shengnanzhao + yunqiancai // SE

A // paolagonzalez + chewysparra

ISLAND17

MEP / sebastianglæsel

henrynuckles + dannyradermacher // CM

ISLAND17 COMMUNICATION

A // SE // MEP / CM //

4

ISLAND17 DECISION PROCESS

1 "Guys, we got a
problem..."2.1 "Oh..."
(6 seconds lat

2 "Okay. Don't panic, it's just a column clashing with a duct making clear height 6' and damage costs more than 7 years of tuition..."

A // SE // MEP / CM //

2.1 "Oh…"
(6 seconds later)
"We have to talk."

3 And after long discussions and and lots of work, Island17 have solved it!

3.1 "Guys, we got another one..."

OUR LOCATION

COMFORT PARAMETERS

CLIMATE IMPACTS ON MEP

Challenges	Primary system	Secondary system
High temperature	No heating system Reduce heat gain from sun	Focus on thermal comfort rather than air quality
High humidity	Use efficient dehumidification	Maintain positive pressure Avoid still air Avoid exposed, cool elements

BUILDING ORIENTATION

Winter, December

A // SE // MEP / CM //

Summer, June

SOIL CONDITION AND CHALLENGES Historical Earthquakes

15

1 Here are some site conditions in Puerto Rico. The soil in our site is majorly medium to very stiff clayey soil, with a bearing capacity of 5000 psf. Water table is 17 ft below ground, and the excavation line is 5 ft above the water table. our site has an 8 ft slope along the entire footprint.

Puerto Rico suffered a lot from earthquakes. Historically, some earthquakes with magnitude of seven hit Puerto Rico and caused some damages. the critical damping in Puerto Rico is about 5%.

In addition to earthquakes, hurricane is also a major concern. in hurricane seasons, wind speed is typically 160 to 170 miles per hour from the southeast direction. Yungian Cai, 3/17/2017

CONCEPT VIDEO

MECHANISM

CONCEPT BRIEF

LIVING morphology | understanding

MECHANISM

mechanism : movement

We propose a building capable of adapting across time through movement.

Spaces may re-arrange, react, depending on it needs. We undestand how its movement works, through interacting with its mechanism. X-RAY x-ray : components

We propose a building capable of changing perception across space, through

exposure. Spaces may provide visual opacities, building's data, depending on its needs. We undestand how its componets work, through interacting with its "x-ray".

O. M Ungers, morphology: City, metaphors, Walther King Cologne, 2011

FORM TRANSFORMATION

GROUND LEVEL

Administrative
 Assistant Offices
 Senior Administrat

- Senior Administrative Offices
- Department's Chair Office

Elevator

- Bathrooms
- Mechanical Shaft
- Faculty Lounge
- Faculty Offices

23

N

1ST LEVEL

- Small Classrooms
- Individual Student
 Offices
 Elevator
- Bathrooms
- Mechanical Shaft
- Seminar Rooms
- Instructional Labs
 - Common Areas + Student Collaboration Offices
- Large Classrooms

ROOF PLAN

- Mechanical Room
- Vertical Circulation

30

FACADE SYSTEM DEVELOPMENT

Rotation by reaction of sun and wind.

Sun protection; cross ventilation direction control.

BUILDING LOADS

Gravity Loads

Occupancy or Use	Uniform Load [psf]
Classrooms	40
Offices	50
Lobbies, Stairs, Corridors	100
Labs	200
Auditorium	100
Roof (Rooftop Garden)	30
Storage	250

From ASCE 7-10

Lateral Loads

Wind Base Shear: 120 kips

Seismic Base Shear: 460 kips

Here shows the building loads that we need to consider for our site.
 All the gravity loads are from ASCE 7-10.
 For the lateral loads, the wind base shear is 120 kips, and the seismic base shear is 460 kips.
 Yungian Cai, 3/15/2017
MECHANISM STRUCTURAL OPTIONS

	Steel	Concrete	
Lateral Resisting System	Shear wall core + super truss	Shear wall core + super truss	
Cantilever Solution	Super truss + Steel beams	Super truss + PT Slab	

In this slide we are showing the 3D view of the 2 structural design options for the Mechanism building. For this building, our major challenges include protecting the building from natural disasters like earthquakes and hurricanes, and also, we need to find a best solution to anchor the large cantilever on the upper floor. For both the steel and concrete design options, the lateral resisting system to resist wind load and seismic load is shear wall core, circular shear walls and super truss. To solve the cantilever problem, in the steel design we used super truss and steel beams. and in the concrete design we use post-tension slab to provide extra support. Yunqian Cai, 3/17/2017

Beams oriented based on building shape

N

Beams oriented in one direction

In our preliminary design, we decided to orient the beams to fit the orientation of the building. however, when we proceed the design, we found that this strategy caused a lot of problems in column placement and connections. it also makes the load path more complicated. therefore, we decided to rearrange the grid, and make all the beams in one direction, and in this way, we can place the columns continuously, and make the loads smoothly transfered to the ground. Yungian Cai, 3/17/2017

5 This is the floor plan for the basement of the mechanism. the basement design are the same for both concrete and steel options. the foundation system, retaining walls and shear walls are shown in the floor plan in different colors. Yunqian Cai, 3/17/2017

6 For the ground floor, in both concrete and steel options, we are using 18" diameter concrete columns. In the steel option, the exterior girders are W16x67 and the interior girders are W16x77 sections. in the concrete option, we are using 12x20 and 12x24 concrete beams.

Yunqian Cai, 3/17/2017

FIRST FLOOR & ROOF

For the 1st floor and roof, we are using story height supper trusses to support the large cantilevers on the left part. in the steel option, the girders are W16x67 sections, and in the concrete design, the beams are 12x24 inches Yunqian Cai, 3/15/2017

SLAB DESIGN - STEEL

A // SE // MEP / CM //

40

8 The floor system for the steel design is a composite floor with 3" lightweight concrete slab on 3" steel deck. this composite deck provide s adequate support and also have a good control in fire rating. Yunqian Cai, 3/17/2017

SLAB DE	SIGN - CONC	RETE
Post-Tension Slab	 Pros Great in supporting cantilever Resists cracking & heaving Extremely durable Lower maintenance costs 	Cons Require more resources of materials and labor
	Lighter weightLess deflection for long spans	 May need larger slab thickness
Waffle Slab	 Savings on weight and materials Less deflection for long spans A // SE // MEP / CM // 	 May control the fire rating Requires special or proprietary formwork Greater floor height 41

Slide 41

for the concrete design option, we compared different floor systems: post-tension slab, air-bubble slab, and waffle slab. All the three 9 types of slabs have great performance in long span, which is good to support the auditorium floor and the cantilevers. however, each type of slabs has its own weaknesses. Yunqian Cai, 3/17/2017

SLAB DE	SIGN - CONC	RETE
Post-Tension Slab	 Longer life expectancy 	COIIS
WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	 Resists cracking & heaving 	 Require more resources of materials and labor
	Extremely durable	WINNER
Air-Bubble Slab	 Lower maintenance costs 	
	Lighter weightLess deflection for long spans	 May need larger slab thickness
Waffle Slab		
	 Savings on weight and materials 	 May control the fire rating
the second secon	 Long spans 	 Requires special or proprietary formwork
	A // SE // MEP / CM //	• Greater floor height 42

Slide 42		
11	_Marked as resolved_ Yunqian Cai, 3/17/2017	
12	_Re-opened_ Yunqian Cai, 3/17/2017	
10	Therefore, to consider all the advantages and disadvantages of these 3 types of slab, we determined to use pos	

10 Therefore, to consider all the advantages and disadvantages of these 3 types of slab, we determined to use post-tension slab for our concrete design option because we want to provide more reinforcement to our cantilevers. And post-tension slab served as a good floor system to control the deflections and cracking in longer spans. Yungian Cai, 3/17/2017

13 in the concept development process, the architects and the structural engineers worked closely and we affected the designs of each other. here is an example of the architectural design change triggered by structural engineers. we can see the before and after of the building shape. the entire left portion of the building was shifted lower a little bit, to make the cantilevers balanced and all sitting on columns. we can have a closer look on the next slide. Yungian Cai, 3/17/2017

in the original design, we have 2 unbalanced triangular cantilevers on the left portion of the first floor, one is 50 ft long, and the other is 30 ft. We first determined that we are going to use super trusses to support the entire cantilever. However, this unsymmetrical cantilever design will lead to unbalanced gravity loads on both side, which will lead to torsion of the building.
 Additionally, one serious problem is that there is no column support on one side of the cantilever, as pointed by the arrow. which makes the cantilever portion too long to control.
 Yungian Cai, 3/17/2017

15 Therefore, the architects and the structural engineers sit together, and came up with a revised design. in this new design, the left cantilever portion was shifted downward to make sure that all the three sides are sitting on columns. and also it created a symmetrical double cantilever, which has 42 ft long on both side. the symmetrical shape helps the gravity load to be balanced, and the 4 columns shown in blue dots will help support the cantilevers.

16 here is a comparison between the before and after of the cantilever design. Yunqian Cai, 3/17/2017

SELECTION OF TRUSS DIAGONAL

Pros

Steel has better performance in tension

More architecturally aesthetic

Compressive steel bracing: Better control of deflection Steel may buckle in large compression, therefore may need larger section

Cons

Will lead to larger deflection

17 After we determined our shape for the cantilever, we had a detailed design for the super truss selection. We created three diagonal orientations for the super truss and we built models to compare their performances under gravity load. Yunqian Cai, 3/17/2017

SELECTION OF TRUSS DIAGONAL

Pros	Cons
Steel has better performance in tension	Will lead to larger deflection
More architecturally aesthetic	WINNER!
Compressive steel bracing: Better control of deflection	Steel may buckle in large compression, therefore may need larger section

18 We checked the members' bending moment, axial load and deflections for these three orientations, and compared the results. since the cantilever is deflection controlled, and after talking with the architects, we chose the second design for the super truss because it is more architecturally aesthetic.

Yunqian Cai, 3/17/2017

A // SE // MEP / CM //

49

19 To determine the specific sizes of each members, we ran a MASTAN model to find the strength and serviceability of each member. We selected the member sizes shown in the color coding diagram. Yunqian Cai, 3/17/2017

20 This is an entire 3D view of the cantilever super truss. Yunqian Cai, 3/17/2017

CANTILEVER LOAD PATH

21 This is a load path for a force acting on the tip of the cantilever. Some of the loads will travel through the super truss and finally go to ground through the columns on both sides, and other loads will travel thru the beams to go to the shear wall. Yunqian Cai, 3/17/2017

22 This shows the gravity load path of the building. gravity loads travel thru the floors to the beams, columns and shear walls and eventually go to ground. Yunqian Cai, 3/17/2017

23 One of our biggest structural challenge is earthquake. therefore, the major lateral resisting system for this building is shear walls and the super trusses. from this diagram we can see that the lateral loads and torsion can be resisted by the shear wall core, the circular shear wall, and the perimeter shear wall. The super truss also helps the lateral load resisting. Yungian Cai, 3/17/2017

PREVIOUS CONSIDERATIONS

MEP system	Cons
TABS	condensation, cooling capacity 40-50 W/m ²
Displacement Ventilation	3,5 m free height recommended, cooling capacity 30-40 W/m^2 due to temp. limitations
Geothermal	ground temp. is too high
Boiler	no heating system necessary
Chilled Beams	condensation
VRF	high pressure loss, limited cooling capacity
Mech. room basement	risk of flooding

AHU AND WATER CHILLER

Primary system	Two AHU w. desiccant wheels	Cooling tower Water chiller	Cooling coil Desiccant wheel Filter
	Water chiller system w. cooling tower	Troldtek	+ + +
Secondary system	Mechanical ventilation	ventilation ceiling	•
Structural system	Steel	Corridor (outside area)	+ + +

AHU AND DISTRICT COOLING

Primary system	Two AHU w. desiccant wheels	Water container
	District cooling w. water container	Fibertec KE low impulse
Secondary system	Hybrid ventilation	system cooling)
Structural system	Concrete	Exposed concrete ceiling Corridor (night cooling)
		District cooling

DECISION MATRIX

	AHU and Water Chiller	AHU and District Cooling
Cost	Higher initial cost Electricity during user phase	Low initial cost Fee to local plant Savings on Fibertec
Sustainability	Wind	District cooling
Comfort	Diffuse ceiling	Low impulse system
Big Idea	Fewer ducts	Easy to install

FORM TRANSFORMATION

GROUND LEVEL

- Administrative Assistant Offices
- Senior Administrative Offices
- Department's Chair Office
- Elevator
- Bathrooms
- Mechanical Shaft
- Faculty Lounge
- Faculty Offices
 - Large Classrooms

ROOF PLAN

N

X-RAY STRUCTURAL OPTIONS

Steel

Composite Slab Steel Beam Concrete Columns Steel Bracing & Cable Stayed Cantilever Tapered Steel Joist Supporting Auditorium

PT Slab Concrete Beam Concrete Columns Steel Braces, PT Slab Supporting Cantilever PT Slab, PT Beam & PT Column for Auditorium

24 Same as the mechanism building, we proposed two structural design options. One in steel one in concrete. Listed at the bottom, are the structural system we chose.

Yunqian Cai, 3/15/2017

1 Next, I will talk about the structural design for the X-Ray building. Same as the mechanism building, we proposed two structural design options. One in steel the other one in concrete. Listed at the bottom, are the structural system we chose. In both design options, we use concrete columns. But in the steel option, we propose composite slab and steel beams; in the concrete option, we are gonna use PT slab and concrete beam. For the cantilever design, we use compression steel bracing for both options. In addition to that, for the steel option we add some tension cable to help secure the cantilever. For the auditorium at the basement, in order to have a large open space without columns, we will use tapered steel joist for the steel option, and PT slab, PT beam and columns for the concrete option. The big idea for this building is X-RAY, so we are gonna expose all of our structural system for the students to see and explore. Also, in order to implement our X-RAY big idea, we try to design our structural elements as architectural features. We try to make them aesthetic and fit with the architectural design of the building. The challenges for our structural design are hurricane, earthquake and long cantilevers, we will talk about how we address these challenges in the following slides.

BASEMENT

2 This slide shows our structural design for the foundation system. It is color coded and summarized in the table at the bottom, The design is the same for both steel and concrete option. We plan to use 12" retaining wall and 12" Shear Wall. We designed shear wall core and some premier shear walls to resist the wind load and earthquake load. We looked at several lateral systems such as damper bracing device and base isolation. But we decided that for a small low rise building, shear wall is sufficient and the most economical choice.

Shengnan Zhao, 3/17/2017

AUDITORIUM DESIGN

Our auditorium at the basement is 58' by 58'. In order to have a large open space without columns, we decide to design steel joists. And we run the steel joists in both directions to get more clear height. In the SW- NE direction the steel joists are 2' deep. And to take advantage of our sloped site, we designed the steel joists to be tapered from 2'-5' deep in the NW-SE direction. You can see a blow up view at the top right corner.

Shengnan Zhao, 3/16/2017

4 This slide shows the lay out of our columns and beams for ground floor. We use 18x18 or 15x15 concrete columns base on the tributary area. The different sizes of the beams we chose for steel or concrete option are color coded and clearly shown in the graph. The grey lines show the shear wall placement. You can also see the steel joist placement for the auditorium. Shengnan Zhao, 3/16/2017

6	_Marked as resolved_ Shengnan Zhao, 3/17/2017
5	Same as last slide, this one shows the structural system for 1st floor. The size of column and beams we chose are the same as the ground floor. Shengnan Zhao, 3/17/2017
7	_Re-opened_ Shengnan Zhao, 3/17/2017

Steel	Concrete	
Concrete Column, 15x15, 12x12		
W16 x 31	12x20 Concrete Beam	
W16 x 50	12x24 Concrete Beam	
Shear Wall		

8 This slide shows the structural system for the roof level. In here because the gravity load is much smaller, we are using smaller columns and beams. The sizes are chosen base on hand calculation and Mastan analysis. Shengnan Zhao, 3/16/2017

	Tributary Area	Load on lower floor	Load on upper floor	Chosen Size	
	ft^2	kips		Basement & Ground Floor	1st Floor
Edge Column	285	116.28	63.84	15x15	12x12
Interior Column	360	146.88	80.64	15x15	12x12
Largest Interior					
Column	840	342.72	188.16	18x18	15x15

9 We summarize our column sizing procedure in here. We first determined the tributary area of each column and calculated the load applied to it. Then, by using a excel spread sheet we developed, we decide to use 15x15 or 18x18 columns in the basement and ground floor. And we will use 12x12 or 15x15 columns in the 1st floor. Shengnan Zhao, 3/16/2017

BEAM SIZING

23 🗸 N16
E8
0 V N8 E64 E30
1 V N31 566

	Steel Option	Concrete Option
1st Floor	W16x31, W16x50	12x20 12x24
Ground Floor & Basement	W16x50, W16x67	12x20 12x24
Bracing	W16x 67	W16x 67

10 To determine the beam size and bracing size, we run mastan analysis. The design is deflection controlled, so we determined the beam and bracing size base on trial and error to make sure our design meets the serviceability requirement. We use W16x67 steel bracing to support the cantilever in both concrete and steel option, because diagonal concrete bracing is hard to construct. Also we can use smaller size of bracing if we use steel. Shengnan Zhao, 3/16/2017

nengnan Znao, 3/16/2017

EVOLUTION OF CANTILEVER

Optimize Bracing System

11 This slide shows the evolution of our structural design for the cantilever. At first we had bracing all around the building, it was over designed, waste a lot of material and made the building cage like. So after we consult with the structural engineer mentors, we determined the best locations and orientation to place the bracing, and also to integrate with the architectural design make the bracing placement aesthetic.

Shengnan Zhao, 3/16/2017

CANTILEVER SOLUTION Steel Option Cantilever Solution: Compressive Bracing + Tensile Cables 42' - 6" 12' (10) ۲ $\widehat{}$ ۲ (5) (\$1) ۲ ۲ 2 () 140 10.79 Use Cable to secure the cantilever from the top enter o W16x67 Bracings in compression Check serviceability: + L+ + Max deflection<L/360 + L.+ -+

12 We have cantilevers on all four sides of our building. But three of them are small, less that 20' long. We only have one large cantilever that is 42' 6" long. To support this cantilever we designed four sets of W16x67 bracings, two on the exterior of building and two in the interior. In the concrete design, the PT slab will help us support the cantilever, but int the steel design, we are using composite slab, So in the steel design, in addition to the steel braces, we propose steel cables on top of the cantilever to tie it back to the back span. We determined the size of the steel braces using mastan analysis and we made sure it meets the serviceability requirement by the code.

Shengnan Zhao, 3/17/2017

CANTILEVER SOLUTION

13 These section views clearly show the bracing placement. In the exterior, we have steel bracing going up from basement to 1st level and another one going from 1st level down to the ground floor. That is section A. In section B which is inside the building, we only have bracing going up from basement to 1st level. So that the braces won't hinder with the circulation for people in the building. Shengnan Zhao, 3/17/2017

14 On top of our cantilever is an opened rooftop garden. The size of the cantilever is 42' by 58'. The bracing help us manage the deflection in the 42' direction but we are still worried about the deflection in the 58' direction. In the concrete design, we can use PT slab help supporting the cantilever. In the steel design, we thought about adding some structural elements on top of the cantilever to control the deflection. Shengnan Zhao, 3/17/2017

CANTILEVER SOLUTION

Reference: Sundial Bridge

15 We got our design inspiration from the cable stayed bridges. This is a picture of Sundial Bridge. We think that tension cables will help limit deflection of our cantilever, It is both structural element and also aesthetic architectural feature. So we decide to experiment with it and implement it into our design. Shengnan Zhao, 3/17/2017

16 This picture shows the placement of the tension cable. We collaborated with our architects to make sure it will integrate with the roof garden design. The blow up view shows the kind of cable, and connection we want to use and cross section of the cable. The detailed sizing will be done next semester if we decide to use this structural system. Shengnan Zhao, 3/17/2017

17 This slide is a rendering picture of our roof garden with the tension cables. Shengnan Zhao, 3/17/2017

18 This slide is a section view of our building and it shows the gravity load path. The loads are transferred from beams, girders and bracings to the columns and finally transferred into the foundation. Shengnan Zhao, 3/17/2017

LATERAL SYSTEM

19 This slide shows the lateral system, we use shear wall core and perimeter shear walls to resist torsion caused by wind load and earthquake. Shengnan Zhao, 3/17/2017

AHU AND HEAT PUMP

Primary system	Two AHU w. desiccant wheels	Heat Pump (air-water)
	Heat pump	FCU FCU
Secondary system	Mechanical ventilation	Fibertec KE low impulse system Thermostat
Structural system	Steel	FCU Corridor (outside area)

DISTRIBUTION TREE

AHU AND ABSORPTION CHILLER *

Primary system	Two AHU w. desiccant wheels Absorption chiller	Absorption chiller Window (night
Secondary system	Hybrid ventilation	Cooling) Grate
Structural system	Concrete	ceiling Corridor (night cooling)

DISTRIBUTION TREE

A // SE // MEP / CM //

102

DECISION MATRIX

	AHU and Heat Pump	AHU and Absorption Chiller
Cost	High quantity of FCU's	Expensive chiller system
Sustainability	Uses wind	Uses sun
Comfort	Low impulse system Individual control	Supply air diffusers
Big Idea	Visible ducts in colors Individual control	Exposed ducts

IMPACT ON ENVIRONMENT

OFF SITE LOGISTICS

ON SITE LOGISTICS

CRANE SELECTION

Largest pick = concrete beam = 10,000lb Radius = 85'

CRANE SELECTION

Boom = 104.5'

<u></u>						Pour	nds				
Feet	42.3'	57.9'	73.4'	88.7	104.5	119.6'	134.7	150.9'	166.4'	181.7	196.9'
8	*300,000										
10 12	217,000	199,000 185,000	186,000 173,000	143,000							
15 20	173,000	165,000 137,000	154,000 132,000	143,000	110,000 108,000	84,000	62,000	45,000			
25 30	108,000 87,200	109,500 _89,250	110,000 89,650	109,500	98,000	78,000	62,000	45,000	35,200	25,600	22,000
40		64,050	63,400	65,450	64,450	60,000	51,000	45,000	35,200	25,600	22,000
50		55,100	49,000	49,350	48,350 43,400	50,200	42,600	38,400	34,800	25,600	22,000
60 65				36,650 32,200	38,500 33,650	37,050 32,200	35,500 31,200	32,800 29,800	29,800 _27,800	25,600 25,600	22,000
70				30,000	29,700 26,350	28,300 25,400	29,400 26,250	26,750 23,450	25,800	24,400	21,600 20,600
85					21,000	24,000	23,400	19,800	18,600	19,250	18,600
95					18,000	18,250	17,000	17,550	14,800	15,600	16,150
105						10,000	13,950 12,600	14,550 13,250	12,800	13,800 12,900	13,250 11,900

SUSTAINABILITY ON SITE

- Exterior walls made from 50-65% post consumer recycled material
- ENERGY STAR windows and doors
- LED lighting
- 8 solar panels
- Rain collecting gutters that produce water for watering plants

SAFETY

Monday morning safety meetings every week

Safety orientation for new crew members

Traffic management plan for walkers, bikers, vehicles.

SITE SAFETY

All Visitors and Contractors must report to Site Office to receive information and rules regarding this site.

MATERIAL/EQUIP. PROCUREMENT 💙 🕭

Equipment

Esmo Crane Corp.

BlueLine Rental

Material

Steel & Pipes Inc.

Cemex

United Glass Co.

FLUX ENABLED TAKEOFF 🛛 💙 🅭

No Prefab

Mobilization	8 days	Wed 1/1/20	Fri 1/10/20	1	1/1/20	Constru	uction	Poging								
Tree Relocation	2 days	Thu 1/2/20	Fri 1/3/20	1	1/1/20	Constru		Degins								
Fencing and Const. Trailers	4 days	Mon 1/6/20	Thu 1/9/20													
Site Utilities	5 days	Mon 1/6/20	Fri 1/10/20													
Excavation	21 days	Mon 1/13/20	Mon 2/10/20	1												
Structure Construction	70 days	Mon 2/3/20	Fri 5/8/20	1												
Pour Foundation and Slab	5 days	Mon 2/3/20	Fri 2/7/20	1												
Structure Framing Construction	65 days	Mon 2/10/20	Fri 5/8/20	1												
Building Enclosure	25 days	Mon 5/11/20	Fri 6/12/20	1							_					
Enclosure Complete	0 days	Fri 6/12/20	Fri 6/12/20	1						- 🔶 🕻	6/12/2	0 En	closur	re Cor	mp	lete
MEP Installation	65 days	Mon 5/11/20	Fri 8/7/20	1												
Interior Finishing	28 days	Mon 7/20/20	Wed 8/26/20	1			014									
User Move-in	1 day	Mon 8/17/20	Mon 8/17/20	1			6/1/	20 Hurric	ane							
Comissioning/Testing	30 days	Mon 8/10/20	Fri 9/18/20	1			Sea	ason Regi	ns							
Building Complete	0 days	Mon 9/21/20	Mon 9/21/20	1				Join Degi	113	0/24		e di di		mplo		•
										JIZ		bullul		inple		•
						A// S	SE // M	EP / CM /								113

TVD TARGETS

TVD ESTIMATE

A // SE // MEP / CM //

115

DECISION MATRIX

	DECISION		TRI	K		x 1
		X-Ra	ay	Mechanism		
		Weight	Concrete	Steel	Concrete	Steel
	Aesthetics	8%	6.75	7.25	7.00	7.38
	Discipline Integration	15%	6.75	6.125	6.75	6.25
	Structural Integrity	20%	3.88	4.63		
VS	Constructability	10%	6.13	6.50	5.63	6.38
	Cost	5%	7.00	5.50	6.50	4.25
	Building Integration to Context	7%	7.25	7.00	7.25	7
	Big Idea Potential	25%			6.25	6.25
	Challenges Integration	10%	7.25	7.25	7.25	7.25
X-RAY	Total	100%	6.60	6.70	7.72	6.69

A // SE // MEP / CM //

WINNER

STRUCTURAL INTEGRITY

BIG IDEA POTENTIAL

