

TEAM

CAMILA	WENJIN	LI	ANNA	NATHAN	NIRUPAMA	CHRISTINE
HERNANDEZ	SITU	DFNG	BURISCH	HILL	KUTCHARLAKOTA	BALIMER
A	SE	SE	MEP	СМ	СМ	LCFM

CONCEPT DECISION

Challenge Integration

- Sustainability
- **Integrated Solution**
- Life Cycle Costs
- Site Relations
- Constructability
- **Concept Clarity**
- Flexibility & Adaptability
- **Aesthetic Value**
- 10. Risk Management
- 11. Prefabrication & Modularization

CONCEPT DECISION

RATING BY OWNERS AND TEAM

* = Ratio to max. x (1Mio. \$ - Annual rent) / 100,000

LOCATION

San Juan, Puerto Rico

LOCATION ON SITE

WEATHER CONDITIONS

Rainy Seasons

Hurricanes and Dust Storms

Humid Outdoor Air

Av. relative humidity: 76 %

Average Sunlight Hours: 8 hrs

High Cooling Capacity Demand

SAN JUAN

SOLAR CONDITIONS

March 10 am – 8 pm

June 8 am – 10 pm

December 11 am - 7 pm

WE WORK WITH THE CONDITIONS INSTEAD OF IMPOSING ON THEM

PROJECT CHALLENGES

PROJECT GOALS

DEVELOPMENT PROCESS

SITE PLAN

OPEN AUDITORIUM

(1938)

(2016)

UNDERGROUND LEVEL

Ν

GROUND LEVEL

Ν

INTERMEDIATE LEVEL

SECOND LEVEL

Faculty Offices Faculty Lounge Storage Vertical Circulation Mech Room Bathrooms Janitor's Closet Faculty Open Space Administration

Ν

FLOORPLAN ANALYSIS

SOUTH ELEVATION

EAST ELEVATION

NORTH ELEVATION

DESIGN STRATEGIES

Climate Consultant 6.0

ROOM ANALYSIS - FIRST FLOORS

Class rooms

Auditorium

Seminar rooms

Labs

=HIGH COOLING LOAD

Chilled water

POTENTIAL FOR ADAPTIVE COMFORT

PIR CUBE

Climate Consultant 6.0

ROOM ANALYSIS - SECOND FLOOR

PIR CUBE

43

NORMAL CONDITION

Office on second floor

LOAD INFORMATION (GRAVITY)

Function	Live Load (psf)
Office	50
Corridor	100
Roof	40
Classrooms	40
Storage	250
Lab	200
Auditorium	100

Soil Profile

Bearing Capacity: 5000 psf

HAZARD CONDITIONS

Earthquake

S_s=1.0g S₁=0.4g Site Class C Damping ratio = 5% Base Shear = **979** kips

Hurricane

Hurricane season Jun-Nov wind pressure = **70** psf max. speed = **170** mph

STRUCTURAL SYSTEM

200 ft

Ν

Main Features

100 Ft

RC Moment Resisting Frame Shear Wall Cores (Rocking shear walls) 10' cantilevers all-sided

TYPICAL STRUCTURAL LAYOUTS

Ν

FOUNDATION (RETAINING WALL)

Thickness: 18'' Ext Vert Bar: #7 @ 16'' Horz. stirrup: #5 @ 6''

ETABS ANALYSIS MODEL 3D

STATIC ANALYSIS (SLAB DEFLECTION)

10 ft Cantilever Region Max. Disp. 1.18 in< L/360

SPECTRA SEISMIC ANALYSIS

Amplified Max. Displacement = 2 in < L/360 Amplified Inter-Story Drift Ratio = 0.5% < 2%

NON-STRUCTURAL DAMAGE

WORTH 80% OF LOSS!

CONTROL NON-STRUCTURAL DAMAGE BY CONTROLLING DRIFT

EARTHQUAKE TECHNOLOGY (RESILIENT DESIGN)

Benefits:

- Self centering mechanism
- 50% reduced Base Shear
- Larger drift capacity
- Reduced residual drift after seismic event

EARTHQUAKE TECHNOLOGY (RESILIENT DESIGN)

ROCKING SHEAR WALL DESIGN *Based on ACI ITG-5.2-09*

Special Reinforcement Bar Size	#11
Total quantity of bars (equal number each side)	7
PT Strand diameter	0.5"
# of stands	25
Concrete Strength (f'c)	5 ksi
Effective prestress after losses	175 ksi
PT Steel Strength (f _{py})	270 ksi
reinforcement yield strength	60 ksi
Total Prestress Force	1136 kips

RISK MANAGEMENT

FACADE INSPIRATION

WINTER QUARTER: STRUCTURAL FACADE

DISCIPLINE INTERACTION

Why create new problems? Keep occupants in mind.

IMPLEMENTATION

STEEL

CONCRETE

HURRICANE PROTECTION STRUCTURAL AIR PURIFICATION MATERIAL COST

ACAD

ALUMINUN

SOLUTION

ALUMINUM

80% Strength of Steel

30% Cheaper than Steel

15% Cheaper than Concrete

Locally Manufactured

Light & Easily Constructable

Façade Wall Section 1 Solar light bulb 2 Solar Energy Panel 3 Alumuminum Frame 4 Steel Angle 5 Aluminum Panel #2 6 Glass Operable Louvers 7 Aluminum Panel #3 8 Cat-Walk Mesh 9 Cat-Walk 10 Pre-cast Concrete Slab 11 Green Planter Seating 12 Pre-cast Concrete Beam

HURRICANE PROTECTION STRATEGY

Exterior Aluminum Facade Glass

VEROTECH GLAZING SYSTEM

- Retains its properties when subjected to equivalent wind speed = 220 mph
- Stays intact after a simulation cycle forces of hours-long storm

HURRICANE PROTECTION (EXTERIOR)

WHY ALUMINUM?

- 2.5 x Lighter than Steel
- 80% Strength of Steel
- 30% Less Expensive
- Green: produced by electricity
- Corrosion Resistant

FACADE ANALYSIS ITERATION

- Minimum Thickness of Facade
- Optimize Voronoi openings

INITIAL ITERATION

- Thickness **1** in
- Initial Speed of particles: 170 m/h
- Young's Modulus: 10⁴ ksi
- Element Type: Plate

FINAL ITERATION

- Thickness 3 in
- Initial Speed of particles: 170 m/h
- Young's Modulus: 10⁴ ksi
- Element Type: Plate

LIFE CYCLE IMPACT - FACADE

RISK MANAGEMENT

OPERATION & MAINTENANCE COST

LIFE CYCLE COST

-15% (\$90,000)

Over 25 years
SAVINGS

 Façade system

RISK

STRATEGY

RISK COST REDUCTION Over 25 years

-25%

(\$250,000)

AIR QUALITY CHALLENGE

MAKING THE INVISIBLE VISIBLE

AIR POLLUTANTS

CO2 HUMIDITY POLEN SMALL PARTICLES STORM WARNING FUNGUS SAHARA DUST

MINI AIR CUBE'S LOCATION

Ν

MINI AIR CUBES

Panel #2 Panel #3 1 Solar light bulb 2 Solar Energy Panel 3 Alumuminum Frame 4 Steel Angle 5 Aluminum Panel #2 6 Glass Operable Louvers 7 Aluminum Panel #3 8 Cat-Walk Mesh 9 Cat-Walk 10 Pre-cast Concrete Slab 11 Green Planter Seating 12 Pre-cast Concrete Beam

Panel #1

84

PANEL COATING

SELF CLEANING

AIR CLEANING

ANTIBACTERIAL

SITE LOGISTICS - AIR QUALITY

AIR

SCHEDULE CONSTRAINTS

Hurricane Season

June- November

Construction Window 8 months

CIP VS. PRECAST

Cast-In-Place		Precast	SCHE
Longer Duration		Shorter Duration	
ColumnBeamsShear Walls	4 Hrs + 24 Hrs 6 Hrs + 24 Hrs 24 Hrs + 24 Hrs	ColumnsBeamsShear Walls	0.72 Hrs + 24 Hrs 0.38 Hrs + 24 Hrs 1 Hrs + 24 Hrs
(Formwork + Rebar + Concrete + Curing + Strip)		(Installation + Gro	outing)

CIP 4 X Longer

PRECAST JOINT BEAM / SHEAR WALL

PRECAST JOINT BEAM / SHEAR WALL

PTC° Creo°

PRECAST JOINT BEAM / SHEAR WALL

CHED

SHEAR WALL OVERVIEW

0.00

0

Shear Failure Dominates

SHEAR WALL MODELLING

With Precast Joint

- *Tip Force = 455 k on both sides*
- Tip deflection: **2.7 in**

Ordinary Wall - without Supporting Platform

SYSTEM COORDINATION

SHEAR WALL DETAIL DESIGN

Site

EQUIPMENT

MATERIAL PROCUREMENT

(693)

Sabana

Marxuach Precast Solutions Steel and pipes Inc. Acha Trading - Interiors United Glass Co. Cemex **Commercial Plastics Corp** Tesoro en Maderas - Wood

Vista systems- Curtain Wall

ACR Systems - HVAC

Clary Corporation - Electrical

CED- PV modules

CONSTRUCTION SAFETY

MACNA

ZONING

PHASING

Labs located on the ground floor.

Façade on the side of user entry completed.

Labs occupied by May 11^{th.}

Temporary cooling provided for the labs.

Construction

Entry

Lab Areas cordoned off.

PHASING

Pedestrian Entry for Labs

SITE LOGISTICS

SITE LOGISTICS - EXCAVATION

Fast & Economical Sequencing

- Excavate
- Pile Drive
- Excavate
- Bulldoze
- Compact

UTILITY LOCATIONS

SNSTRUCTION

Water Supply

Sewer Tie-In

Electrical

CONSTRUCTION SCHEDULE

PHASING

BILLBOARDING- CONSTRUCTION SEQUENCE

4D MOVIE

AIR CUBE - TVD

	ESTIMATED VALUE	TARGET VALUE	VALUE DELTA	C ANO
TOTAL	\$9,372,000	\$9,776,000	\$404,000	STRUCI
A Substructure	\$ 1,355,000	\$ 1,575,000	\$ 220,000	
B Shell	\$ 1,482,000	\$ 1,305,000	\$ (177,000)	
C Interiors	\$ 520,000	\$ 545,000	\$ 25,000	
D Services	\$ 1,995,000	\$ 2,031,000	\$ 36,000	
E Equipment and Furnishing	\$ 520,000	\$ 500,000	\$ (20,000)	
F Specialty Construction	\$ 1,558,000	\$ 1,940,000	\$ 382,000	
G Building Sitework	\$ 715,000	\$ 575,000	\$ (140,000)	
H General Conditions	\$ 1,227,000	\$ 1,305,000	\$ 78,000	

A Substructure

B Shell

■ C Interiors

D Services

E Equipment and Furnishing

F Specialty Construction

G Building Sitework

H General Conditions

STV EVOLUTION

PHOTOVOLTAIC PANELS

Panel Coverage - 40% roof area

Power Supply: 250 panels - 122 000 kWh

Produce **1/3** of Total Energy Consumption

17% Energy Cost Savings

LIFE CYCLE MANAGEMENT

OPEN AUDITORIUM – VALUE FOR COST ANALYSIS

- Open for everyone
- Collaboration space
- Space for demonstration
- Reuse of old bleachers
- Ecological materials
- Additional space for events
- Increase in value of property
- High quality of stay
- Views to green landscape

LIFE CYCLE MANAGEMENT

STRATEGIES

- Utilize Cost Management and Value Engineering throughout the Design & Development Process
- Collaboration & Integration

IMPLEMENTATION

- Floor plan analysis (Space Efficiency)
- Decision for alternatives based on life cycle assessment & Value for Cost approach
- Financial engineering
- Integrated risk management approach

LIFE CYCLE MANAGEMENT

VALUE FOR OWNER & USERS

SOCIAL

- Design according users needs
- Collaboration spaces
- Open auditorium
- Aesthetical value

MONETARY BENEFITS

Public sector comparator	
PPP-Project	-6%
Additional income	-10%
Use of PV-system	-4%
Atrium roof	-1%
Financial engineering	-4 %
Replacement & M. strategy	-3 %

ECOLOGIC

- LEED silver certification
- Low environmental impact
- Energy & water system optimization

ECONOMIC

- Additional Income
- Increased property value
- Increased attractiveness to students
- LCC reduction

LIFE CYCLE COST

Expenses

Total LCC (over 25 years)		\$ 23,635,000		
A	IR CU	BE		
37%	34%	6% 11%	12%	
CONSTRUCTION COST	u.	\$ 9,352,000	37%	
OPERATIONS & MAINT	TENANCE COST	\$ 7,758,000	34%	
REPLACEMENT COST		\$ 1,215,000	6%	
RISK COST		\$ 2,609,000	11%	
FINANCIAL COST		\$ 2,701,000	12%	

Income

Total Income (over 25 years)

\$ 26,091,000

REPLACEMENT & MAINTENANCE STRATEGY

Preventive maintenance program

DETECT & CORRECT problems before they occur

Maximize efficiency Minimize excessive labor

ACCUMULATED CASH FLOW

Annual Income Annual Outcome

Accumulated Cash Flow

BUILDING RATING

LEED

Integrative Process

Location & Transportation

Sustainable Sites

Water Efficiency

Energy & Atmosphere

Material & Resources

Indoor environmental quality

56 /110

Innovation

Total

Regional priority

WELL BUILDING STANDARD FOR EDUCATIONAL FACILITIES

... focuses on the health and wellness impacts that buildings have on occupants.

ALL preconditions & 40 % Optimization Features

COMMUNICATION

						A FEIN
How the owner explained it	How the architect understood	How the engineer designed	How the CM managed	How the MEP planned	How the LCFM calculated	What the client really wanted
Different	Disciplines Cultures Knowledge Personality		Different understanding		Clear and understanda conversation necessary	ble

CLIE/

WHAT OUR CLIENT NEEDS IS WHAT WE ENVISION AND FINALLY DELIVER

GOAL SETTING

IMPACT ON DESIGN

STRATEGIES

COMMUNICATION PREFERENCES

ADVANTAGES OF WORDPRESS

PREFERENCES check at own time & level of detail

COMMENTS stay on page 3

NO overload of information

SURVEYS IN WINTER QUARTER

SURVEYS IN SPRING QUARTER

METRICS- WINTER QUARTER

CUIENA VIENA

METRICS- SPRING QUARTER

5 Posts/ Week7 Visitors/Week

9 Comments/ Week8 Surveys

CLIENT AFFINITY SCORES- TEAM ISLAND

Winter Quarter Scores

Spring Quarter Scores

SCORES - TEAM ISLAND

Overall Scores

"This site kicks a**"

"I like the creative solutions and appreciate your effort to keep owners updates."

"The Wordpress page really improved the overall communication."

Converging Scores-Client affinity

BUILDING PERFORMANCE EVOLUTION

(average)

CHALLENGE INTEGRATION **SUSTAINABILITY** INTEGRATED SOLUTION LIFE CYCLE COSTS SITE RELATIONS **CONSTRUCTABILITY** CONCEPT CLARITY FLEXIBILITY & ADAPTABILITY **AESTHETIC VALUE RISK MANAGEMENT PREFABRICATION & MODULARIZATION**

Criteria

Weight

CLIENT AFFINITY - LESSONS LEARNED

Client **EASE** of communication is important

Understand client **PERSONALITY** hands-on

Information **PREFERENCES**

Avoid **TOO MUCH** information

LISTEN carefully

DELIVER on your promises

TEAM PROCESS

BIM COORDINATION

Project Development

BIM INTERACTION

Clash Avoidance

Clash Detection

Coordination

SUMMARY CLIENT AFFINITY CHALLENGE

Aligning Goals and Converging Scores

Interactive Wordpress Blog- Ease of Client

Dialogue Established with Comment Threads

Surveys to Collect Feedback

Customized Information Delivery

SUMMARY AIR QUALITY CHALLENGE

Clean Construction - Billboard at Construction Site

Local Material

Green Walls

Sensors Placed Strategically to Collect Data

Attract, Inform and Educate Users & Visitors!

SPECIAL THANKS TO

MENTORS Humberto Cavallin John Nelson Glenn Katz David Bentlett Björn Wündsch Norayr Badasyan **Elizabeth Joyce Dorian Curcanu** Ronnie Piil Haagensen **Eric Borchers** Greg Luth and many others...

OWNERS Jure Česnik Christopher Görsch Luke Lombardi Mike Miller Bianca Morell Sarah Saxon

PBL TEAM Renate Fruchter Flavia Grey Maria Frank

Tak! Danke! धन्यवाद! Thank you! 谢谢! Gracias!

LESSONS LEARNED

Remember to take a step back.

Hello from the other side.

You can't do it alone.

It is a process to discover true passion.

-

What is of the most value becomes more clear.

Every problem can be solved by talking to your team members.

Make things to work not to win.