

Ridge 2010

Winter Presentation

Site - University of Nevada, Reno

Challenges

- Earthquakes
- Gusts from the Sierra Nevada
- Large Diurnal Temperature Variation
- Cactus Collection
- Slope

Advantages

- Mid-Campus Location
- Views to South Campus
- Abundant sun

Site - University of Nevada, Reno

2-9 Solar Orientation

Public building entrances will need to maximize their orientation to the south and southwest to facilitate year-round use.

The existing library steps serve as a prime example of orienting and designing access to serve as informal seating, thus encouraging campus community interaction

2-8 Informal Seating

Accessways, stairs, and other site features can provide informal seating areas and places of interaction.

Big Idea

Emphasizes on how technology and nature intertwine for fostering sustainability and the interaction it aids to provide

Goals:

Sustainability Tech
 Integration

PIXEL

Sun Study

FROM BUILDUING'S SOUTHWEST FAÇADE: JANUARY 21-DECEMBER 21 AT 1PM

Summer Solstice Sun Angle= 73.9°

Pixel

Winter Solstice Sun Angle= 27°

<u>Pixel</u>

Floor 1

Level: -16'-0" Height: 16'-0"- 26'-0"

> Bathrooms MEP Storage Café Large Classrooms Auditorium Vertical Cores

Pixel

Floor 2

Level: 0'-0" Height: 10'-0"

MEP Storage Interaction Areas Seminar Rooms Small Classrooms Vertical Cores Instructional Labs Server Room Student Office Area

Pixel

Level: +13'-0" Height: 9'0"-11'0"

Bathroom
MEP
Storage
Faculty Offices
Interaction/Lounge Areas
Vertical Cores

Section AA

Pixel <

West Façade

Façade

- A. Concrete wall that works in openings according to structural capacity
- B. Pre-fabricated module photovoltaic, glass panels which would capture solar energy

(B)

(A)

Possible Glass Materials

Nano-Gel Windows

Eco Insulating Glass Triple Glazed Window

First Floor Entrance

Pixel <

Pixel <

Second Floor Student Area

Pixel 🤇

Loads

Dead: self weight+ MEP	85 psf
Live: corridors	100 psf
EQ: base shear	538 kips
Wind: basic wind speed	100 mph

Floor 1

- Retaining Wall
- 16" Spread footing
- 8" Slab on grade

Floor 2 & 3

• 4 ½" NW 2VLI16 metal deck

Steel

Pixel 🧲

Steel 8 4 Floor 2 58'-0" 57'-0" 14'-0" А Columns 1111111111 <u>~~</u>^ ----TU TUT UT ■W12x 65 CLED GID 57'-0" ■W14x 170 Beams 00 ШЪ, W14x 38 000 00 W18x 50 E) CACK 7 24'-0" Challenges 0.0.0 **F**) W24x 84 Auditorium-span 31'-6" W36x 182 Cantilever beams W36x 247 Transfer girder **G**) 26'-0" н 24/40 Н

Steel - Lateral System

Auditorium & Cantilever Solution

- Δ_{LL} of cantilever tip~ 0.76 in
- W14x 170 columns
- W36x 182 cantilever beams
- Floor 2 to roof column

Steel

Pixel <

Concrete - Load Path

Pixel

View from under-side of slab

Floor 2

Gravity

- 10" Pre-Stressed Flat Slab
- 12"x12" Perimeter columns
- 14"x14" Interior columns
 - 24"x48" Spandrel beams

Lateral

10" Shear Wall

Challenges

 24"x48" Cantilevered beams
 24"x24" Auditorium & Cantilevered beams
 Perforated Shear Wall

Concrete

Floor 3

Gravity

- 10" Pre-Stressed Flat Slab
- 12"x12" Perimeter columns
- 14"x14" Interior columns
 - 24"x48" Spandrel beams

Lateral

10" Shear Wall

Challenges

- 24"x48" Cantilevered beams
- 24"x24" Beams
- Floor 2 to Roof columns

Concrete

48" deep beams 24" deep beams 10" thick shear wall MEP primary ducts **MEP Distribution**

Pixel

Chilled Beam System coupled with Geo-Thermal Central Plant

- MEP rooms
- Primary Ducts
- Secondary Ducts

Soil Profile <u>Soil Profile applies to the low of the slope</u>

Pixel <

Pixel 🧲

Site Plan

Cactus Gardens Building Footprint

Site Area	3.6acres
Crane Space	2 locations
JIT delivery sites	5150 SF
Excavation Storage	700 CY
Assembly Fabrication	12000 SF
Recycling & Waste Control	6x20 CY bins
Parking	50-55 spots
Site Trailers	1000 SF
Restrooms	4 Units
Heat Relief Area	400 SF

Pixel

Schedule Budget

_				
Code	Name	Duration	Start	End
740	ACENEDAL DECHIDEME	(20)	5/40/2045	E/44/2046
210	GENERAL REQUIREME	(30)	5/19/2015	5/11/2010
210	General Requirements	10	5/19/2015	6/2/2015
210	General Requirements	20	4/12/2016	5/11/2016
G	SITEWORK	109	5/19/2015	5/19/2016
G10	"SITE PREPARATION	(35)	5/19/2015	7/7/2015
G30	CIVIL AND MECHANICA	(25)	7/8/2015	8/11/2015
G40	*SITE ELECTRICAL	(20)	7/8/2015	8/4/2015
G20	*SITE IMPROVEMENTS	(29)	4/8/2016	5/19/2016
A	SUB-STRUCTURE	50	7/8/2015	8/28/2015
A10	*FOUNDATIONS	(20)	7/8/2015	8/4/2015
A20	*BASEMENTS	(30)	7/20/2015	8/28/2015
В	SHELL	125	8/4/2015	12/1/2015
B10	*SUPERSTRUCTURE	(70)	8/4/2015	11/10/2015
B20	*EXTERIOR ENCLOSURE	(40)	9/7/2015	11/24/2015
B30	*ROOF	(15)	11/11/2015	12/1/2015
С	INTERIORS	195	8/26/2015	4/15/2016
C20	*STAIRS	(20)	8/26/2015	11/10/2015
C10	INTERIOR CONSTRUCT	(95)	11/25/2015	4/7/2016
C30	*INTERIOR FINISHES	(80)	12/10/2015	4/15/2016
D	SERVICES	280	9/22/2015	4/7/2016
D40	*FIRE PROTECTION	(35)	9/22/2015	12/11/2015
D20	*PLUMBING	(45)	10/8/2015	1/5/2016
D10	*CONVEYING SYSTEM	(20)	10/22/2015	11/19/2015
D30	*HVAC	(95)	10/29/2015	3/11/2016
D50	*ELECTRICAL	(85)	11/30/2015	4/7/2016
E	EQUIP. & FURNISHINGS	80	1/11/2016	5/11/2016
E10	*EQUIPMENT	(30)	1/11/2016	4/21/2016
E20	*FURNISHINGS	(50)	1/19/2016	5/11/2016

Duration: 365 days

Milestones

Big Idea

"Ridge" to Bridge

Emphasizes on the feeling of inhabiting the areas in between

Goals:

- Circulation
- Campus Connectivity
- Daylight Interaction
- Encourage
 Pedestrian Use

R 2 B

Sun Study

FROM BUILDUING'S SOUTHWEST FAÇADE: JANUARY 21-DECEMBER 21 AT 1PM

Summer Solstice Sun Angle= 73.9°

R 2 B

Floor 1

Ν

Level: -30'-0" Height: 16'-0"

Bathrooms
MEP
Storage
Large Classrooms
Auditorium
Vertical Cores
Server Room

Level: -10'-0" Height: 12'-0"

> Bathroom MEP Storage Interaction Areas Seminar Rooms Small Classrooms Vertical Cores Instructional Labs Student Office Area Tech Support

Level: 0'-0" Height: 10'-0"

Bathroom
MEP
Storage
Faculty Offices
Interaction/Lounge Areas
Vertical Cores
Department Chair Office
Senior Administrative
Assistants

Ka Ka Ka		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Ŗ	
2	j 107.94° 3	

North Façade

R 2 B

South Façade

East Façade

R 2 B

West Façade

Second Floor Interaction Area

Second Floor Classroom

R 2 B

Façade Development

Façade with exposed structure

R 2 B

Loads

Dead: self weight+ MEP	95 psf	
Live: corridors	100 psf	
EQ + soil: base shear	4000 kips	
Wind: basic wind speed	100 mph	

<u>Floor 1</u>

- Retaining Wall
- 30" Spread footing
- 8" Slab on grade

Floor 2 & 3

• 4 ½" NW 3VLI19 metal deck

Floor 2

- Columns
 - W12x 45
 - W14x 233
 - W14x 159

Beams

- W12x 26
- W12x 30
 - **—** W18x 40

Challenges

W24x 250 Auditorium-Span bms
 W27x 122 Perimeter Brace bms
 HSS 10x 10x ⁵/₈ Slanted elements

Floor 3

- Columns
 - W12x 45
 - W14x 233
 - W14x 159

Beams

- W12x 26
- W12x 30
 - **__** W18x 40

Challenges

- W24x 250 Auditorium-Span bms
 W27x 122 Perimeter Brace bms
- WZ/X 122 Perimeter Brace bins
- HSS 10x 10x ⁵/₄ Slanted columns
- HSS 10x 10x 5/8 Perimeter braces

Steel A

• Perimeter Trusses integrated into the façade • HSS 10x 10x x ⁵/₈ diagonals • Interior cross bracing for lateral support Floor 3 Floor 2 Floor 1

R 2 B

Cantilever Solution

Steel A

Cantilever Load path

Loads

Dead: self weight+ MEP	95 psf	
Live: corridors	100 psf	
EQ + soil: base shear	4000 kips	
Wind: basic wind speed	100 mph	

Floor 1

- Retaining Wall
- 30" Spread footing
- 8" Slab on grade

Floor 2 & 3

• 4 ½" NW 3VLI19 metal deck

Lateral

- 10" Shear Wall
- HSS cross braces

<u>Floor 2</u>

- Columns
 - 12x 45
 - **14x 120**
 - 14x 159

Beams

- **—** 12x 26
- **—** 12x 30

Challenges

- 24x 250 Auditorium-Span beam
- 21x 122 Cantilever tie-back beams
- HSS 4- ½ x 4 ½ x ¼ Slanted Columns

Lateral

- 10" Shear Wall
- HSS cross braces

Floor 3

Columns

- W12x 45
- **W**14x 120
- W14x 159

Beams

- **—** W12x 26
- W12x 30

Challenges

- W24x 250 Auditorium-Span beam
- W21x 122 Cantilever tie-back bms
- HSS 4- ½ x 4 ½ x ¼ Slanted columns

Lateral

- 10" Shear Wall
- HSS cross braces

Steel B - Load Path

R 2 B

R 2 B Steel B - Load Path **Cantilever Solution** ~18'-7" (1)Q 10'-6" (2)21'-5" 30'-0" 4 slanted-column frames No roof live load Δ_{11} of cantilever tip: (1) 1.12" (<L/360 = 1.42") (2) 0.75" (<L/360= 0.97") W14x 120 columns W21x 122 Cantilever beams

□ HSS 4- ½x 4-½x ¼ Slanted columns

MEP Distribution

Chilled Beam System coupled with Geo-Thermal Central Plant

- MEP rooms
- Primary Ducts
- Secondary Ducts

Soil Profile applies to the low of the slope

R 2 B

Site Plan

Cactus Gardens

Building Footprint

Schedule Budget

Duration: 365 days

Erection Sequence

Floor 1

Vertical Core

Main Staircase

Milestones

R 2 B

Construction Method Comparison

In-situ Concrete

Steel

Rammed Earth

Project Equipment - General

Volvo L220F Hybrid

SANY 5253THB

Excavation

Kamatsu PC200-8 Hybrid

<u>Material and</u> <u>Personnel</u> <u>Handler</u>

<u>Geothermal</u> Drill-rig

Techno Drill 410

Project Equipment - Crane

Concept 2B

Grove TM500E-2 45ton Truck Mounted-Hydraulic Crane

All Other Concepts

Link Belt HTC8675T 75ton Truck Mounted-Hydraulic Crane

Target Value Comparison

<u>PIXEL</u>

Pixel Steel Targets

<u>R2B</u>

R2B Steel Targets

R2B Dual Targets

\$73.01

Pixel Concrete Targets

Sitework \$8.90 Sitework \$5.92 Services Services \$62.13 Interior \$33.83 Interior \$26.63 Shell \$33.83 Shell \$42.90 Substructure \$28.49 Substructure \$10.36 Equipment and... Ś-\$-Equipment and...

Budgeted Cost: \$7.5 Million

LEED Certification

LEED Rating Categories	Yes	No	Maybe	Possible Points
Sustainable Site	18	5	3	26
Water Efficiency	0	1	6	10
Energy and Atmosphere	11	0	2	35
Materials and Resources	4	3	0	14
Indoor Environmental Quality	14	1	0	15
Innovation and Design Process	0	0	0	4 (bonus)
Regional Priority Credits	4	0	0	4 (bonus)
Silver Accredited	51	10	11	50-59

Process

Task List to Track and Manage Design Work

Process

Task List to Weekly Production Plan

Meeting Dynamics - Beginning of Quarter

Process <

Meeting Dynamics - End of Quarter

Process

Work Week Dynamics - Beginning of Quarter

Process

Work Week Dynamics - End of Quarter

Process - Pixel

Team Ridge Decision Matrix					
		Steel	Concrete	Steel	Dual
IPD		1	1	3	2
SUSTAINABILITY					
Sol	lar Production	2	2	1	1
Na	tural Lighting	2	2	1	1
Car	mpus Connectivity	0	0	3	3
Qu	ality of Indoor Space	1	1	2	2
Fos	stering Innovative Educational Practices	0	0	2	2
Cre	eating Sustainability Awareness	1	1	2	2
Bui	ilding Flexibility	1	2	3	-1
ECONOMY					
Bu	dget Risk (by Building System)	1	1	-1	0
Ор	portunity for Prefabrication	2	-1	2	1
Effi	iciency of Structural System	1	0	2	3
Sch	nedule Risk (by System Duration)	1	2	1	0
DISCIPLINE BASED					
<u>_Fur</u>	nctional Space Affinities	-1	-1	0	0
Inn	novativeness of Structural Solution	0	0	3	1
Jus	st-in-Time Construction Approach	1	0	2	2
Bui	ilding Response to Earthquake Events	-1	-1	1	1

Team Ridge Decision Matrix

THANK YOU

