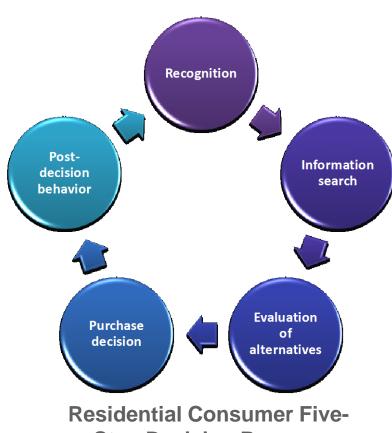


A Behavior-Based Agent Model for Assessing Market Adoption of Solar Photovoltaics

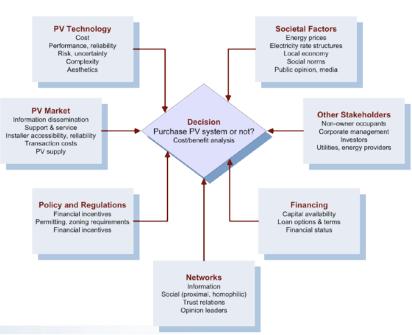
Charles Macal¹, Easan Drury², Diane Graziano¹, Mackay Miller², Jonathan Ozik¹, Tod Perry²

¹ Argonne National Laboratory, Argonne, IL


² National Renewable Energy Laboratory, Golden, CO

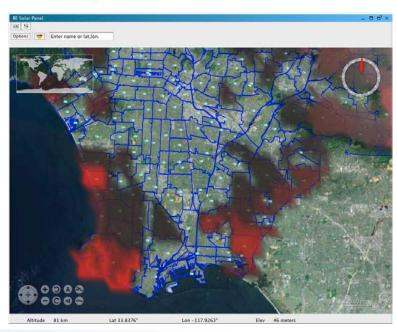
BECC 2011
Behavior, Energy & Climate Change Conference
Nov. 30 – Dec. 2, 2011
Washington, DC

Behavior - What are we going to do with it?


- How do we make consumer behavioral data and theories of decision making relevant to policy making?
- Current models of solar photovoltaic market adoption
 - Do not consider individual decision makers and their situations
 - Do not capture diversity in realistic decision behaviors
- Ideas from Behavioral Economics can help make better models of consumer decision-making
 - Bounded rationality
 - Social interactions and networks:
 Information and influence
 - Consumer learning

New data means better ability to predict market adoption

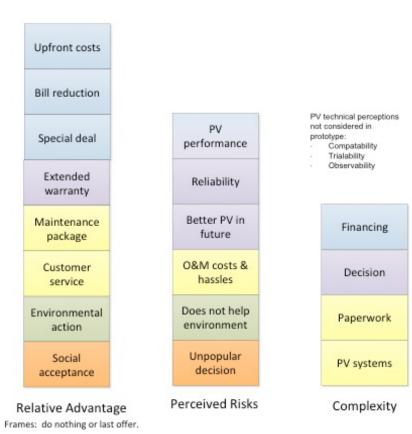
- We modeled the solar adoption decisions of thousands of consumers based on a behavioral model, in a large-scale agent-based model (ABM) – called *BE-Solar*
- We are applying the model in an attempt to replicate the rapid market adoption of residential solar PV in the Southern California market
- Lease-vs.-buy decisions


Consumer Decision Model

Residential Consumer Elements

- Housing units by parcel, housing unit type, tied to owners
- Owners are the decision makers
 - 1. Owner, rents out, renter pays utilities (owner has no incentive for solar adoption)
 - 2. Renter (does not decide on solar adoption)
 - 3. Owner-occupied (decides on solar adoption)
- Installers
 - Initiate contact with potential customers
 - Limit adoption capacity

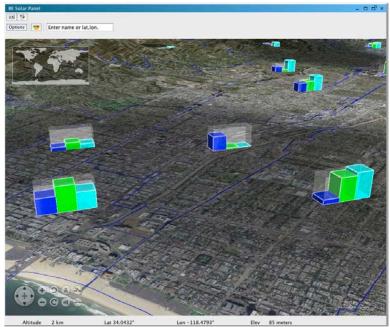
BE-Solar Model: Solar PV Adoption in Southern California



Residential Consumer Agent Decision Making

Adoption Attributes

- Ability to Pay (up-front cost)
- Energy Attitude (Prop 23 Yes, No)
- Adoption Affect (social contact with previous adopters)
- Adopter Threshold (per Rogers' adopter types)
- Perceived Reliability
- Financial Metrics: Minimum
 Payback (Buy) / Monthly Savings
 (Lease)
- Demographics: Income, Age,
 Education (per study*)


Residential Consumer's PV Technical Perceptions

*Drury, E., M. Miller, C. Macal, D. Graziano, D. Heimiller, J. Ozik, T. Perry. 2011. **The Transformation of Southern 5 California's Residential Photovoltaics Market through Third-Party Ownership**, submitted to *Energy Policy*.

Better predictions based on behavior

- We have incorporated behavioral approaches to improve models for the market adoption of solar photovoltaics
- Models that are sensitive to individual consumer attributes and housing stock yield more realistic estimates of market penetration
- As better data on consumer behavior becomes available, better predictions should result

BE-Solar Model Results for Solar PV Adoption in Southern California