

Pacific Team

Pacific Team

Enrique Donata Ethan Sijia Mike Nolan Apollo-Milord Hernandez Trost Muller Landy Tao Andreasen MEP SE CM CM SE Appr. Arch

SITE OVERVIEW

San Francisco State University

San Francisco, CA

MEP

SE

CM

SITE & ACCESS

SITE CONDITIONS

Soil

- NEHRP Site Class C
- Lateral Soil
 Pressure: 35 psf/ft

- Bearing Capacity: 3,500 psf
- Water table: I4' below grade
- Well-sorted fine-medium sand

Temperature

Summer Design Temperature:

- 79°F Dry Bulb
- 63°F WB

Winter Design Temperature:

• 41°F Dry Bulb

Relative Humidity

Wind

 Average of 10-15 mph from the west

Wind Directions Over the Entire Year

MEP

SE

CM

EMBRACE

Embrace flow

Embrace wind

Be a landmark

ITERATIONS

WIND & CAMPUS FLOW

A + MEP

TIMBER AUDITORIUM

EXTRUSION OF FACADE

A + MEP + SE

THE SURROUNDING AREA

SITE PLAN

RENDERS

South

East

West

FACADE SYSTEM

Current system

MEP SE CM

GROUND FLOOR

Department Legend

- Computer labs
- Elevator
- Large Classroom
- Mechanical room
- Restroom
- Small Classroom
- Staircase
- Storage
- Technical Support

MEP

SE CM

GROUND FLOOR

View From South

FIRST FLOOR

FIRST FLOOR

View From South

SECOND FLOOR

SECOND FLOOR

View From South

SECTION THROUGH AUDITORIUM

SECTION THROUGH MAIN STAIRCASE

COMFORT & DESIGN TARGETS

Summer Design Conditions (0.5%)

- 79°F Dry Bulb
- 63°F WB

Winter Design Conditions (0.2%)

• 41°F Dry Bulb

Relative Humidity

74% (Average)

Indoor Design Targets (+/- 0.5 PMV, ASHRAE 55-2010)

- Summer:
 - 74°F Dry Bulb
 - 52 fpm (max)
 - Clo = 0.5
- Winter:
 - 68°F Dry Bulb
 - 76 fpm (max)
 - Clo = 1.1
- Max Relative Humidity: 90%

SE

CM

• Met = 1.2

Α

VAV & NATURAL VENTILATION

Alternative I:

Variable Air Volume (VAV) – Natural Ventilation Hybrid System

VAV / HYBRID - SECTION

VAV/HYBRID – FLOOR SANDWICHES

HYDRONIC SYSTEM

Alternative 2: Hydronic Heating with DOAS / Trickle Ventilation

HYDRONIC – FLOOR SANDWICHES

Steel Structural System

Α

GRAVITY LOADS

Occupancy/Use	Uniform psf
office	50
classroom	40
large classroom	60
assembly area (fixed seats)	60
assembly areas (movable seats)	100
computer lab	100
lobby/access floor systems	100
corridors (lst floor)	100
corridors above	80
storage (light)	125
storage (heavy)	250
roof (garden)	100
roof (assembly)	60
roof (ordinary)	20
restrooms	50
construction	20

A MEP

COMPOSITE STEEL DECK SYSTEM

TYPICAL GRID & OVERLAY

GRAVITY SYSTEM

MEP

Α

CM

Composite metal deck panels

- 2VLI20Vulcraft deck with 2.5" LW concrete overlay, fire protected gypsum board Filler beams
 - WI4x48 typ.
 - Longest span 20'
- Girders
 - W21x62 typ.
 - Longest span 34'
- Columns
 - WI4x48 typ.
 - Three I3' floors, 4I' total (one column)

LATERAL SYSTEM

BRBF

- 3 in^2 steel core
- A36 steel

SMRF

- W30x116 largest beam
- WI8xI30 largest column
- RBS employed
- Dual system is both stiff and ductile
- Torsion controlled
- SMRF because slanted columns
 - A MEP

POST-TENSIONED CONCRETE SYSTEM

TYPICAL GRID & OVERLAY

A MEP SE

GRAVITY SYSTEM

Post tensioning Concrete slab

- I I" solid slab
- Longest span 33'

Columns

- 16" x 16" section
- 13' height over one floor

Concrete shell Shear walls

LATERAL SYSTEM

Shear walls

- 20" concrete shear walls
- Responding to horizontal loads from auditorium
- Transferring tensile loads from slabs due to slanted columns

FOUNDATIONS – CONCRETE SYSTEM

Isolated Concrete Foundations6' x 6' x 18"

Strip Concrete Foundations Walls and MRF

• 6' x 18"

ITERATIONS

FLOWS AND VIEWS

Α

ATRIUM CANYON

A + MEP

AUDITORIUM

A + SE

INTEGRATING THE FLOWS

SITE PLAN

OVERVIEW

THE BUILDING

NORTH

SOUTH

EAST

WEST

ATRIUM

MEP SE CM

FACADES AND CONSTRUCTION

CREE modular constructional system – CREATIVE RESOURCE & ENERGY EFFICIENCY

- Tall windows
- Shows construction in facade
- Integrates construction in the indoor aesthetics

ATRIUM FACADE

Metal siding

Plate material – Both reflective and non-reflective

GROUND FLOOR

- Large Classroom
- Mechanical room
- Restroom
- Small Classroom
- Staircase

MEP

SE

CM

Storage

GROUND FLOOR

View From South

FIRST FLOOR

SE

FIRST FLOOR

View From South

SECOND FLOOR

- Senior
- Small Classroom
- Staircase
- Storage

SECOND FLOOR

View From South

ROOF EVOLUTION

1: Slice through building

1: Glazed roof allowing for light to enter the area below, while covering from rain

Potential:

- 1: Relation to wind and water
- 2: Cover for roof terrace
- 3: Integrate elevator
- 4: Integrate PV's and/or turbines

MEP

SE

SECTION THROUGH AUDITORIUM

SECTION ALONG ATRIUM

BUILDING FORM

VAV – FLOOR PLANS

VAV – FLOOR SANDWICHES

Steel Structural System

CREE Structural System – Ducts and Conduits

CREE Structural System

Α

SE

HYDRONIC – FLOOR PLANS

Ground Floor

Α

SE CM

HYDRONIC – FLOOR SANDWICHES

Steel Structural System

CREE Structural System

MEP SYSTEM COMPARISON

Criteria	Weight	VAV	NV + VAV (Interlock)	Hydronic + Trickle & DOAS
HVAC System First Costs	20	10	9	8
Architectural Impacts/Central Space Impacts	10	8	10	9
Ceiling Space Requirements /Floor-to-Floor Impacts	5	8	9	10
Energy Efficiency/Utility Costs	20	8	9	10
Acoustical Impact	5	8	9	10
Indoor Air Quality	10	8	10	9
Comfort/Individual Control/IEQ	20	8	9	10
Maintenance Costs & Reliability	10	10	8	9
Total Score	100	68	73	75

A MEP SE CM

SUSTAINABILITY MEASURES

Daylighting

Rainwater Harvesting & Site Water Usage

EEED SILVER USGBC

Α

SE

COMPOSITE DECK SYSTEM

TYPICAL GRID & OVERLAY

- Very modular grid
- Perfect rectangular steel deck system layout

MEP

Α

GRAVITY SYSTEM

Composite metal deck panels

 2VLI20 Vulcraft deck with 2.5" LW concrete overlay, fire protected gypsum board

Filler beams

- WI4x48 typ.
- Longest span 21'
- Girders
 - W21x62 typ.
 - Longest span 38'
- Columns
 - WI4x48 typ.
 - Three I 3' floors, 4 I' total (one column)

LATERAL SYSTEM

BRBF

- 3 in^2 steel
 - core
- A36 steel

FOUNDATIONS FOR STEEL SYSTEMS

MEP

Α

CM

Isolated Concrete Foundations

- 6' x 6' x 18"
- #8 @ 6" o.c.

CREE GLULAM CONCRETE SYSTEM

TYPICAL GRID & OVERLAY

CREE Hybrid slabs span between Glulam columns or prestressed concrete beams

CM

MEP

Α
GRAVITY SYSTEM

Hybrid Glulam – Concrete slabs

- Total depth 18"
- Max span 29'
- Prestressed Concrete beams
 - 12"x24"
 - Longest span 32'

Columns

- Glulam columns 10"x 20" (11' 6")
- Concrete columns I2"xI8" (II')

Beams for tension/ compression Shear wall and moment resisting frame with same stiffness

A MEP

CM

LATERAL SYSTEM

Moment resisting frames

- Reinforced concrete
- Prefabricated post tensioning connections
- Concrete core
 - Reinforced concrete shear walls 12"
- Auditorium is held back by MRF and core (same stiffness required)
- Torsion controlled
 - A MEP

FOUNDATIONS FOR CREE SYSTEM

SITE LAYOUT

MEP

Α

SE

SITE LAYOUT

A MEP

SE

CONSTRUCTION RISK MAPPING

1-. Identify Hazards

- Electrical
- Excavation and Trenching
- •Falls
- •Stairway Ladder
- •Scaffolding
- Heavy Construction Equipment

4

5

Α

2-. Risk Matrix **Risk Identity & Cause** Effect **Risk ID** Category Location Risk Description Cause **Current Assesment Probability of** Occurrence (P) Impact (Cost & Time) **Risk Score** Mitigation **Hazard Severity Risk Plan Action Owner** Strategy Slight Negligible Moderate High Very High 2 3 1 4 5 Very Unlikely 1 1 2 3 4 Likelihood of 4 6 8 10 Unlikely 2 Occurance <u>3-. Risk Map</u> Possible 6 9 15 3 12

Likely

Very Likely

20

16

20

12

15

SF

8

10

MEP

RISK MAPPING PROTOTYPE

SCHEDULING

FootPrint	Flow	- DD	Emb	orace- LS		
Structure Type	Steel (50 wk)	CREE (51 wk)	Steel (53 wk)	Concrete (57 wk)		
Steel Erection/ Concrete Pouring	- 10 Wk	- 11 Wk	- 13 Wk	- 16 Wk		
Façade	12 Wk	12 Wk	14 Wk	14 Wk		

A MEP SE C

SCHEDULING CONSIDERATIONS

SCHEDULING CONSIDERATIONS

SFSU Engineering Building

MEP PREFABRICATION OPPORTUNITIES

Dimension Restriction Flatbed truck

102" Wide 48' Long

•Corridors Utility Racks

CREE SYSTEM IMPACT

- Located in San Francisco
- Highly modular
- Efficiency
- Construction period cut by half
- Materials installed hold their value from a deconstruction standpoint

TARGET VALUE DESIGN

Overall Budget and	Target		Cluster Targets (%)	Based on RS Means SF Estimate (College: Classrooms & Administration)	Based on RS Means SF Estimate (College: Science, Engineering, Laboratory)	Based on Previous Project	Average of Previous 3	Based on Owner's Input	Additional % Based on Team's Input	TARGETS
Construction Grant from Donor	\$8,500,000	A	Substructure	10%	10%	9%	9.7%	2.0%	6%	8%
Grant Year	2013	в	Shell	33%	31%	32%	32.0%	7.6%	33%	34%
Construction Year	2015	С	Interiors	15%	13%	14%	14.0%	2.9%	14%	14%
Expected Inflation	2.00%	D	Services	36%	41%	40%	39.0%	7.3%	41%	39%
BUDGET	\$8,200,000	G	Building Sitework	6%	5%	5%	5.3%	0.9%	6%	5%
TARGET	\$7,250,000		SUM	100%	100%	100%	100%	21%	100%	100%

- \$8,200,000 accounts for purchase power in 2015
- \$7,250,000 target lower than budget to allow for contingency
- Targets based off of owner input, previous projects, RS means, and team input

MEP

Α

SE

ESTIMATE – PIE CHARTS

\$6,352,000

\$6,327,000

\$6,347,000

\$6,302,000

MAIN COST CONSIDERATIONS

- Auditorium
 - Embrace > Flow
 - Irregular conical shape of Embrace
- Services
 - Flow > Embrace
 - Separation by atrium requires two major service zones
- Steel vs. Concrete vs. Cree (Glulam)
 - Steel is cheapest initial cost
 - Not including fire proofing
 - Concrete cost could be offset by amount of fireproofing necessary
 - Cree is high material cost, but low labor, so less risk
 - Glulam can serve as exterior and interior finish

DECISION MATRIX

Criteria	Subcriteria	Description				
		Points available				
<u>Economical</u>						
	Construction Costs	Calculation of the construction costs by RSMeans.				
		Includes expenses for cleaning, energy and				
	Operation & Maintenance	administration as well as those for maintenance and				
	Costs	replacements.				
		The ratio of net external area to gross external area to				
	Space efficiency	determine the space efficiency.				
		Required construction time according to the work				
	Construction Time	schedules of the different alternatives.				
	Income	Additional income				
		How to building will be built and what techniques will be				
		used (complexity associated with the production of the				
	Constructability	property).				
Environmenta	<u>al</u>					
	CO2-Emission	CO2-Emission in tons per year.				
		Usage of renewable energy (e.g. PV, wind turbine, earth				
	Renewable Energy	heat).				
	Life Cycle of Material	Life span of used materials				
	Recycled Material	Usage of recycled materials				
	Structural Performance	Performance of the building in seismic activity				
		The possibility to integrate a natural ventilation system in				
	Ventilation	a building.				
Social						
		Comfort of the users and employees (mostly depending				
	Comfort	on the lighting conditions and the indoor climate)				
		Flexibility describes how spaces can be customized to				
	Elexibility	different requirements				
		Interaction and collaboration between students and				
	Student/Faculty Collaborativ	n faculty members to enable a fruitful work environment				
		Attractiveness and iconjeity of the design/building				
	Design/reomency	In which extend innovations are included in the				
	Innovation	construction project				

 Weighted based on team and owner input

Alternatives multiplied
by respective subcriteria

factor

Final results based on 50% team input and 50%

owner input

DECISION – FLOW CREE

		Embrace Steel	Embrace Concrete	Flow Steel	Flow CREE
Team	50%	388	330	422	425
Karolina		386	325	410	411
Michael	50%	386	327	409	412
Lauren		397	337	418	422
Total Score		778	660	834	840

Final Decision Making Process:

- Flow Steel vs. Flow CREE
- CREE system offers:
 - Unique challenges
 - High sustainability, modularity, and iconicity
- Steel system offers:
 - Simplicity
 - Lower cost
- New challenges = New opportunities

TEAM PROCESS AND DYNAMIC

- Continue weekly meetings in 3D ICC
- Further develop Agile IPD format and protocol for effective asynchronous collaboration over break
- Revit linking has and will continue to facilitate accurate coordination of discipline designs
- Facebook and Skype for relaxed communication

Activity	Deliverable	By Whom	For Whom	INITIAL Estimated Finish Date	INITIAL Estimated Work Hours
Find Real Topography	Digital Topography	MM	BA	2/5/2013	
Review TVD	Range of materials needed for pricing	SE	NM	2/5/2013	0.5
	A: Some materials that need pricing CM: Input for constructability				
CM/Architect meeting	issues	EH/NM	BA	2/5/2013	
CM/ Structural	Meeting	EH/NM	MM/DT	2/5/2013	0.5
MEP/Arch Meeting Determine orientation of corridors and rooms to maximize natural ventilation + technology	Optimized orientation of corridors and rooms to improve natural ventilation	EL/BA	All	2/6/2013	0.5
Research leapfrog solutions	bring a technology with an implementation plan	ALL	ALL	2/5/2013	2
SE/A Meeting 11am PST	Grids to help architectural plans	MM/DT	BA	2/4/2013	0.5
SE/MEP Meeting 11am PST	Running stuff aslong beams where- more coordination	MM/DT	EL	2/6/2013	0.5
Pre-lim plans for solving labs and other stuff (restrooms, mep etc)	Plans (revit or sketchup)	BA	MEP/SE/(CM)	2/5/2013	lots

ACKNOWLEDGMENTS

Pacific Team would like to acknowledge the help and guidance of the following individuals:

Mentors and Coaches:

Owners:

Karolina Ostrowska Lauren Scammell Michael Seaman

Renate Fruchter Fernando Castillo David Bendet Geoff Bomba Eric Borchers Willem Kymmel Andreas Leps Eduardo Miranda John Nelson

Bauhaus-Universität Weimar

