Winter Presentation March 15th, 2013

Ridge Team 2013 "We are the Ridge Team, which, from now on, stands for awesome."

Ridge Team 2013

Project Overview

SITE UNIVERSITY OF NEVADA, RENO

Climate Challenges

- Sunshine:
- 3650 hr/yr
- Precipitation:
- 7,30 inches/yr

- Heating degrees:
 - 5680 hr/yr
- Cooling degrees:
 - 508 hr/yr

Available Resources

Available in Campus

- Natural Gas for heating and DHW
- Chilled water

Renewable energy potential

- Photovoltaics
- Wind turbine
- Harvest Rainwater

~3,6 gal/sf/yr

Alternative sources

- Ground source heat pump for heating/cooling
- Hybrid Systems

Reno's University Energy Goals

1. Reduce energy consumption & use renewable energy

 $\mathbf{2.}$ Minimize evening building usage

$\mathbf{3.}$ Maximize building utilization

4. Winter space temperatures: 68F Summer space temperatures: 78F

Big Idea

Architecture Structure MEP

Construction

Big Idea

Architecture Structure MEP

Transparent Engineering Building (TEB) 1. Steel 2. Concrete

Orientation

Structure MEP Construction

Concept

Site/ TEB Concept

Architecture

Structure MEP Construction

Site/ TEB Concept

Architecture

Structure MEP Construction

Level -1 (Basement)

Architecture

Structure MEP Construct<u>ion</u>

0'

10'

35

50'

Rapid Prototyping Labs Faculty Offices Auditorium Bathroom, cores, stairs, elevator... Student Offices & area Seminar Rooms

Emergency Exit

Entrance

Level -1 (Basement)

Architecture

Structure MEP Construction

Level O (Campus Entrance)

Architecture

Structure MEP Construction

0'

10

Small Classrooms Cafe Auditorium Bathroom, cores, stairs, elevator... Student Offices & area Seminar Rooms

Emergency Exit

Entrance

Level O (Campus Entrance)

Architecture

Structure MEP Construction

Level 1

Architecture

Structure MEP Construction

Small Classrooms Large Classrooms **Faculty Offices** Bathroom, cores, stairs, elevator... Student Offices & area Faculty Lounge

10'

35'

0'

50'

Structure MEP Construction

Level 1

Level 2

0, |||||

10'

35'

50'

Architecture

Structure MEP Construction

Large Classrooms Faculty Offices Bathroom, cores, stairs, elevator... Student Offices & area Faculty Lounge

Structure MEP Construction

Level 2

Structure MEP Construction

Section aa

Structure MEP Construction

Section bb

Structure MEP Construction

Section cc

Architecture Dynamic Façade System

Structure

Construction

MEP

Campus Entrance / East Façade / Privacy Glass

Dynamic Façade System

Architecture Structure MEP Construction

West Façade - Roller Blinds

- Simple device
- Keeps out glare and UV rays
- Easy to operate

Square Footage Graph

Structure MEP Construction

Load Calculation

	Steel	Concrete		
Roof Dead Load	90 psf	180 psf		
Roof Live Load	20 psf			
Roof Snow Load	40 psf			
Other Floor Dead Loads	74 psf	150 psf		
Other Floor Live Loads	60-100 psf			
Wind Shear	100 mph => 1.5 kips / foot			
Earthquake Shear	Sa = 0.4g => 680 kips 870 k			
Retaining-soil Shear	4.7 kips / foot			

-- || -- means same load

Per International Building Code (IBC) 2006 with amendments provided by the city of Reno, Nevada

Soil Conditions

Slope: 7' -		Depth of	Soil Type	Thickness	Bearing Capacity
14' above volcanic rock 110000 cf excavation		Excavation			
	Grade at 5,580 ft. Elevation 0 inches (0 ft.)				
			 Stony Sandy Loam and Heavy Loam 	19 inches (1.58 ft.)	1,500 psf.
			Sandy Clay Loam	10 inches (0.83 ft.)	1,500 psf.
	29 inches (2.42 ft.)				
	Water Table 48 inches (4.0 ft.)	↑	Clay and Clay Loam	27 inches (2.25 ft.)	1,500 psf
	56 inches (4.67 ft.) —	ion	- Vory Crayally		
	pre-draining (-) retaining walls (-) higher building (+)	excavat	Sandy Loam and Very Gravelly Loam	28 inches (2.33 ft.)	5,000 psf
	84 inches (7 ft.) Fig	gure from Ridge 2012	volcanic Rock	Unknown	8,000 psf

Foundations

- 6" 1' slab & 1' 2' pad footings
- Idea: to extend horizontally outside the building perimeter for 4' to stabilize

Retaining Walls

- height: 10' 14'
- Idea: drain the water and collect it

Steel : Level -1

Architecture Structure

MEP

CM

BLUE - Retaining Wall GREEN -W14x43 Girders **ORANGE** -W8x31 Beams @ 4' Spacing RED -W14x61 Columns PURPLE -W14x61 Slanted Columns NAVY -W12x40 Columns Slab Openings

Composite Slab: 6" Concrete on Steel Deck

Steel : Level o

18' 17' 17' 20 18, 10 5 27 18, mmt 29' 29 27' 13' 23' 7 25' 25'

Architecture **Structure**

MEP

CM

GREEN -W14x43 Girders BLUE -W14x74 Girders ORANGE -W8x31 Beams @ 4' Spacing RED -W14x61 Columns PURPLE -W14x61 Slanted Columns NAVY -W12x40 Columns **Slab Openings**

<u>Composite Slab:</u> 6" Concrete on Steel Deck <u>Auditorium Slab:</u> Prefab PT 2' Slab

Steel : Level 1

Architecture Structure MEP

GREEN-W14x43 Girders **ORANGE** -W8x31 Beams @ 4' Spacing BLUE -W8x28 Beams @ 6' Spacing RED -W14x61 Columns **PURPLE** – W14x61 Slanted Columns NAVY -W12x40 Columns Slab Openings

Composite Slab:

6" Concrete on

Steel Deck

MEP CM

Steel : Level 2 (Roof)

Architecture Structure

MEP

CM

GREEN -W14x43 Girders **ORANGE** -W8x31 Beams @ 4' Spacing BLUE -W8x28 Beams @ 6' Spacing RED -W14x61 Columns **PURPLE** -W14x61 Slanted Columns NAVY -W12x40 Columns Slab Openings

Composite Slab: 6" Concrete on Steel Deck
Lateral Systems

Architecture Structure

Challenge: Torsion due to irregularity MEP CM

Cross bracing will be exposed, so aesthetics will also play a role in selection

Floor Sandwich: Steel

Load Paths

Concrete: Level -1

Architecture **Structure**

MEP CM

Concrete: Level o

Architecture Structure

ORANGE – 2'x2' Columns GREEN – 1.5'x2' Beams RED – Shear Walls & Bracing Composition – Slab Openings MEP CM

<u>Floor Slab:</u> 10" Reinforced Concrete Slab

<u>Auditorium Slab:</u> Prefab PT 2' Slab

Concrete: Level 1

Architecture Structure

MEP

CM

ORANGE – 2'x2' Columns GREEN – 1.5'x2' Beams RED – Shear Walls & Bracing Shear Walls & Bracing – Slab Openings

<u>Floor Slab:</u> 10" Reinforced Concrete Slab

Architecture Concrete: Level 2 (Roof) Architecture

ORANGE -2'x2' Columns GREEN -1.5'x2' Beams RED -Shear Walls & Bracing -**Slab** Openings MEP CM

Floor Sandwich: Concrete

Total height: 20 inch

Underfloor Distribution

HVAC Requirements

Architecture Structure **MEP** Construction

Heating Set Points: 68 F Outdoor temperature: 19,9 F

Cooling Set Points: 78 F Outdoor temperature: 92,2 F

Indoor Relative Humidity: 50%

Heating/Cooling

Ground Source Heat Pump

- Energy efficient with low GHG emissions
- High capital cost and low operational costs (payback ≥5 years, Commercial Buildings Tax Deduction)

Hybrid Systems

Dual Source : decrease cost & efficiency

Solar Thermal :

Dump excess solar energy to the ground, decrease cost and groundwater well depth ~11% System ~80 tons

- Boreholes ~300 ft
- Water-to-water system
- Seasonal heat/cold storage
- Energy recovery savings up 9%

Air Distribution

Mechanical Ventilation

- Overhead air distribution VAV system
- Underfloor air distribution
- Displacement Ventilation

- Natural ventilation
- Stack ventilation

Control systems (of occupancy, CO₂ concentration, weather provision)

UFAD & DV

UFAD

- Improved thermal comfort
- Improved ventilation efficiency and IAQ
- Reduce energy use
- Fan energy savings
- Reduced electrical demand

UFAD/DV - System

- 4" pressurized supply & return plenum
- Passive floor mounted diffusers
- Dehumidification with portion of return air
- Passive VAV cooling and fin tube heating on perimeter

Vasari Analysis

Duct Network

Natural Ventilation

- Natural stack ventilation in corridor, atriums and perimeter
- Low energy fan during winter

Site Logistics

Cost Estimate

Concept	Estimate	Difference From Target
L -Steel	\$ 8,313,600	\$ (13,600)
L-Concrete	\$ 8,296,800	\$ 3,200

Cost distribution

TVD - Concrete

Double Diamond (DD) 1. Central (C) 2. X - Lattice (X)

Architecture Structure MEP Construction

Orientation

Site/Second Concept

Site/Second Concept

Structure MEP Construction

Concept

Level -1 (Basement)

Structure MEP Construction

Core Prototyping Lab Auditorium Faculty Offices Collaboration Space

5' |||||| | 0' 10'

Structure MEP Construction

Level -1 (Basement)

Level O - (Campus Entrance)

Level O - (Campus Entrance)

Level 1

Architecture

Structure MEP Construction

Structure MEP Construction

Level 1

Level 2

Architecture

Structure MEP Construct<u>ion</u>

Core Faculty Lounge Faculty Offices Administration Assistants Offices

35'

50

| 10'

20

Structure MEP Construction

Level 2

Structure MEP Construction

Flexible Spaces

Structure MEP Construction

Flexible Spaces

Flexible Spaces

Structure MEP Construction

Structure MEP Construction

Section aa

Architecture

Structure MEP Construction

Section bb

Summer

Winter

Architecture

Structure MEP Construction

Section cc

3d views

Architecture Structure MEP

Construction

East Facade/ DD Central

South Façade/ DD Central

3d views

Architecture

Structure MEP Construction

East Facade/ X Lattice

South Façade/ X Lattice

Architecture Atrium Design Evolution Structure MEP Construction

- Does not fit architectural scheme well

Architecture Hyperboloid Exploration Structure MEP Construction

Central: Level -1

Architecture Structure

MEP CM

Central: Level o

Architecture Structure

MEP CM

Central: Level 1

Architecture Structure

MEP

CM

ORANGE – 1.5'x1.5' Columns GREEN – 4'x1' Columns NAVY – 1.5' x2' Beams BLUE – Tension Ring RED – Shear Walls [∞] – Slab Openings

<u>Floor Slab:</u> 10" Reinforced Concrete Slab

Central: Level 2 (Roof)

Architecture **Structure**

ORANGE – 1.5'x1.5' Columns GREEN – 4'x1' Columns NAVY – 1.5' x2' Beams BLUE – Tension Ring RED – Shear Walls Shear Walls

<u>Floor Slab:</u> 10" Reinforced Concrete Slab MEP CM

X-Lattice: Level -1

Architecture **Structure**

MEP CM

X-Lattice: Level o

Architecture Structure

MEP

CM

ORANGE – 1.5'x1.5' Columns NAVY – 1.5' x2' Beams BLUE – Tension Ring RED – X-Lattice Wall Markow – Slab Openings

<u>Floor Slab:</u> 10" Reinforced Concrete Slab

X-Lattice: Level 1

Architecture Structure

ORANGE – 1.5'x1.5' Columns NAVY – 1.5' x2' Beams BLUE – Tension Ring RED – X-Lattice Wall X-Lattice Wall Slab Openings

<u>Floor Slab:</u> 10" Reinforced Concrete Slab MEP CM

X-Lattice: Level 2 (Roof) Architecture

ORANGE – 1.5'x1.5' Columns NAVY – 1.5' x2' Beams BLUE – Tension Ring RED – X-Lattice Wall Slab Openings

Floor Slab:

10" Reinforced Concrete Slab MEP CM

X Lattice Wall

ConXTech

Architecture Structure MEP Construction

Vasari Analysis

Duct Network

Natural Ventilation

Architecture Structure MEP Construction

- Natural stack ventilation in corridor, atriums and perimeter
- Low energy fan during winter

Architecture Structure Double Diamond Site Logistics MEP Construction

Preliminary Schedule

Architecture Structure MEP Construction

Task Name	Duration	Start	Finish	ember November January March May July	Sep
Sitework	35 days	Wed 9/30/15	Tue 11/17/15		MIB
Substructure	50 days	Tue 10/20/15	Mon 12/28/15		
Mat Slab	5 days	Wed 11/18/15	Tue 11/24/15	-	
Pile Caps	5 days	Wed 10/21/15	Tue 10/27/15	E	
Grade Beams	5 days	Wed 10/21/15	Tue 10/27/15	III)	
Slab	5 days	Wed 10/28/15	Tue 11/3/15	Š.	
Level -1	10 days	Tue 11/3/15	Mon 11/16/15	6	
Level 0	10 days	Mon 11/9/15	Fri 11/20/15		
Level 1	10 days	Fri 11/20/15	Thu 12/3/15		
Level 2	10 days	Thu 12/3/15	Wed 12/16/15	×=	
Shell	60 days	Thu 12/17/15	Wed 3/9/16		
Level -1	15 days	Thu 12/17/15	Wed 1/6/16		
Level 0	15 days	Wed 1/6/16	Tue 1/26/16		
Level 1	15 days	Mon 1/11/16	Fri 1/29/16	- y	
Level 2	15 days	Tue 1/26/16	Mon 2/15/16		
Interiors	50 days	Fri 2/12/16	Thu 4/21/16		
Interior Construction	65 days	Fri 2/12/16	Thu 5/12/16		
Stairs	20 days	Tue 2/16/16	Mon 3/14/16		
Services	40 days	Fri 3/25/16	Thu 5/19/16		
Elevator	5 days	Fri 5/13/16	Thu 5/19/16		
Plumbing	40 days	Fri 3/25/16	Thu 5/19/16	1	
HVAC	40 days	Fri 3/25/16	Thu 5/19/16	1	
Fire Protection	40 days	Fri 3/25/16	Thu 5/19/16	1	
Electrical	40 days	Fri 3/25/16	Thu 5/19/16	**************************************	
Site Improvements	25 days	Mon 6/27/16	Fri 7/29/16		

Cost Estimate

Architecture Structure MEP Construction

Concept	Estimate	Difference From Target
D- Concrete	\$ 8,744,400	\$ (444,400)
D-Steel	\$ 9,309,600	\$ (1,009,600)

Pricier than L due to larger Floor and Facade SF

Cost distribution

Architecture Structure MEP Construction

TVD - Concrete

Leapfrog Sustainability & Whole Life Cost Challenges

Innovation in Concrete

Architecture **Structure** MEP Construction

Use of translucent concrete to allow light in restrooms while maintaining structural integrity of shear walls (L-shape Concrete option)

theguardian

News US World Sports Comment Culture Business Environr

Environment Carbon emissions

Revealed: The cement that eats carbon dioxide

Alok Jha, green technology correspondent guardian.co.uk, Wednesday 31 December 2008 09.59 EST Jump to comments (36)

Cement works in Clitheroe, Lancashire. Cement accounts for 5% of the world's CO2

Structural Health Monitoring

Architecture **Structure** MEP Construction

A nervous system for the building, with sensors detecting anomalous strains

High initial cost --> lower OM cost, better safety, especially after EQ event

Cost: ~\$40/ft²

Smart Operation

Architecture Structure **MEP** Construction

- Room controllers with batteryless sensors
- Control of HVAC and lighting

- Thermostats
- Window contacts
- Humidity sensors
- Occupancy sensors
- CO2 sensors

Building Integrated PV 30kW

Mounted On : Roof 30° Area : 2700 sf Annual Energy Yield : 51,7 MWh/year Gross Evaluation: 240,000 \$

Mounted On : Atrium 30° Area : 5400 sf Annual Energy Yield : 51,7 MWh/year Gross Evaluation: 290,000 \$

Mounted On : Façade 30°

Area : 2700 sf

Annual Energy Yield : 51,7 MWh/year

Gross Evaluation: 260,000 \$

Mounted On : BIPV Area : 2700 sf Annual Energy Yield : 33,4 MWh/year Gross Evaluation: 250,000 \$

Rainwater Harvesting

Rainwater

- 36000 gal /year rainwater
- Snow melting
- Drain groundwater

- Toilet flushing
- Plants irrigation
- Maintenance/cleaning

Architecture

Structure

Construction

MEP

Building Integrated W/T 18kW

- Operate at low wind speed \sim 5 mph and up to 120 mph
- Take advantage of 'chimney effect'
- Low Noise levels

18 W/T Mounted On Roof Energy produced: 19.4 MWh/year Gross evaluation: 130,000 \$ Electricity Produced: 17,500 \$/year

Architecture

Construction

Structure

MEP

Architecture Structure MEP Construction

http://www.ekahau.com/products/real-time-location-system/vision.html

Sustainable Target Value

Architecture Structure MEP Construction

L-Concrete

L-Steel

DD-Central

DD-X

Sustainable Target Value

<u>L-Concrete</u> *1.013 mtCO2e \$31,000

<u>L-Steel</u> *993 mtCO2e \$30,000

<u>DD-Cylinder</u> *1065 mtCO2e \$32,000

Architecture

Construction

Structure

MEP

<u>DD-X</u> *934 mtCO2e \$28,000

Sustainability Goals & LEED

<u>Kickoff</u>

-shoot for "net zero" energy -don't design explicitly for the LEED checklist

Winter Quarter

- Incorporation of passive solar heating & lighting
- Decision to use rainwater harvesting and PV
- Exploration of GSHP & wind turbines

Looking Ahead to Spring Quarter

- Evaluation of design under LEED+ criteria
- Continue to design for sustainability, including Energy & Atmosphere, Indoor Environmental Quality, etc.

Architecture

Construction

Structure

MEP

Decision Process

Decision Matrix

o. Decision Matrix Framework provided					2. Owners choose weight distribution				
by LCFM consultants		Decision Matriz							
		Subcritoria	Darcriptina	Voightin [100	DD-Cylinder	00-2	L-Skeps-	-Skepe-	Rating System [calums D]
			Paistr eveileble	8.88	115.01	[Scale fran 102.71	1 t= 5] 109.31	50.0	9
1		Construction Carty	Calculation of the construction carts by RSMeans.	7.7	4.0	4.0	3.0	3.0	7
1		Operation 2	administration as well as those for maintenance and replacements (scenarios: inspection after an						¢
1		HEA/GEA	earthquake). The ratio of not external area to gross external area to determine the space officiency.	4.3	3.0	3.0	3.0	3.0	5 Maderato Value/Average Importance
		Construction Time	Required construction time according to the work schedules of the different alternatives.	7.0	4.0	3.0	4.0	2.0	4
1 Toom & ownord	2		Additional in come How the building will be built and what to chniques will be wed (complexity arreciated with the	0.0					3 2 Same Value/Same what Impartant
1. Tealli & Owners	(518)	Constructability	production of the property).	5.3	4.0	3.0	3.0	2.0	-
add/modify		CO2-Emirrian	CO2-Emizzian in tanz por yoar.	5.3	2.0	2.0	3.0	4,0	0 Ng Valve/Rather ngt have
add/ modify	1	Ronouable Energy	Wraqo of renowable energy (e.q. PY, wind turbine, earth heat).	6.3	3.0	3.0	3.0	3.0	
criteria such as		Life Cycle of Material Recycled Material	Lifospan of wed materials. Usago of recycled materials.	5.0	3.0 3.0	3.0	4.0 2.0	4.0	
eriteria saen as.	Ĥ	Streetersl	Performenes of the building incrimine estivity. The encided into the interests on stars we ntil stime	1.3					
- cost	Sector	Featilation	oyoromin shuildin q	0.0	47.7	_			
0050	Γ Γ		Comfort of the wors and employees (mostly	51.1	7.1	2	Team	rates	concepts 👘
- sustainability	-	Camfart	depending on the lighting conditions and the indoor Flexibility describes houspaces can be curtomized	7.7	4.0		I cum	Iuco	
sustainasinty		Flazibility	to different requirements.	5.3	3.0				
- constructability		Callebaratian	faculty members to enable a fruitful work	6.3	3.0	3.0	4.0	4.0	
constructusinty		Designflennicity	Attractiveners and iconicity of the design/building. In which extend innovations are included in the	5.0	2.0	4.0	3.0	3.0	
- flevihility		Innevation	construction project.	7.3	3.0	3.0	3.0	3.0	smart glass
IICAIDIIIty			Clarity of the structural and architectual concepts	14.4	46.4	44.1	33.3	33.3	
- innovation	ŕ	Arohiteotual/structual unity	throughout the building How the design of the building connects with	6.7	3.0	4.0	2.0	2.0	
	Ľ	Context connection	surroundings and campus' vision	7.3	3.0	3.0	3.0	3.0	
- efficiency									
- concept clarity	Total Score				212 22222	217 66667	210 22222	96 22222	
				a 🗖	515.55555	511.00007	010.00000 2	0000000	
		4.5cor	es are calculate	a	,				

LCFM Consulting in Spring

Architecture Structure MEP Construction

Monitor and review

Team process

Modes of Communication

	Primary	Secondary
Text, images, videos, links to other websites, etc.	facebook.	G Mail by Google
Instant messaging	facebook.	tak Stope
Voice	GoTo Meeting	SECTOR BDLCC
File Sharing	Google Drive	Dropbox

Team Design Process

Architecture Structure MEP Construction

Sketching while on Skype or Gotomeeting to share ideas or receive instant feedback

Example of Interdisciplinary Collaboration

Architecture Structure MEP Construction

Thank You!

Architecture Structure MEP Construction

Your time and feedback are greatly appreciated!

