Light Duty Vehicle Electrification
Discussion on Trip, Vehicle, and Consumer Characteristics

Sven A. Beiker – PEEC Fellow and CARS Executive Director, Stanford University
Jamie Davies - Consumer Research Analyst at Plug-in Hybrid & Electric Vehicle Research Center, UC Davis
Outline

1. Motivation
2. Literature Review
3. Proposed Work
4. Outlook / Outreach
Outline

1. Motivation
2. Literature Review
3. Proposed Work
4. Outlook / Outreach
Automobile, Mobility … Why Not Just “Cars”?

Mobility = Mobility Device + Mobility Consumer

or: Mobility = Transportation + Enjoyment
Different Levels of Vehicle Electrification

Conventional
- ICE Powered Vehicle (CV)
 - Fast refueling
 - Long range
 - No e-drive

Electrified
- Hybrid Electric Vehicle (HEV)
 - Fast refueling
 - Long range
 - Minimal e-drive

- Plug-In Hybrid Electric Vehicle (PHEV)
 - Fast refueling
 - Long range
 - Often e-drive

- Battery Electric Vehicle (BEV)
 - Slower refueling
 - Shorter range
 - Only e-drive

- Fuel Cell Vehicle (FCV)
 - Fast refueling
 - Long range
 - Only e-drive
NHTS – Average Daily Mobility Behavior

Cumulative Daily Distance / Total [%]

Source: Pike Research, US DOT, Volkswagen Research Lab
Compiled by M. Buckner, Lico Technology
Consumer Choice: Average vs. Extreme Case
Outline for a Proposed Research Project

1. Analyze National Household Travel Survey and additional sources, identify similar mobility behaviors, define categories by actual needs, and set assumptions for perceived consumer needs
 Goal: quantification and categorization of mobility behavior

2. Describe and categorize vehicle types by level of electrification and build impact simulation model with mobility behavior as input
 Goal: simulation model to calculate environmental impact and personal autonomy

3. Apply database and model and calculate environmental impact and autonomy when consumer and vehicle categories as defined under 1-2 are matched to reach optimum for environment and mobility
 Goal: characterization of optimal vehicle fleet composition

4. Determine vehicle purchase and operating cost to quantify consumer burden when transitioning to optimal fleet composition, take into account additional (practical, emotional, economical...) factors, and consider measures to mitigate financial burden
 Goal: recommendations for a more sustainable vehicle fleet composition and how the optimal mix can be attained through incentives, if necessary
1. Motivation

2. Literature Review

3. Proposed Work

4. Outlook / Outreach
Existing Work Overview – Types of Studies

- **Attitude Study (AS)**
 Analyze responses from consumers regarding their views of EV technology.

- **Travel Behavior and Constraints Analysis (TBCA)**
 Evaluate range needs of consumers and estimate corresponding market share.

- **Revealed Preference Study (RPS)**
 Analyze decision making and consumer behavior regarding EV purchase.

- **Stated Preference Study (SPS)**
 Provide economic valuations where transaction or market data is not available.

- **Reflexive / Integrated Stated Response Study (R/ISR)**
 Similar to SPS, but constraints and choice sets placed to identify further preferences.
<table>
<thead>
<tr>
<th>Publication</th>
<th>Authors</th>
<th>Type</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testing electric vehicle demand in ‘hybrid households’ using a reflexive survey (1996).</td>
<td>Kurani, Turrentine, Sperling</td>
<td>R/ISR</td>
<td>Households with more than 1 vehicle can adapt to a single limited range vehicle. Purchase of EV most strongly linked with defining purpose of vehicle and household life cycle.</td>
</tr>
<tr>
<td>Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles (2000).</td>
<td>Brownstone, Bunch, Train</td>
<td>SPS, RPS</td>
<td>Market share of 75 mile EVs will be: 2.1% (sub-compact); 2.3% (sports car); 0.6% (compact pickup); 0.6% (minivan).</td>
</tr>
<tr>
<td>How much range is required for a day’s driving (2010).</td>
<td>Pearre, Kempton, Guensler, Elango</td>
<td>TBCA</td>
<td>8 to 80% of vehicles could be replaced with a BEV 100 depending on user “adaptation scenarios”.</td>
</tr>
<tr>
<td>Who will buy EVs? An empirical study in Germany (2011).</td>
<td>Lieven, Mühlmeier, Henkel, Waller</td>
<td>SPS</td>
<td>EVs can account for up to 5% of new vehicle sales in Germany.</td>
</tr>
<tr>
<td>Attitude of European Car drivers towards EVs: a survey (2012).</td>
<td>Thiel, Alemanno, Scarcella, et al</td>
<td>AS</td>
<td>In the next 10 years, EVs will represent 20 to 36% of new car sales.</td>
</tr>
<tr>
<td>Predicting the market potential of plug-in electric vehicles using multiday GPS data (2012).</td>
<td>Khan, Kockelman</td>
<td>TBCA</td>
<td>50% of single vehicle households and 80% of multi-vehicle households could replace their ICE for a BEV with 100 miles of range.</td>
</tr>
<tr>
<td>Simulating demand for electric vehicles using revealed preference data (2013).</td>
<td>Driscoll, Lyons, Mariuzzo, Tol</td>
<td>RPS</td>
<td>Market share for current EVs with 60 to 80 miles range is between 0.004 to 0.010% of new vehicle sales in Ireland.</td>
</tr>
<tr>
<td>Publication</td>
<td>Authors</td>
<td>Methodology Type</td>
<td>Results</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Attitude of European Car drivers towards Electric vehicles: a survey (2012).</td>
<td>C. Thiel, A. Alemanno G. Scarcella, A. Zubaryeva & G. Pasaoglu</td>
<td>Attitude study</td>
<td>In the next 10 years, EVs will represent 20 to 36% of new car sales.</td>
</tr>
<tr>
<td>How much range is required for a day’s driving (2010).</td>
<td>N. Pearre, W. Kempton, R. Guensler & V. Elango</td>
<td>Constraints analysis</td>
<td>8 to 80% of vehicles could be replaced with a BEV 100 depending on user “adaptation scenarios”.</td>
</tr>
<tr>
<td>Predicting the market potential of plug-in electric vehicles using multiday GPS data (2012).</td>
<td>M. Khan & K. Kockelman</td>
<td>Constraints analysis</td>
<td>50% of single vehicle households and 80% of multi-vehicle households could replace their ICE for a BEV with 100 miles of range.</td>
</tr>
<tr>
<td>Simulating demand for electric vehicles using revealed preference data (2013).</td>
<td>A. Driscoll, S. Lyons, F. Mariuzzo & R. Tol.</td>
<td>Revealed preference</td>
<td>Market share for current EVs with 60 to 80 miles range is between 0.004 to 0.010% of new vehicle sales in Ireland.</td>
</tr>
<tr>
<td>Who will buy electric cars? An empirical study in Germany (2011).</td>
<td>T. Lieven, Silke Muhlmeier, Sven Henkel & Johann F. Waller</td>
<td>Stated preference</td>
<td>EVs can account for up to 5% of new vehicle sales in Germany.</td>
</tr>
<tr>
<td>Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles (2000).</td>
<td>D. Brownstone, D. Bunch & K. Train.</td>
<td>Joint stated and revealed preference</td>
<td>The market share of 75 mile EVs will be: 2.1% (sub-compact); 2.25% (sports car); 0.55% (compact pickup); 0.55% (minivan).</td>
</tr>
<tr>
<td>Testing electric vehicle demand in ‘hybrid households’ using a reflexive survey (1996).</td>
<td>K. Kurani, T. Turrentine and D. Sperling</td>
<td>Interactive Stated Response (ISR)</td>
<td>Many households with more than one vehicle can adapt to a single limited range vehicle. This represents up to 18% of light duty CA market with vehicles with 40 to 150 miles of range. Purchase of EV is most strongly linked with defining purpose of vehicle and household life cycle.</td>
</tr>
</tbody>
</table>
Existing Work Example 1

Fig. 1. Average daily mileage distribution. Histogram of daily mileage during 1 mile is not tabulated in the histogram. The black line shows the sum of days.

Existing Work Example II

Figure 1 GPS Data Representation of Daily Distance Traveled

Figure 3 Maximum Possible Single-vehicle Household Adoption Rates for BEVs in Seattle

Source: Khan, Kockelman; “Predicting the Market Potential of Plug-In EVs Using Multiday GPS Data”; TRB Annual Meeting; 2012
Chain of Study Steps – Focus of this Work

- Assumption
- Analysis
- Interpretation
- Conclusion
Outline

1. Motivation
2. Literature Review
3. Proposed Work
4. Outlook / Outreach
Trip, Vehicle, Consumer Characteristics

Trip Characteristics
1. Length
2. Predictability
3. Alternative

Vehicle Characteristics
1. Affordability
2. Range
3. Perks & Appeal

Consumer Characteristics
1. Consideration
2. Rationalism
3. Flexibility
Trip, Vehicle, Consumer Characteristics

Trip Characteristics
1. Length
2. Predictability
3. Alternative

Vehicle Characteristics
1. Affordability
2. Range
3. Perks & Appeal

Consumer Characteristics
1. Consideration
2. Rationalism
3. Flexibility
Trip Characteristic: Length

Definition: Distance between start and destination

Challenge: No information about what road, urban / rural setting, vertical profile, (charging) infrastructure

Need: More information about trip specifics

Extreme 1

Neutral / Moderate

Extreme 2

actual trip length in miles

Trip Characteristic: Predictability

- Describes how much consumer knows about trip characteristics and how they compare to vehicle specifications.

- Example: Consumer may have very consistent driving schedule, e.g. “to and from work is a 30-mile round trip” or may have 30-mile commute but “often needs vehicle at work to run errands”.

<table>
<thead>
<tr>
<th>Extreme 1</th>
<th>Neutral / Moderate</th>
<th>Extreme 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>complete trip detail known</td>
<td>duration of travel understood</td>
<td>length, profile, etc. unknown</td>
</tr>
</tbody>
</table>
Trip Characteristic: Alternative

- Considers other options instead of vehicle that is considered first option.
- Especially applies when EV cannot be used for trip because of limited range.
- Alternatives can be another household vehicle, rental car, carsharing, ridesharing, taxi, public transportation, biking, walking, or forgoing trip.

<table>
<thead>
<tr>
<th>Extreme 1</th>
<th>Neutral / Moderate</th>
<th>Extreme 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>other personal vehicle, no applicable limitation</td>
<td>ride-sharing, public transportation</td>
<td>no alternative, trip cancelation</td>
</tr>
</tbody>
</table>
Trip Characteristics
1. Length
2. Predictability
3. Alternative

Vehicle Characteristics
1. Affordability
2. Range
3. Perks & Appeal

Consumer Characteristics
1. Consideration
2. Rationalism
3. Flexibility
Vehicle Characteristic: Affordability

- Compares actual cost of mobility option to actual financial situation of consumer.
- Example: “100 miles cost $50” may have different implication for someone with low dispensable income as opposed to someone with more financial flexibility.
- Additional “context” information needed.

<table>
<thead>
<tr>
<th>Extreme 1</th>
<th>Neutral / Moderate</th>
<th>Extreme 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>free, no cost associated with using</td>
<td>acceptable cost with regard to financial situation</td>
<td>unbearable financial burden</td>
</tr>
</tbody>
</table>
Vehicle Characteristic: Range

Definition: Distance vehicle can travel on own power until needs to get replenish

Challenge: No information about how range is influenced by terrain, speed, auxiliaries, driving style, etc.

Need: More information about trip and consumer to determine “practical” range

<table>
<thead>
<tr>
<th>Extreme 1</th>
<th>Neutral / Moderate</th>
<th>Extreme 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>actual vehicle autonomy in miles</td>
<td></td>
</tr>
</tbody>
</table>
Vehicle Characteristic: Perks & Appeal

- Considers how much vehicle appeals to a consumer
- Also considers additional value that consumer benefits through certain vehicle choice.
- Especially for EVs includes free parking, access to HOV lane, etc.
- Also including the importance of styling, practicability, brand values, etc.

<table>
<thead>
<tr>
<th>Extreme 1</th>
<th>Neutral / Moderate</th>
<th>Extreme 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>additional benefits and positive appearance</td>
<td>practical and fair</td>
<td>not extra benefits, negative appearance</td>
</tr>
</tbody>
</table>
Trip, Vehicle, Consumer Characteristics

Trip Characteristics
1. Length
2. Predictability
3. Alternative

Vehicle Characteristics
1. Affordability
2. Range
3. Perks & Appeal

Consumer Characteristics
1. Consideration
2. Rationalism
3. Flexibility
Expresses how much consumer cares about the external impact of his / her travel choice on others and how much his / her personal needs are covered.

Including vehicle’s impact on the environment and also personal needs like reassurance by others and the experience of pride.

<table>
<thead>
<tr>
<th>Extreme 1</th>
<th>Neutral / Moderate</th>
<th>Extreme 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>caring about others & environment</td>
<td>covering self, considering others</td>
<td>only caring about self, egoistic</td>
</tr>
</tbody>
</table>
Consumer Characteristic: Rationalism

- Describes if consumer is rather driven by practical or emotional factors.
- Example: consumer might see vehicle as means to get to a destination (= commodity) or might enjoy driving (= enjoyment).

<table>
<thead>
<tr>
<th>Extreme 1</th>
<th>Neutral / Moderate</th>
<th>Extreme 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>practical behavior, non-emotional</td>
<td>balance of emotional and practical behavior</td>
<td>emotional behavior, non-practical</td>
</tr>
</tbody>
</table>
Consumer Characteristic: Flexibility

- Describes how carefully consumer plans vehicle travel or how risk-taking someone is.
- Also considers how well consumers deal with change.
- Example: consumer willing to “experiment” with the range information or already stressed out when fuel gauge in conventional vehicle goes below half-full.

<table>
<thead>
<tr>
<th>Extreme 1</th>
<th>Neutral / Moderate</th>
<th>Extreme 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>risk adverse, stability seeking</td>
<td>risk neutral, change accommodating</td>
<td>risk seeking, change appreciating</td>
</tr>
<tr>
<td>Characteristic</td>
<td>Extreme 1</td>
<td>Neutral / Moderate</td>
</tr>
<tr>
<td>----------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Trip Length</td>
<td>---</td>
<td>actual trip length in miles --</td>
</tr>
<tr>
<td>Predictability</td>
<td>complete trip detail known</td>
<td>duration of travel understood</td>
</tr>
<tr>
<td>Alternative</td>
<td>other personal vehicle, no applicable limitation</td>
<td>ride-sharing, public transportation</td>
</tr>
<tr>
<td>Affordability</td>
<td>free, no cost associated with using</td>
<td>acceptable cost with regard to financial situation</td>
</tr>
<tr>
<td>Vehicle Range</td>
<td>---</td>
<td>actual vehicle autonomy in miles --</td>
</tr>
<tr>
<td>Perks & Appeal</td>
<td>additional benefits and positive appearance</td>
<td>practical and fair</td>
</tr>
<tr>
<td>Consideration</td>
<td>caring about others & environment</td>
<td>covering self, considering others</td>
</tr>
<tr>
<td>Rationalism</td>
<td>practical behavior, non-emotional</td>
<td>balance of emotional and practical behavior</td>
</tr>
<tr>
<td>Flexibility</td>
<td>risk adverse, stability seeking</td>
<td>risk neutral, change accommodating</td>
</tr>
</tbody>
</table>
Characteristics and Connections

- **CONSUMER**
 - Rationalism
 - Consideration

- **CONSUMER**
 - Flexibility

- **TRIP**
 - Length
 - Predictability
 - Alternative

- **VEHICLE**
 - Range
 - Affordability
 - Perks & Appeal

- **longer travel distance** = higher transportation cost

- vehicle range > trip length

Necessary Match

Essential Influence

Significant Link
Characteristics and Connections

CONSUMER Flexibility

TRIP Length

TRIP Predictability

TRIP Alternative

CONSUMER Rationalism

CONSUMER Consideration

VEHICLE Perks & Appeal

VEHICLE Range

VEHICLE Affordability

Necessary Match

Essential Influence

Significant Link
Outline

1. Motivation
2. Literature Review
3. Proposed Work
4. Outlook / Outreach
Outlook – Combine Existing, Add Connection

1. Literature Overview
2. Comparative Study of Existing Work
3. Propose Integrative Approach
4. Categorize Commuters
5. Analyze data from SAC and SD
6. Propose Additional Surveys
Outreach – Questions for the Group

For a work titled
“Matching Consumer Expectations and Vehicle Specifications in Light of EVs”,
what about the following questions:

1. Does the 3x3 characterization of trip, vehicle, consumer cover the aspects pertaining
 to electric mobility insufficiently / sufficiently / completely?
 >> What is missing, redundant, confusing?

2. Would it be possible (make sense) to make the entire set of characteristics
 quantifiable?
 >> How can this be accomplished?
 >> Who would like to help? (anything from ideas … discussion … collaboration)