Electric powered two-wheelers: a game-changer in Asia and beyond?

Chris Cherry
Associate Professor – Civil and Environmental Engineering
Transportation Engineering and Science Program
University of Tennessee, Knoxville

Stanford University
International Urbanization Seminar
Sustainable Transportation Seminar
December 5, 2014

Note: most work presented here sponsored by NSF CAREER Award CBET –1055282 and supported by current and former students Shuguang Ji, Andrew Campbell, Luke Jones, Ziwen Ling, and Hongtai Yang
What are “e-bikes”
China Market

- Simply put, e-bikes are fastest and largest growth of alt-fuel in history of motorization
Benefits compared to what?

- China: e-bike tend to displace transit...and cars

Previous e-bike studies and potential mode shift.
Benefits compared to what?

- Kunming: bicycles dying, 1 in 4 e-bikes displace car-based trip
E-bike riders as future car owners

Kunming: ~40% of e-bike riders have car in household, now more than bicycles and relatively large fraction plan to purchase

In Kunming: Household vehicle ownership and purchase plans.
E-bike riders as future car owners

- Is Kunming representative?
- We conducted a national telephone survey and found similar results: HH car ownership (19-40%), purchase plans (8-30%).
- Hierarchical logit for car purchase: HH variables matter most, some city/regional-level data.
Is China’s experience reproducible?

- **Vietnam**
 - E-bikes can’t compete with gas scooters
 - E-scooter share maximized if it is:
 - High Performing (fast, high range, and low recharge time)
 - Price can be high (WTP for performance)
 - Tax incentives can have a very strong impact

- **India**
 - E-bikes can’t compete with gas scooters
 - E-scooter share maximized if it is:
 - Moderately Performing (medium speed, weight, capacity)
 - Price must be moderate (no WTP for performance)
 - Some interest in initial prices by novel battery financing mechanisms
Alternative models needed

- Bikeshare/Scooter share
 - Stated preference mode switch model of e-bike sharing vs. bicycle sharing
 - E-bike riders more likely on bad air days, hot days, longer trips, compete with transit.
 - E-bikes tend to pull from “non-sheltered” modes more
 - Young- and middle-aged male respondents more likely to use e-bikes and bikeshare in general
Now beyond Asia: little research

- In Austria...early adopters are predominately comprised of persons >60 years, used for leisure trips, and barely substitute carbon intense modes.
- German naturalistic study reveals minor differences among e-bike users and bicyclists
- Surprisingly little (English language) literature

Behavioral Research: N. America

- In bikeshare study in Knoxville:
 - e-bike riders ride longer distances
 - e-bike’s displace 11% car trips (bicycles replace 0%)

- In Sacramento qualitative analysis reveals many motivations for purchase and use

- Nationwide survey by MacArthur found:
 - Almost 65% of respondents replace some car trips

Key findings from UTK study

- E-bike trip lengths longer
- More utility errand-type trips
- More comfortable
- People used regular bicycles more than we expected (both free). 30% of bicycle choosers disliked e-bike (43% of women)
- Battery swapping only needed for really high turnover

Conclude

- Are e-bikes a game changer?
 - In China, without a doubt
 - In USA, about 200k sold last year
 - In Europe, about two million sold
 - At this year’s Interbike, Gary Fisher called e-bikes the “next big thing” for the bicycle industry

- In China: E-bikes are a disruptive mode

- In the West: E-bikes increase the utility of bicycling

- In the end: Very little is really known about this technology, especially in the West.
What’s next

- Developing a research consortium on Light EV research and education
- Linking academic partners (currently UTK, PSU, and Monash University) with industry, government, and non-government orgs.
- Inaugural kick-off workshop Nov 4-5, 2014
Transportation Research Board (TRB) Activities

- Joint subcommittee revived in 2011 under TRB’s Bicycling committee
- Current co-chairs C. Cherry and G. Rose
- Active in developing calls for papers, research need statements, conference sessions etc.
- About 40 people on the roster of members
- TRB is the single largest venue of publishing LEV research
Transportation at UTK
Thanks

Christopher Cherry
Associate Professor
Civil and Environmental Engineering
University of Tennessee-Knoxville
321 JD Tickle Building
Knoxville, TN 37996-2313
phone: 865-974-7710
mobile: 865-684-8106
email: cherry@utk.edu

http://web.utk.edu/~cherry
http://www.cycleushare.com
http://tesp.engr.utk.edu/lever.php