# Policy Measures for Reducing Greenhouse Gas Emissions from Heavy-Duty Vehicles: California, the US, and the World

# Ben Sharpe, PhD

Sustainable Transportation Seminar The Precourt Energy Efficiency Center Stanford University October 4, 2013



# Topics

- Background and overview of policy measures in increase heavy-duty vehicle (HDV) efficiency
- Regulatory timelines across countries/regions
- Voluntary 'green freight' programs
- Regulatory design summaries and considerations for next phases of fuel efficiency and GHG regulations
  - California
  - US and Canada
  - Japan
  - China
  - European Union
- Summary remarks



# The International Council on Clean Transportation



- The mission of the ICCT is to dramatically improve the environmental performance and efficiency of onroad vehicles, aircraft, and marine vessels in order to protect public health, the environment, and quality of life
- Full-time staff of roughly 40
- Staff are natives of 10 countries and speak more than a dozen languages
- Offices in San Francisco, Washington DC, Berlin



# Background: HDV CO<sub>2</sub> Emissions

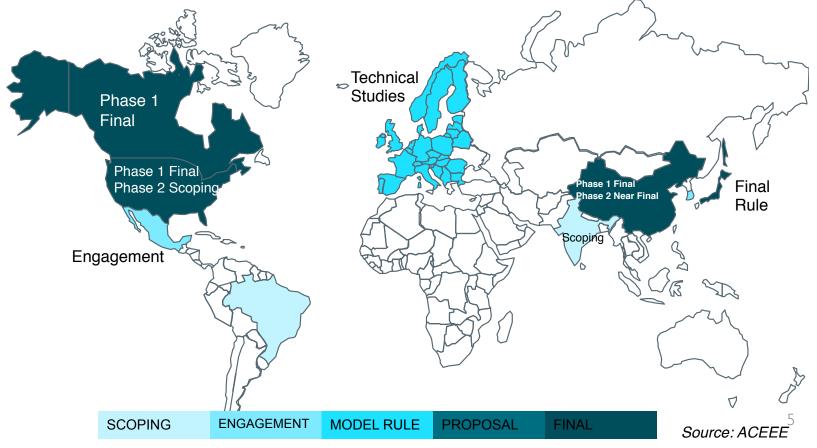
- Heavy-duty vehicles are a major, growing energy demand and CO<sub>2</sub> source
- Policies for light-duty are well underway, but policies for HDVs are in early phases



#### **Global Transport Emissions**



Source: ICCT Roadmap Model, 2013


# Integrated Vehicle Efficiency Policy Portfolio

| VEHICLE FUEL EFFICIENCY<br>STANDARDS       | <ul> <li>Introduce and regularly strengthen mandatory standards</li> <li>Establish and harmonize testing procedures for fuel efficiency measurement.</li> </ul>                                     |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FISCAL MEASURES<br>MARKET-BASED APPROACHES | <ul> <li>Fuel taxes and vehicle taxes to encourage the purchase of more fuel-efficient vehicles.</li> <li>Infrastructure support and incentive schemes for very fuel-efficient vehicles.</li> </ul> |
| MARKET-BASED APPROACHES                    | <ul> <li>Voluntary programs such as U.S. SmartWay<br/>and other green freight programs</li> </ul>                                                                                                   |
| INFORMATION MEASURES                       | <ul> <li>Vehicle fuel economy labels</li> <li>Improving vehicle operational efficiency<br/>through eco-driving and other measures.</li> </ul>                                                       |



# Heavy-Duty GHG Regulation Status

 HDV efficiency standards being considered at some minimal level – represents over 80% of global HDV population





# HDV global regulatory landscape

| Country/<br>Region | Regulation<br>Type                   | 2010                           | 2011                                            | 2012                                | 2013                                | 2014                                                                                                                                                                             | 2015                                                                              | 2016          | 2017          | 2018                                                                 | 2019   | 2020                   |
|--------------------|--------------------------------------|--------------------------------|-------------------------------------------------|-------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------|---------------|----------------------------------------------------------------------|--------|------------------------|
| Japan              | Fuel economy                         |                                | Phase 1 regulation implemented starting MY 2015 |                                     |                                     |                                                                                                                                                                                  |                                                                                   |               |               |                                                                      |        |                        |
| United<br>States   | United GHG/Fuel proposal             |                                | Final rule                                      |                                     |                                     |                                                                                                                                                                                  | Regulation implemented starting MY 2014<br>(mandatory DOT program starts MY 2016) |               |               |                                                                      |        |                        |
| States efficiency  |                                      |                                |                                                 |                                     | Phase                               | e 2                                                                                                                                                                              |                                                                                   |               |               |                                                                      |        | Phase 2 implementation |
| China              | Fuel<br>consumption                  | Test<br>procedure<br>finalized | Industry<br>standard<br>proposal                | Industry<br>standard<br>implemented | National<br>standard<br>adopted     |                                                                                                                                                                                  | F                                                                                 | Regulation in | mplemented    | starting M                                                           | Y 2015 |                        |
| European<br>Union  | CO <sub>2</sub> test procedure       | Technica                       | Il studies                                      |                                     | Impact asse<br>Test proc<br>finaliz | edure                                                                                                                                                                            | Policy implementation                                                             |               | ion           |                                                                      |        |                        |
| Canada             | GHG/Fuel<br>efficiency               |                                |                                                 | Standard<br>proposal                | Final rule                          |                                                                                                                                                                                  | Regulatio                                                                         | on implemer   | nted starting | MY 2014                                                              |        | Phase 2                |
| Korea              | Fuel efficiency                      | Technical studies              |                                                 | Impact<br>assessment                | Test<br>procedure<br>finalized      | Policy<br>implementation<br>(second half of<br>2015)                                                                                                                             |                                                                                   |               |               |                                                                      |        |                        |
| Mexico             | Fuel efficiency                      |                                |                                                 |                                     | Proposal                            |                                                                                                                                                                                  | Re                                                                                | gulation im   | plemented s   | starting MY                                                          | 2016   | Phase 2 implementation |
| California         | End-user<br>purchase<br>requirements | Requireme<br>tractors, trai    |                                                 | ļ                                   |                                     | eqs. for existi<br>railers ( <my 2<="" td=""><td></td><td>and Addit</td><td>tional reqts.</td><td>for existing<br/>(<my 201<="" td=""><td></td><td>d reefers</td></my></td></my> |                                                                                   | and Addit     | tional reqts. | for existing<br>( <my 201<="" td=""><td></td><td>d reefers</td></my> |        | d reefers              |



Items in blue are ICCT expectations (not public announcements)

# Voluntary, Public-Private Partnership Programs

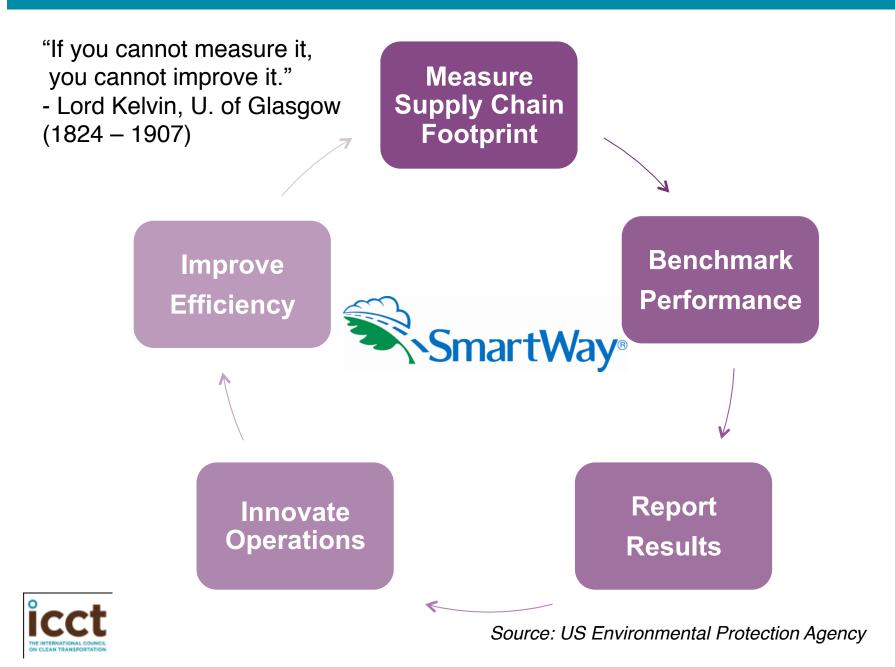
- Over the past decade a number of voluntary programs have been implemented to improve the environmental performance and efficiency of the goods movement sector
- First program: US EPA's SmartWay Transport Partnership began in 2004 (http://www.epa.gov/smartway/)
- SmartWay has grown from roughly a dozen charter companies to over 3,000 partner companies and affiliates
  - Roughly 1/3<sup>rd</sup> of all trucking miles in the US are done by SmartWay members
- SmartWay as a model for other countries/regions
  - SmartWay in Canada

http://oee.nrcan.gc.ca/transportation/business/smartway/18053

#### China Green Freight Initiative

http://www.greenfreightandlogistics.org/programs/green-freight-china-program-2/

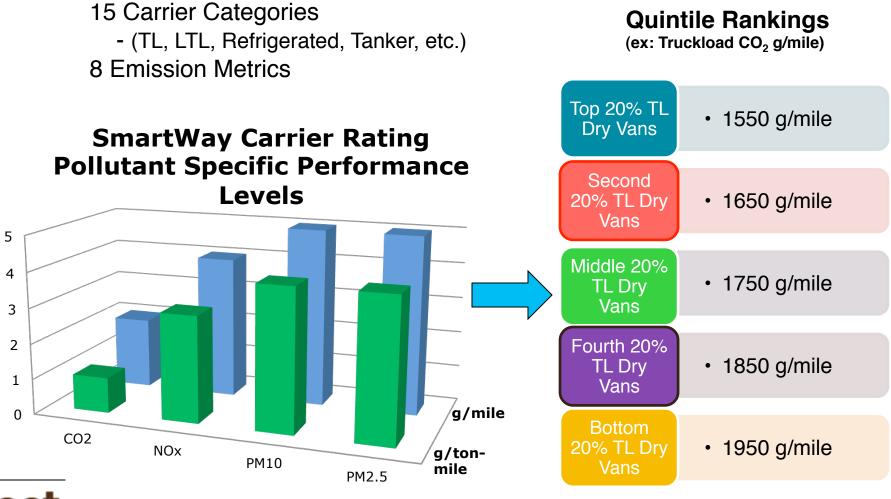
#### - Green Freight Europe


http://www.greenfreighteurope.eu/

#### Transporte Limpio (Mexico)

http://www.transportelimpio.gob.mx/

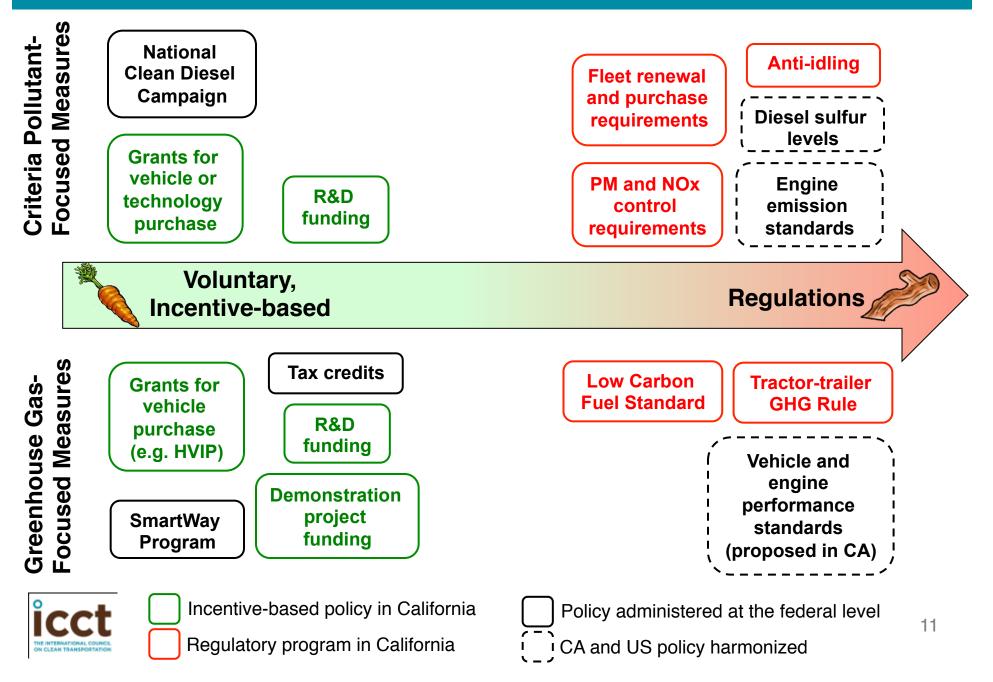



# How SmartWay Works

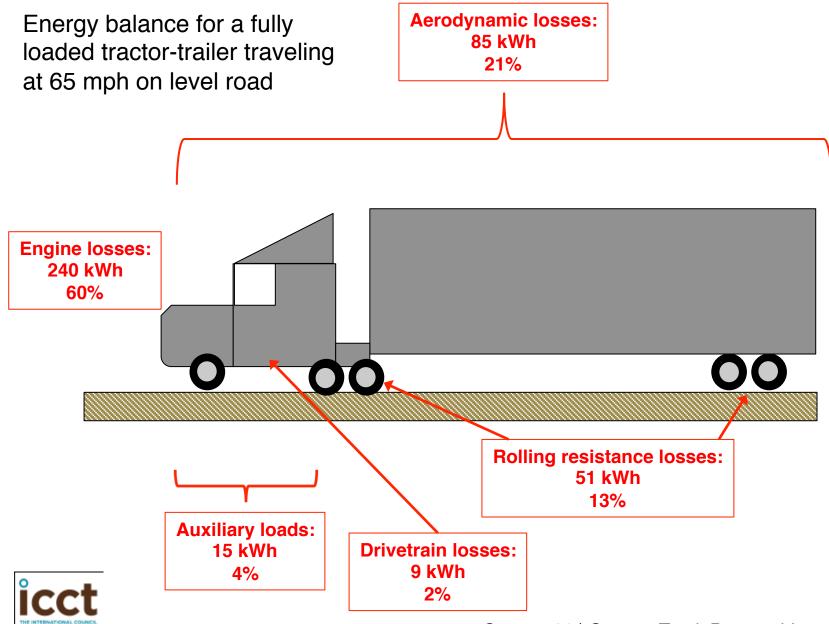


9

# SmartWay Trucking Company Performance Data


Empowering shippers with information about trucking company performance




icct

Source: US Environmental Protection Agency <sup>10</sup>

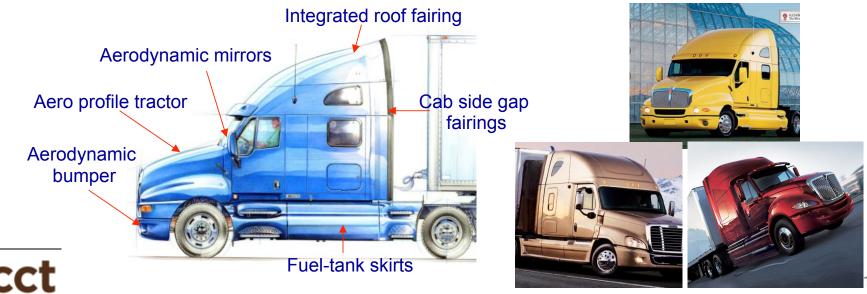
# Policies Affecting Heavy-Duty Vehicles in California



# California's Tractor-Trailer GHG Rule: Context



Source: 21<sup>st</sup> Century Truck Partnership


# California's Tractor-Trailer GHG Rule: Overview

- Goal: Reduce Greenhouse Gas (GHG) emissions from long-haul tractors by improving tractor and trailer aerodynamics and tire rolling resistance
- Based on elements of US EPA SmartWay Program
- Applies to: 53-foot box-type trailers and heavy-duty (HD) tractors that pull them on California highways
- Implementation began 2010
- Responsible for compliance: owners, drivers, motor carriers, California-based brokers, California-based shippers



# Tractor-Trailer GHG Rule: Tractor Requirements

- 2011+ model year sleeper cabs:
  - SmartWay certified beginning January 1, 2010
- 2011+ model year day cabs:
  - *SmartWay* verified low rolling resistance (LRR) tires (1.5% fuel efficiency improvement) certified beginning January 1, 2010
- Pre-2011 model year sleeper & day cabs:
  - SmartWay verified LRR tires beginning January 1, 2013



# Tractor-Trailer GHG Rule: Trailer Requirements

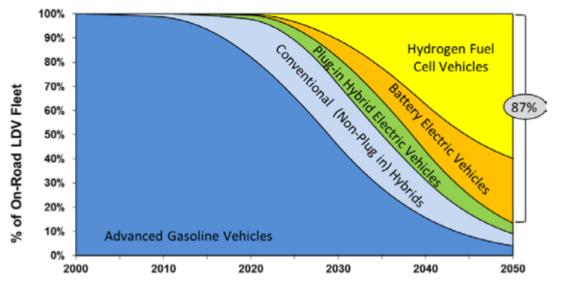
- 53-foot box type trailers → SmartWay certified or retrofitted with SmartWay verified technologies, including:
  - LRR tires (1.5% fuel efficiency improvement), and
  - Aerodynamic technologies that provide,
    - 5% fuel efficiency improvement for dry vans
    - 4% fuel efficiency improvement for refrigerated vans
- Compliance deadlines:
  - 2011+ model year (new) trailers: January 1, 2010 for aero and tires
  - Pre-2011 model year trailers
    - Aerodynamic technologies by January 1, 2013 or choose a delayed compliance option 2012-2016
    - LRR tires by January 1, 2017







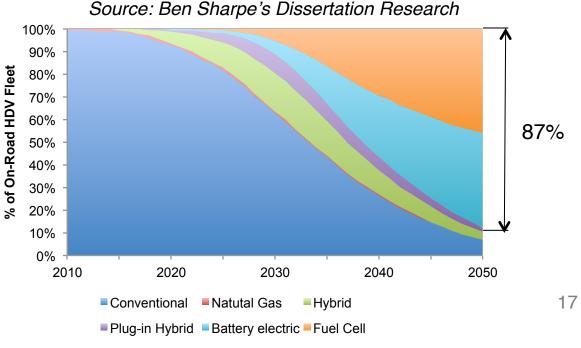



### Tractor-Trailer GHG Rule: Fleets Going Beyond!

# Some fleets seeing fuel savings > 10%






# California's Long-Term Vision for GHG Reductions



Source: California Air Resources Board

Achieving 80% reduction in GHGs from the on-road transportation sector by 2050 requires wide-scale adoption of zero-emission vehicles → **BOTH** in lightand heavy-duty vehicles

Zero emission solutions are in their infancy for HDVs. Significant technological progress and cost reductions are required! → Especially for long-haul trucking





# US FE/GHG Phase 1 Program: Background



- Rule finalized in August 2011  $\rightarrow$  Implementation starts in model year 2014
- Two distinct but nearly identical programs:
  - EPA has authority to regulate GHGs under the Clean Air Act
  - National Highway Traffic Safety Admin. (NHTSA) has authority to regulate fuel efficiency under the Energy Independence and Security Act
- EPA program will regulate CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O, and HFCs (refrigerant)
- EPA and NHTSA programs are identical in terms of fuel use/CO<sub>2</sub>
  - Only real difference between the two programs is that the EPA's includes  $CH_4$ ,  $N_2O$ , and HFCs
- EPA program starts in model year (MY) 2014, NHTSA: MY2016
  - In reality, manufacturers will only have to "worry" about meeting the EPA regulation



# US FE/GHG Phase 1 Program: Stringency

- Largely relies on promoting "off-the-shelf" technologies
- Regulation can be thought of as 3 distinct programs

12-17% Class 2B/3 Pickup Trucks and Vans



10-23%

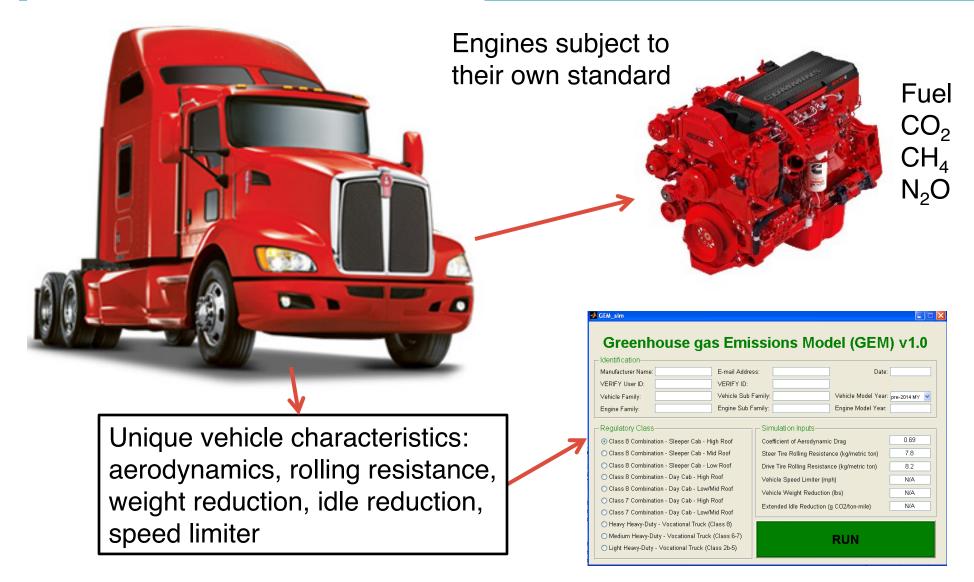




Everything Else = "Vocational Vehicles"



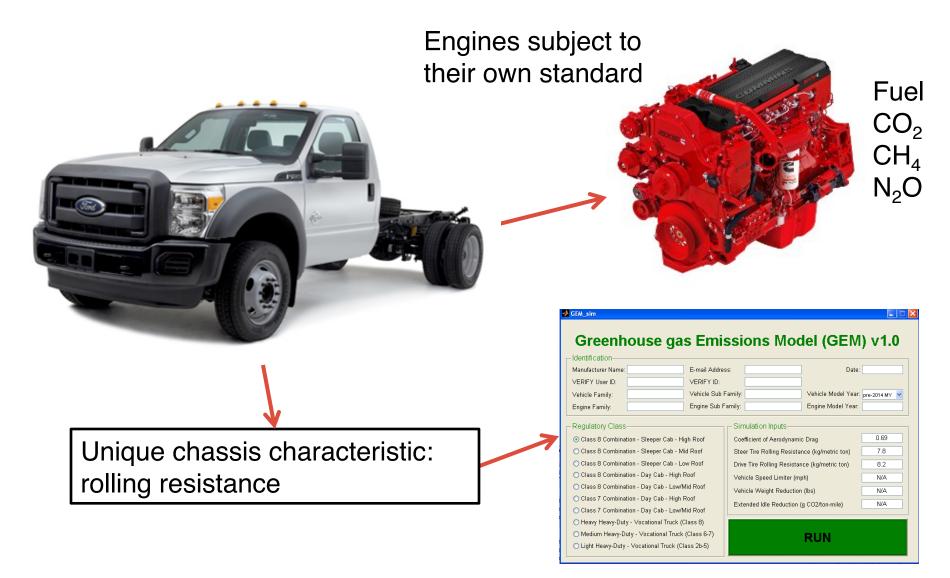



6-9%





Required avg. reduction in fuel consumption in MY 2017 vs. MY 2010 baseline


### **Class 7 and 8 Tractor Program**





Full vehicle is certified using the GEM vehicle simulation tool

### Class 2B – 8 "Vocational" Vehicle Program



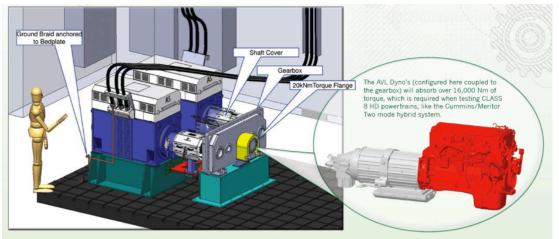


Full vehicle is certified using the GEM vehicle simulation tool

# Class 2B and 3 Pickup Trucks and Vans Program

#### Chassis dynamometer testing




- Meant to mirror the light-duty testing program
- Main difference from LD program: vehicles are certified based on their "work factor" (WF)

WF = [0.75 x (Payload Capacity + xwd)] + [0.25 x Towing Capacity] wherePayload Capacity = GVWR (lbs) - Curb Weight (lbs)xwd = 500 if the vehicle is equipped with 4-wheel drive and 0 otherwise



# Key Opportunities for Improvement in US Phase 2

#### Integrating transmissions into the testing protocols



Source: Oak Ridge National Lab

- Recognizing interactions btw engine and transmission
- Properly evaluating HD hybrid systems
  - 5-10% fuel savings available from trailer aero and RR improvements
  - Opportunity to build on success of SmartWay program

#### **Including trailers**





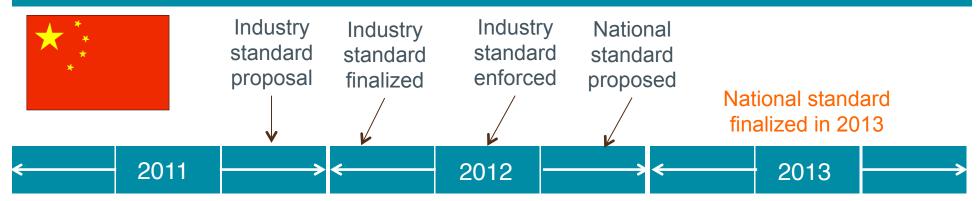
# **Trailer Regulatory Challenges**

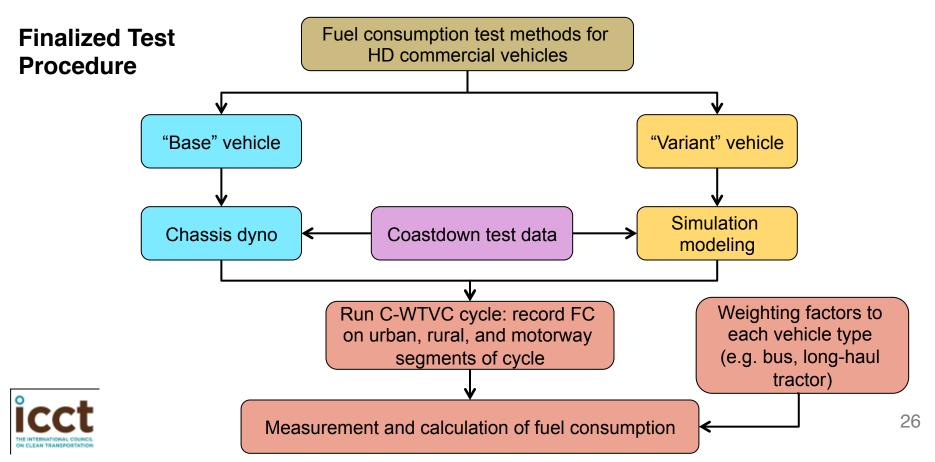


- Trailer market diversity
- Approximately 2 or 2.5 trailers for every tractors
- Split incentive: owner of trailer often does not operate trailer, thus has little incentive to invest in fuel-saving technologies
- Large number of small businesses in trailer manufacturing



# Japan: Fuel Economy Program Summary



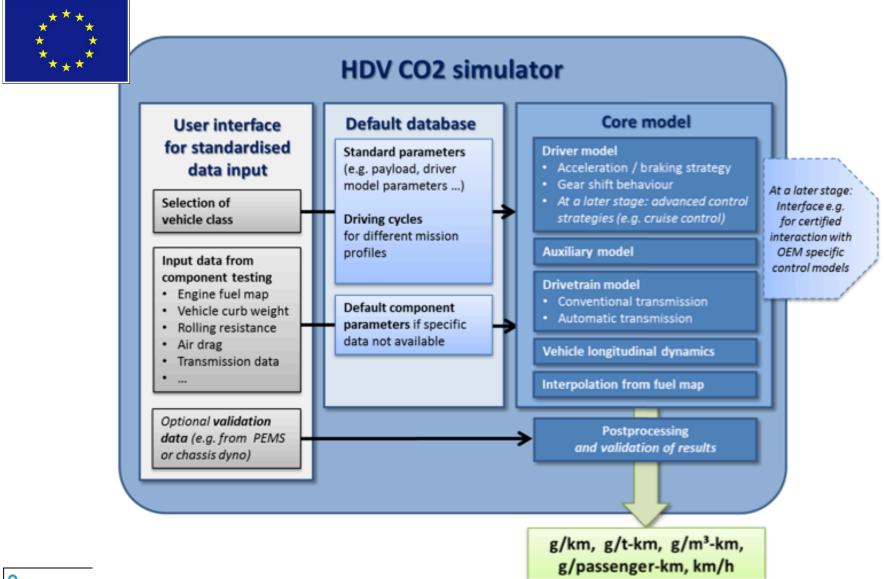


2006: Japan introduced the world's first fuel economy standard for HDVs

- Vehicles included
  - Commercial vehicles with gross vehicle weight rating (GVWR) > 3.5 metric tons, buses with carrying capacity > 11 people
- Targets (km/l) disaggregated by vehicle type, class, and weight
- Most efficient vehicle ("top runner") in MY 2002 set as baseline
  - Hybrid vehicles were excluded when determining the top runner
- Manufacturers must meet targets starting in MY 2015
- Roughly 10-13% FE improvement required vs. 2002 Top Runner baseline → improvements primarily from engines
- Phase 2 developments currently under way  $\rightarrow$  target year 2025
- Expected completion timeframe: 2014/2015



# China: Fuel Consumption Program Summary



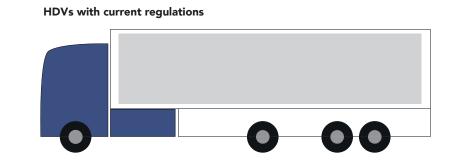



# China: Industry vs. National Standard

- Industry Standard (Stage 1)
  - Proposed in 2011 and adopted in Dec 31, 2011
  - New models must meet standard starting July 1, 2012; existing models July 1, 2014
  - Standard is set at the 90<sup>th</sup> percentile of the baseline
  - Goal: Phasing out most inefficient and chance to collect further data
  - Based on 300+ vehicles tested
- National Standard (Stage 2)
  - Proposed September 2012
  - New models must meet standards starting from July 1, 2014; existing models by July 1, 2015
  - Tightens Industry standard ~10-15%, almost 50% of vehicles tested did not meet limits. (based on further testing)



# **Developments in the European Union**






Source: University of Technology Graz (2012) Reduction and Testing of Greenhouse Gas Emissions from Heavy-Duty Vehicles – LOT 2

## New Developments in the EU

- Truck shape cab over engine
  - Due to length restrictions of total truck (not just trailer as in US)
  - New proposal to allow for more aerodynamic tractor/trailers
- For new trucks ~2018-2020
  - Previous weight/length limit – 40 metric tons/61.5 feet
  - New limits allow for increased weight to accommodate hybrid powertrain and increased length to accommodate aerodynamic design
  - Estimate 7-10% reduction in GHG emissions from long haul trucks









# Conclusions

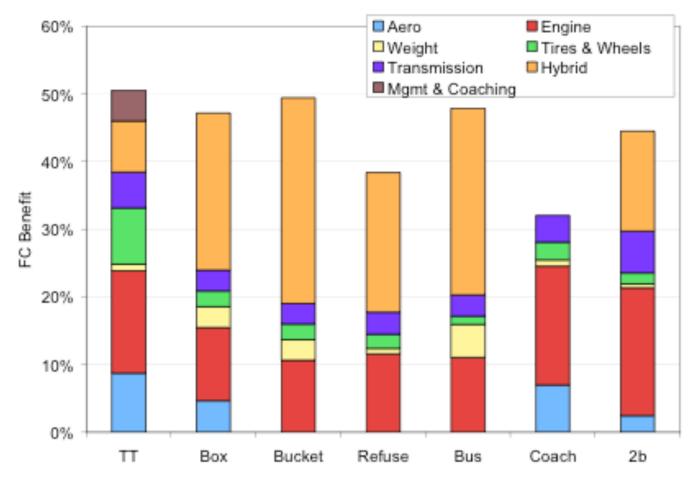
- It is an important period for heavy-duty vehicle GHG / fuel economy policy – worldwide
- Both voluntary and mandatory policy measures have an important role to play
- Incorporation of major technologies is important for standards
  - Transmission technologies
  - Hybrid technology
  - Tires, aerodynamics, lightweighting
  - Trailers
- More Information
  - www.theicct.org/heavy-duty-vehicles
  - www.transportpolicy.net



# Questions?






Thank you! ben@theicct.org

# Extra Slides



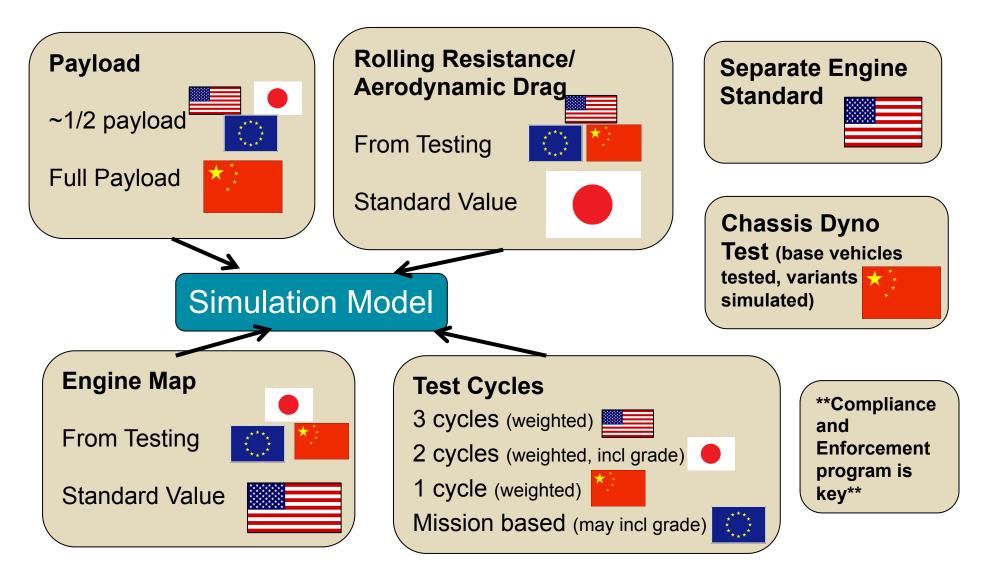
# US Technology Assessment

 National Academy of Sciences Report (March 2010) found 35 – 50% improvement could be achieved in the 2015 to 2020 timeframe





National Academy of Sciences (2010) FIGURE S-1 Comparison of 2015-2020 New Vehicle Potential Fuel Savings Technology for Seven Vehicle Types: Tractor Trailer (TT), Class 3-6 Box (Box), Class 3-6 Bucket (Bucket), Class 8 Refuse (Refuse), Transit Bus (Bus), Motor Coach (Coach), and Class 2b Pickups and Vans (2b). Also, for each vehicle class, the fuel consumption benefit of the combined technology packages is calculated as follows: % FCpackage = 1 - (1 - %FCtech 1)(1 - %FCtech 2)(1 - %FCtech N) where %FCtech x is the percent benefit of an individual technology. SOURCE: TIAX (2009) ES-4.


# Regulatory Design Summary

|                    | <b>Regulatory Categories</b>                                                                                              | Certification Test<br>Procedures                                                        | Metric                         |               |                   |
|--------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------|---------------|-------------------|
| Japan              | Other Truck (11 subcategories)<br>Tractor (2 subcategories)<br>Route Bus (5 subcategories)<br>Other Bus (8 subcategories) | Simulation modeling +<br>engine dynamometer<br>testing                                  | Fuel economy<br>(km/L)         |               |                   |
|                    | Tractors                                                                                                                  | Vehicles →<br>simulation model                                                          | Tractors,<br>Vocational        | HD<br>Pickups | Engines           |
| N. America         | Vocational vehicles<br>HD pickup trucks and vans<br>Engines (tractors, voc. vehicles)                                     | Engines →                                                                               | gal/1,000<br>ton-mi            | gal/100<br>mi | gal/100<br>bhp-hr |
|                    | Ligities (tractors, voc. vehicles)                                                                                        | dynamometer testing                                                                     | g/ton-mi                       | g/mi          | g/kWh             |
| China*             | Tractors, dump trucks, rigid<br>trucks, city buses, other buses                                                           | "Base" vehicles →<br>chassis dynamometer<br>"Variant" vehicles →<br>simulation modeling | Fuel consumption<br>(L/100 km) |               |                   |
| European<br>Union* | Truck and bus categories based<br>on GVWR, chassis<br>configuration, and axle<br>configuration                            | Simulation modeling                                                                     | GHG<br>(g/tonne-km)            |               |                   |



\*Regulatory design is currently under development in China and the EU. This represents the ICCT's best estimate of the structure of these future programs. For the EU, this information represents an upcoming certification program, not necessarily a standard.

# **Test Procedure Comparison**





# **Technical Potential Globally**

- Different technologies have different value in different conditions
  - Approximate differences, compared to value in US context

| Technology                                  | US*   | Basis for Reduction                                                            | Japan | China | EU   |
|---------------------------------------------|-------|--------------------------------------------------------------------------------|-------|-------|------|
| Engine                                      | 20%   | Advanced 11-15L diesel with bottoming cycle                                    |       | More  |      |
| Aerodynamics                                | 11.5% | Improved SmartWay tractor + three<br>aerodynamic trailers                      | Less  | Less  | Less |
| Tires and<br>Wheels                         | 11%   | Improved WBS on tractor + three trailers                                       |       | More  | Less |
| Hybrid/Idle<br>Reduction                    | 10%   | Mild parallel hybrid with idle reduction                                       | More  |       | Less |
| Transmission                                | 7%    | AMT, reduced driveline friction                                                |       |       |      |
| Management<br>and Coaching/<br>Speed limits | 6%    | 60 mph speed limit; predictive cruise control with telematics; driver training | Less  | Less  | Less |
| Weight                                      | 1.25% | Material substitution-2,500 lb.                                                |       | More  |      |

\* These are based on NAS tractor-trailer Class 8 for US context; reductions are approximate, and are not additive



# Efficiency Improvements Promoted by Regulation

|                                      | Japan    | U.S. and Canada*                                              | China | EU # |
|--------------------------------------|----------|---------------------------------------------------------------|-------|------|
| Engine                               | Yes      | Through separate engine standards                             | Yes   | Yes  |
| Transmission                         | Somewhat | Optional; by<br>demonstration outside of<br>standard protocol | Yes   | Yes  |
| Hybridization                        | Unclear  | By demonstration outside of standard protocol                 | Yes   | Yes  |
| Aerodynamic drag, rolling resistance | No       | Yes                                                           | Yes** | Yes  |
| Trailer                              | No       | No                                                            | No    | No   |

\* Potentially Mexico as well

\*\* Option to use default values

*#* Refers to ongoing government research and testing protocols; No standards in place

