acts as a negative regulator of wg expression; ptc- embryos have ectopic wg expression. According to the current models, Ptc is a receptor for Hh. The default activity of Ptc is to inhibit Ci function; when Ptc binds Hh, this inhibition is released and Ci can control wg transcription. We have investigated cis-acting sequences that regulate wg during the time that wg expression depends on Hh signaling. We show that approximately 4.5 kb immediately upstream of the wg transcription unit can direct expression of the reporter gene lacZ in domains similar to the normal wg pattern in the embryonic ectoderm. Expression of this reporter construct expands in ptc mutants and responds to hh activity. Within this 4.5 kb, a 150 bp element, highly conserved between D. melanogaster and Drosophila virilis, is required to spatially restrict wg transcription. Activity of this element depends on ptc, but it contains no consensus Ci-binding sites. The discovery of an element that is likely to bind a transcriptional repressor was unexpected, since the prevailing model suggests that wg expression is principally controlled by Hh signaling acting through the Ci activator. We show that wg regulatory DNA can drive lacZ in a proper wg-like pattern without any conserved Ci-binding sites and suggest that Ci can not be the sole endpoint of the Hh pathway.