

Communication and Interaction

• **box** -- Permanent files

- E_CF_Presentation_MAY6_v4.ppt
- Google docs -- Co-editing
- facebook -- Inspire, broadcast + forward

Inspire, Broadcast + Forward

Roof construction

Now I will calculate the cost according to a construction like this. Please let me know the sizes of the timber joists or any other changes.

Like · Comment

Meeting Protocol

В	rainMerge		CStanford University PBL Lab		
1 User(s) in Room :	Voting Room Please create category, then drag and drop the is Add new category	Title: Decis deas into each ca	tion Metrics		
Medented Save Categories HEM Return to Home Page	Sites Occupant Health	100 United	Economic Prosperity		
		States	Kexmaki Cost (construction + maintenance) 81 United		
	Keanaki Cost (construction + maintenance)	81 United States	Claim Ease of Resccupancy after 81 United Environment Earthquakes 81 States		
	Clere Ease of Reoccupancy after Enternan Earthquakes	81 United States			
Rowaniak Rowaniak Granda Fisca Fisca Rowan	Knunaki Easy maintenance (i.e. access to MEP 24 Un		Environmental Stewardship		
	Kitt room, roof, easy to deliver)	States	Fiavla 51 United 51 United 51 States		
	Kastahi Accessible by and attractive to public	Rc 69 United States	Fieve Biophila: including elements that nurture an United		
			Sittler human attraction to natural processes ⁵⁰ States (Living building challenge)		
	Rttx human attraction to natural processes (Living building challenge)	56 States			
	Elavia	c, United	Social Responsibility		
	9222 Reducing waterlenergy demands	States	Claim Occupant Health 100 United		
	Extina Wilten Constructability	51 Sweden	Keungki Easy maintenance (i.e. access to MEP 71 United Kim room, not, assy to deliver) States		
	Newsaki Meet construction duration requirem	berts United	Nataraki		

TERF – Online Collaboration

January - Kickoff

March – Winter Presentation

Late February

March - Fishbowl

Decision Matrix

Fullfill client goals = Project Success

"Innovative, efficient, flexible and sustainable. "

"Make nature penetrate the building, make building "floating""

"Value on performance after seismic event."

"Emphasize the concept of nature."

Michael

"Statement building"

"Access - a lot of people will need to enter and exit the building."

Mike

Healthy Building

Lake Merced Weather

Lake Merced Weather

Earthquake Information

$$S_{S} = 2.177 \text{ g}$$

 $S_{DS} = 1.451 \text{ g}$

S _s =	2.177 g	S _{HS} =	2.177 g	S _{os} =	1.451 g	
S1 =	1.037 g	S _{M1} =	1.348 g	S _{D1} =	0.899 g	

For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the '200 KERRS' building oder reference document.

http://geology.com/articles/images/san-andreas-fault-map.jpg

Soil Profile

Building Access

STUDENTS FROM CAMPUS

The Fog Catcher

Fog Harvesting Methods

Biomimicry – The Cactus

Water Conservation

- Reduce evaporation
- Provide shade
- Condense moisture for roots

How it Works

How it Works

Shape Evolution

Site Placement

Site Placement

Elevations

Elevations

Under the Cantilever

Under the Cantilever

Under the Cantilever

Floor Plan - Ground

Floor Plan - 2

Faculty Lounge

Student Collaboration Space

Student Collaboration Space

Sections ۲ 0 Ø 0 \odot 6 0 G-Level 2 18 - 0 Lawiz O Ground Isos (B - 0) Lavel -1 (2 - 0) Giound'iss 100 NORTH - SOUTH 9 A-B-1 A-B-2 A-B-3 D-E-3 D-E-1 D-E-2 P €.F) P P 0 P 0 _________ 0 10 12 0 10 12 1 1 1 1 1 1 12 O Coundition Coundition 0 00/047001 0 - 07 - 07 - 07 - 07 - 07 TT ТÏI EAST - WEST

Structural Floorplan – 2nd Floor

Glulam Columns 8"x8" Steel Column W14x257 L-shape Beams 8"x 6" Prestressing Cables 2 in^2

Timber Shear Walls 12"

Steel Shear Walls 12"

Truss System (W18x106 for cantilever, W18x86 for interior beams)

Structural Floorplan – 2nd Floor

Timber Floors System

Decision Matrix - Cantilever

	SE	MEP (STV)	ARCH	СМ
Steel	+	-	+	+
CLT Wall	-	+	+	-
Hybrid	+	+/-	-	+/-

Live Load Requirements

Room Function Type	Total Area (Sq-Ft)	Minimum Live Load (psf)
Faculty Offices	3600	50
Faculty Lounge	1000	100
Student Offices	1200	50
Auditorium	3000	100
Classroom	3600	40
Storage Rooms	1000	150

Based on California Building Code

http://www.ecodes.biz/ecodes_support/free_resources/2013California/13Building/PDFs/Chapter%2016%20-%20Structural%20Design.pdf

Lateral Loads

	Base shear (kips)	Overturning Moment (kip-ft)
Pure shear wall system	7100	135300
Pure BRBF system	2200	42300

From ASCE 7-10

Truss System Detail

- Vierendeel Truss
 - Beam W18x106
 - Column W14x257

Load Path

- Gravity Systems
- Lateral Systems

Truss Detail

Cable System

- Cable Systems
 - 7-wire strand pre-stressing wires
 - Cross section area = 2 in^2

Coordination between SE ad Arch

Roof Solutions

Steel Truss

- Assembled while the concrete slab in foundation hardens
- Assembled into 4 pieces, each 40 000 lbs \sim 20 short ton

Mobile Crane 40 ton = \$212hr

1 RED = Assembled on ground
2 ORANGE = Assembled on ground
3 BLUE=Assembled on ground
4 TURQUOISE=Assembled on ground

1,2,3,4 are lifted in place and connected

Truss System Value

Value

Easy to transport Easy to connect Reduce stress on the truss Safer Less expensive Architectural freedom

How?

No site welding Assembly method – fewer lifts No proprietary connections Customized design Increased open space

Slab to Slab Connection

- Timber slabs "key" together
- Epoxy + Screws for site connections

Slab to Truss Connection

• Structural Screws in Staggered Pattern

Slab to Truss Connection

• Structural Screws in Staggered Pattern

HVAC Design Strategies

40%: Solar gains

50%: Internal gains

MEP Mini Shafts

Section View of Mini Shafts

MEP Integration

MEP Integration

Under Floor Air Distribution using Timber Slab

Prefabrication of floor system

Manufacturing plant

Already existing tents on site —

Time comparison

Steel concrete composite floor

• 35-40 days

Timber slab

- 110 days to manufacture
- 17 days to lift and install

Time saving ~18-23 days

Cost comparison

Steel concrete composite floor

• ~\$245 000

Prefabricated timber slab incl. Underfloor Air Distribution ductwork

• ~\$290 000

Labour	Material
Carpenter Crew \$63 0000	LVL \$65 000
Finishes \$33 000	CLT \$60 000
HVAC crew \$48 000	Ducts \$12 000

Timber Slab

Added Value

Faster schedule Increased quality Environmentally advantagous Good seismic preformance

How?

Prefabricated units Integrated MEP and bearing structure Timber solution Lightweight

Structural Floorplan - Groundfloor

Structural Floorplan – Groundfloor

Lateral Load Systems

Ground Floor HVAC Solution

Auditorium

- Heating and cooling
- Versatile connections

Ground Floor HVAC Solution

• Strip Footings

Depth = 2.16 ft Width = 7.5 ft

• Use Strip Footings as Pile Caps

- Helical Screw Piles
 - No dewatering needed
 - 14" dia. 3-1/2" turbular

Structural Analysis

Primary Mode	Largest Period
Torsion	0.20 s

Structural Analysis - Deflections

Structural Analysis

	Base shear (kips)	Overturning Moment (kip-ft)
Pure shear wall system	7100	135300
Pure BRBF system	2200	42300
ETABS Analysis Results	2800	67000

• Hybrid System

Balance Stiffness

• Stiffen the shear walls on one side of the building

BIM Coordination Plan-software

BIM Coordination Plan-team

• Early coordination (1-2 weeks)

- First Architectural REVIT model > REVIT SE > REVIT MEP

- Interdisciplinary discussions for decision making

• Coordination using shared models

- Layers
- Dropbox: model sharing
- NAVISWORKS: 4D simulation
- Terf: model walkthrough
- BIM 360 Glue: model integration, clash detection

Site Access Analysis

Ν

Site Layout Plan

Clash Detection-before

Clash Detection-after

Material Access

Health and safety approach

- Adress all risks
 - RED; E.g. falling, squeezing and run-over
 - YELLOW; E.g. dust, noise and chemicals.
- YELLOW most dangerous in long run
- Design for safety
- Fire and safety rounds

- Education;
 - Hand tools, work in elevation, welding, heavy lifting

"Achieve a healthy building through a healthy approach during both the design AND the construction"

Computer lab schedule

Construction Start September 2019

Computer Managers Access

Access from N. State Drive for Computer Manager

Computer Managers Entrance

Gantt Schedule

Milestones

4D Construction A(3)-6(-24) : Roof (16)

Critical Activities

		0	Task Mode 🗸	Task Name 👻	Duration +	Start -	Finish 👻	Predecessors 👻	Resource Names 👻	
	1		-	 Pre-construction 	220 days	Tue 19-01-01	Mon 19-11-04			
	2			Design	175 days	Tue 19-01-01	Mon 19-09-02			
	з		-	Procurement	140 days	Tue 19-04-23	Mon 19-11-04			
	4		-	Mechanical ventilation procurement	90 days	Tue 19-07-02	Mon 19-11-04	2SS+130 days		
	5		-4	Electrical system procurement	80 days	Tue 19-07-16	Mon 19-11-04	2SS+140 days		
	6			Prefab floor procurement	70 days	Tue 19-04-23	Mon 19-07-29	2SS+80 days		
	7			Construction bearing structure	146 days	Tue 19-09-03	Tue 20-03-24	2		1
	8			▲ Site work	14 days	Tue 19-09-03	Fri 19-09-20			
	9		-	Site mobilization	8 days	Tue 19-09-03	Thu 19-09-12		Excavation crew B 30	
	10			Grading	6 days	Fri 19-09-13	Fri 19-09-20	9	Excavation crew B 30	
	11			Foundation	62 days	Mon 19-09-23	Tue 19-12-17	8		
	12			Piles 10 psc.	8 days	Mon 19-09-23	Wed 19-10-02	10	Bearing structure crew piles	
	13			Strip footings formwork and reinforcement	15 days	Thu 19-10-03	Wed 19-10-23	12	Bearing concrete crew;Water and S	
	14			Strip footing casting	5 days	Thu 19-10-24	Wed 19-10-30	13	Casting crew	
	15			Underground MEP and concrete slab works	25 days	Fri 19-11-08	Thu 19-12-12	14FS+6 days	Water and Sewage crew; Bearing concrete crew	
	16			Casting concrete slab	3 days	Fri 19-12-13	Tue 19-12-17	15	Casting crew	
ART	17			Bearing Structure	70 days	Wed 19-12-18	Tue 20-03-24			
CH	18			Prefab trusses on site	9 days	Wed 19-12-18	Mon 19-12-30	16	Casting crew	
E	19		-	Sheer walls	10 days	Thu 19-12-26	Wed 20-01-08	16FS+6 days	Bearing steel structure	
AN	20		-	Columns	10 days	Thu 19-12-26	Wed 20-01-08	19SS	Bearing steel structure 2	
0	21			Set trusses	4 days	Thu 20-01-09	Tue 20-01-14	19;20;18	Bearing steel structure	
	22			Prefabricated floors + installation	17 days	Wed 20-01-15	Thu 20-02-06	21	HVAC crew	
	23		-	Cable system	10 days	Wed 20-01-15	Tue 20-01-28	2255	Bearing structure crew	
	24		-	Columns 2nd floor	10 days	Wed 20-01-15	Tue 20-01-28	23SS	Bearing steel structure 2	
	25			▲ Roof	30 days	Wed 20-01-29	Tue 20-03-10			
	26		-	Roof joists and plywood	15 days	Wed 20-01-29	Tue 20-02-18	23;24	Bearing steel structure 2	
	27		-	Insulation, vaporbarrier, membrane	15 days	Wed 20-02-19	Tue 20-03-10	26	Bearing structure crew	
	28			Façade	25 days	Wed 20-02-19	Tue 20-03-24	26	Bearing steel structure 2	
	29			4 Ground floor	69 days?	Wed 20-03-25	Mon 20-06-29			1
	30			Zone 1 GF (MEP + storage)	18 days?	Wed 20-03-25	Fri 20-04-17			
	31			Interior walls Zone 1 GF	2 days	Wed 20-03-25	Thu 20-03-26	28	Interior crew	
3 3 3 3 3 3 3	32			Services	13 days?	Fri 20-03-27	Tue 20-04-14			
	33			4 HVAC	13 days?	Fri 20-03-27	Tue 20-04-14			
	34			MEP installations	5 days	Fri 20-03-27	Thu 20-04-02	31	HVAC crew	
	35			Ducting Zone 1 GF	6 days	Fri 20-04-03	Fri 20-04-10	34	HVAC crew	
	36			HVAC rough in Zone 1 GF	1 day?	Mon 20-04-13	Mon 20-04-13	35	HVAC crew	
	37			HVAC trim outs Zone 1 GF	1 day?	Tue 20-04-14	Tue 20-04-14	36	HVAC crew	ĺ
	38			4 Electricity	10 days	Fri 20-03-27	Thu 20-04-09			

TVD Winter Quarter

ESTIMATE AND TARGET VALUE								
WINTER								
	ESTIMATED VALUE	TARGET VALUE	VALUE DELTA					
TOTAL	9 260 000	9 800 000	540 00					
A Substructure	86 000	710 000	624 00					
B Shell	3 400 000	3 330 000	-70 00					
C Interiors	1 240 000	1 000 000	-240 00					
D Services	3 600 000	3 500 000	-100 00					
E Equipment and Furnishing	140 000	160 000	20 00					
F Specialty Construction	200 000	330 000	130 00					
G Building Sitework	240 000	270 000	30 00					
H General Conditions	350 000	470 000	120 00					

WINTER ESTIMATE: \$9 260 000

TVD Spring Quarter

ESTIMATE AND TARGET VALUE								
SPRING	ESTIMATED VALUE	TARGET VALUE	VALUE DELTA					
TOTAL	10 650 000	9 800 000	-850 000					
A Substructure	260 000	710 000	450 000					
B Shell	3 980 000	3 330 000	-650 000					
C Interiors	840 000	1 000 000	160 000					
D Services	3 020 000	3 530 000	510 000					
E Equipment and Furnishing	270 000	160 000	-110 000					
F Specialty Construction	200 000	330 000	130 000					
G Building Sitework	430 000	270 000	-160 000					
H General Conditions	1 660 000	470 000	-1 190 000					

SPRING ESTIMATE: \$10 650 000

Targets by Cluster

Building Performance - STV

Previous Swinerton Challenges

Leapfrog Sustainability

Biomimicry

Native

Sustainable Performance

Sustainable Design and Construction

Wellbeing – Active Design

- Smoke-free building.
- Stairs, elevators and bathrooms encourage movement.
- Access to take a break or be active.

Wellbeing - Biophilia

- Reduced stress through views of natural landscapes.
- Increased social interactions and sense of community.
- 10 to 25% better mental function and memory.

Wellbeing - Auditorium

- Area for relaxation, quiet, socializing, fitness.
- Quiet room with soft music for times of stress.
- Creativity, self-expression, cooperation, exploration.

Wellbeing - Workspaces

- Opportunity to engage in spontaneous social encounters
- Freedom to move from one social phase to another

Wellbeing - Daylight

• Increased productivity up to 18%.

A Special Thanks to

Renate Fruchter Karolina Ostrowska, Mike Miller and Michael Seaman

All mentors that supported and inspired our work

Team Pacific

Learning experiences

"Even if you say green and I say green, I'm thinking blue and you're thinking orange."

"Remember to mute your mic/Unmute your mic."

"What drives project success is a strong interest in everyone's ideas that arise during the project."

"Maybe I want to be an architect?" // Structural Engineer

"The social interaction is the best – I love you guys."

"Embrace your differences and take advantage of them"