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Effective Hydraulic Conductivity for Gradually Varying Flow

PETER K. KITANIDIS

Department of Civil Engineering, Stanford University, Stanford, California

Consider the problem of flow in a porous medium with hydraulic conductivity which fluctuates
locally about a mean value. The flow is unsteady but gradually or slowly varying, i.e.. the correlation
length of head fluctuations is considerably larger than the correlation length of hydraulic-conductivity
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fluctuations. The equations which must be satisfied by the effective conductivity tensor are derived
under general conditions using a method of volume averaging and spatial moments. The generality of
the derived equations is shown by replicating some known results.

I. THE PROBLEM

Consider transient flow in a saturaied porous medium. In
the absence of sources or sinks, the governing equation is
given by

a¢
V- (KV¢)=S§ — )
ar

where ¢ is the piezometric head [L]; S is the specific storage
coefficient [L™'], which in this analysis will be assumed
constant; K is the hydraulic conductivity [L/T], a symmetric
and positive definite second-order tensor (positive definite
meaning that the conductivity is positive in every direction);
and ¢ denotes time [T]. To keep the analysis simple, assume
that the boundary condition is that

oix, =0

for very large x 2)

and the initial condition is that of a ‘‘slug injection™
@(x, 0) = 8(x — x') (3)

where 8 is a Dirac delta function. That is, a ‘‘unit volume”’
increase in the piezometric head was introduced at time 0 at
location x’. A point of clarification: In these equations, ¢
should be interpreted as the head above a background level,
;. which satisfies the governing equation (1) and is subject
to prescribed steady boundary conditions. For example,
bu(xy, X2, X3, 1) = Jx + ¢, where J is slope and ¢ is a
constant. However, the background head is of no impor-
tance in this analysis. (A reviewer has suggested that ¢ can
be seen as the drawdown resulting from a unit-volume slug
withdrawal.)

If K were constant in space, the head would be repre-
sented by the following smoothly varying function:

(x, t; x') = (27) 2D V2
cexp [-(x—x)D 7 '(x —x')4e]  (4)

where D = K/S; D! is the inverse of D; and |D| is the
determinant of D. Equation (4) is valid for three-dimensional
flow.

Note that our discussion is not limited by the assumed
boundary and initial condition, (2)~(3). If the initial head
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were not &x — x') but an arbitrary function ¢y(x) then, by
the principle of superposition, the solution would have been

o(x, £ x') =[ (2m) ¥ 2D 717
Vs

cexp [—(x — x)D 7 (x — x)4rlpyx') dx’  (5)

where V. signifies the entire space.

The point is that by solving for the initial condition (3), the
solution can be found for an arbitrary initial condition. Thus
the results of this work are not limited to radially diverging
or converging flows.

Physically, the solution indicates that a bell-shaped mound
is formed and spreads out. The net rate of spreading can be
quantified by the rate of increase of

A(r) = f (x = x'}x - x")p(x, t; x') dx (6)

where A(?) is the average of ¢ at time ¢t weighted by the
square distance in each direction. It is known as a spatial
moment and is equal to 2Dr if K is constant (as can be
verified from (4)). It is worthwhile to note that the relation
D = }(dA/dr) will be used later to define the effective
conductivity of a heterogeneous medium.

In most cases, K is not the same everywhere. In principle,
one could derive the solution to the governing equation
which now has variable coefficients. This is far from a trivial
task. Solutions are commonly obtained using numerical
methods which cannot easily handle large- and small-scale
variability. Another difficulty is that the solution would
depend on both x and x’ instead of only on the difference x —
x’, so that it is needed to solve for many starting points.
Finally, it is doubtful that one may specify with precision the
value of the parameters at every point.

In many practical situations, one is mainly concerned with
the net rate at which the pressure mound spreads, which can
be quantified by the rate of increase of A, and there is little
interest in obtaining the detailed picture of the head as it
varies from one point to the next. The question is thus the
following: Can the medium be represented by an equivalent
homogeneous medium with effective hydraulic conductivity
that correctly simulates the net rate of flow? And if so, how
can the effective hydraulic conductivity be calculated?

For the sake of illustration, consider one-dimensional flow
with periodic D = K/S. Figures 14 depict the head function
at four different times. The head function obtained with the
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Fig. 1.

Head at ¢+ = 0.0008. The dashed curve is the actual head, the solid curve is the head if the mean value of the

hydraulic conductivity were used, and the dotted curve is the value of the hydraulic conductivity.

average D is also plotted, for comparison purposes. At early
times (1 = 0.0008 and ¢ = 0.004) the head function depends
critically on the conductivity at or near the point of injection.
As time passes (t = 0.02 and especially ¢ = 0.1), the mound
spreads over an area many times the scale of conductivity
fluctuations. Locally, the head still depends on the conduc-
tivity, as the head gradient must be steeper in areas of low
conductivity and milder in areas of high. However, one can

see in Figure 4 that if one is willing to disregard the local
effects, by averaging over a scale equal to the scale of
conductivity fluctuations, then a nearly bell-shaped function
will be obtained. In this sense, it may be possible to
represent the actual locally heterogeneous medium by an
equivalent homogeneous one.

The determination of the effective or macroscopic conduc-
tivity is a difficult problem. In one-dimensional flow, it is
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Head at 1 = 0.004. The dashed curve is the actual head, the solid curve is the head if the mean value of the

hydraulic conductivity were used, and the dotted curve is the value of the hydraulic conductivity.
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Head at ¢+ = 0.02. The dashed curve is the actual head, the solid curve is the head if the mean value of the

hydraulic conductivity were used, and the dotted curve is the value of the hydraulic conductivity.

known to be the harmonic mean of the local conductivity,
but in higher dimensions of interest in applications an answer
is not easily obtained.

This problem has been addressed in the literature, and a
number of useful approaches have been suggested. Pioneer-
ing works include Warren and Price [1961] and Matheron
[1967] who also refers to Schwydler [1962]. Most of the
approaches have dealt with locally isotropic medium, i.e., K

is diagonal with elements K(x). Gelhar [1976] and Gutjahr et
al. [1978] linearized the relation between K and ¢ in uniform
steady flow by neglecting products of perturbations of XK and
¢. Then, by using the ensemble average of the discharge,
they determined an effective hydraulic conductivity matrix.
This analysis requires only the covariance function of K(x).
Among other interesting results, they found that for three-
dimensional flow in a medium with the same integral scale
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Head at 1 = 0.1. The dashed curve is the actual head, the solid curve is the head if the mean value of the

hydraulic conductivity were used, and the dotted curve is the value of the hydraulic conductivity.
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(correlation length) in each direction, the effective hydraulic
conductivity is (1 + o }/6) times the geometric mean, where
o is the variance of the logarithm of K. The result is
accurate to the first order of 2. The perturbation method is
powerful and appealing, but its validity is predicted on small
values of o }.

Analysis for large-variance cases is considerably more
difficult. A common approach uses numerical models [e.g.,
Freeze, 1975, Desbarats, 1987]. Smith and Freeze (1979}
have used straightforward Monte Carlo simulations with a
numerical groundwater flow model. Among other results,
their numerical experiments have indicated that the effective
transmissivity for isotropic (two-dimensional) Gaussian log
conductivity is given by the geometric mean. Dagan (1979,
1981] has applied the method of the embedding matrix to
derive bounds on the effective conductivity and a self-
consistent approximation for its approximate calculation.
This analysis, which is in the best tradition of statistical
mechanics, is not limited by the assumption of small fluctu-
ations but assumes a particular spatial structure and uses
only information from the volume fraction of each conduc-
tivity value. The results of Dagan’s papers agree with the
results of the perturbation methods of Gelhar, Gutjahr, and
others to the first order of o %.

Most of the previously mentioned works focused on
steady flow problems. Dagan [1982] dealt with the unsteady
flow problem in macroscopically uniform flow using the
small-perturbation approximation. Among other results, he
estimated the ‘‘relaxation time’ which must elapse after
some change in the system so that an effective conductivity
can be defined.

In this work, a new approach is proposed. The derived
equations are as general as in any other currently available
method. An advantage of the derivation is that it is based on
volume averaging and makes use of engineering calculus. In
this paper the governing equations will be derived and will be
verified through application to some problems for which
solutions are currently available.

2. FORMULATION AND DEFINITION OF MOMENTS

In the derivation, it will be convenient to take advantage
of the mathematical formalism of periodic media, previously
used in the determination of solute dispersion in variable-
velocity media [Brenner, 1980b, 1982 b; Bhattacharya, 1985;
Gupta and Bhattacharya, 1986}. Of course, a periodic me-
dium, is only a conceptual or mathematical model of a
formation whose parameters fluctuate about an average
value. It is premature to discuss its applicability, which can
only be appreciated after results have been obtained and
subjected to sensitivity analysis. Suffice it to say that the
results of the present analysis will be shown to include the
results of the stochastic small-perturbation method. (The
key results are summarized in section 5.}

Consider unsteady flow in a formation with constant
specific storage S and conductivity K which varies periodi-
cally in all directions (see Figure S) and is differentiable.
Define the periodic ‘‘diffusion matrix™” D = K/S. Let /; be the
period in direction i. That is,

D(X1, X2, X3) = DXy + myly, Xo+ maly, X3+ mals) (D)

where D = (d,, d,, d3) is the symmetric diffusion matrix,
consisting of three vectors; X = (X;, X, X3) are the spatial
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Fig. 5. An example of a two-dimensional periodic hydraulic con-

ductivity. A group of four elements is shown.

coordinates in a Cartesian coordinate system, and m,, m,,
and m, are integers (positive, negative, or zero). The anal-
ysis will be carried out for a three-dimensional flow field, but
the result can be easily reduced to apply to one- or two-
dimensional flow.

In the introduction, it was mentioned that in the search for
effective parameters, local variability must be averaged out.
Consider the superimposition of a rectangular grid with
spacing /; in direction i. The grid subdivides the domain into
elements, rectangular parallelepipeds with lengths of sides
l;, I, and 5. Assuming that the origin of the universal
coordinate system coincides with the center of an element,
the coordinates of the center of any element are (n,!;, nal;,
n3l;) where ny, ny, n3 = -+, =2, -1, 0, 1, 2, +--.
Consequently, each element is identified with a triplet of
integers (ny, n,, n3), or n,

For the sake of convenience, a system of local coordinates
(x}, X3, x3) will be introduced for each element. The origin of
this Cartesian system is at the center of the element and the
three axes are parallel to the axes of the universal system.
Now each point with X = (X, X,, X3) can be represented as
(n, x) = (ny, 1y, n3, Xy, Xy, x3) where n = (ny, my, n3)
specifies the element and x = (x;, x;, x3) specifies the
location within the element. The relation between universal
and local coordinates is given by

Xi=nil,+x,~ i=1,2,3 (8)

where in this work n;, n,, ny are always integers and x|, x5,
and x; always satisfy the conditions —/,/2 = x; = [,/2,
_12/2 = X2 5,2/2, and "13/2 =x3 = 13/2.

D at local coordinate x is the same for all elements. Thus
one may suppress the dependence of the diffusion on the
number of the element and show only the dependence on the

local coordinates
D(ny, ny, n3, xq, x3, x3) = D(xy, X3, x3) 9)

where the following conditions are due to continuity

D(ll/zv X2 X}) = D(—I]/Za X2, X3) (loa)
D{(x;, 1512, x3) = D{x, —15/2, x3) (10b)
D(X|, X2, [3/2) = D(Xl, X2, “13/2) (]()C)
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The same conditions hold for the gradient of D.

Let (X, X,, X3, 1) or p(ny, ny, n3, x;, x5, X3, t) be the
head. As already mentioned, it is convenient and involves no
loss of generality, to consider the case of point injection of
unit volume so that from continuity,

f«b(x, NdX=1 (1
Within each element, the governing equation is

dd

——-V:-(DVg)=0 12)

ot

where V is the vector differential operator V = (8/0 x, 8/d x5,
9/ x;)T, with respect to the local coordinates. Equation (12)
has assumed that D is not affected by ¢ (i.e., the resistance
to flow does not depend on the value of the head) and that no
water is added or subtracted after the initial time.

Equation (12) is satisfied in the interior of each element. At
the interface of two adjacent elements, it is required that the
head and the flux be the same no matter what system of local
coordinates they are calculated in. These conditions mean
that the head and its gradient must satisfy

¢(n17 ni, n3, Il/29 X2, X3, t)

=¢n + 1, na, n3, —1)/2, %3, 23, 1) (13a)

(b(nh Ry, n3,Xy, 12/2’ X3, t)

=¢¢(ny, ny+ 1,03, x;, ~0/2, x5, 1) (13b)

¢>(n|, na, N3, Xy, X2, [3/2, 1)

= ¢(ny, ny, ny+ 1, x1, x3, =13/2, 1) (13¢)
and exactly the same conditions must be satisfied if in
(13a)~(13¢) ¢ is substituted by d¢/dx;, i = 1, 2, 3.

Finally, the head (above the background value) at very
large distances from the origin vanishes:

@lny, ny, n3, xy, X3, X3, ) =0 as ny, np, Ny —> =2 (14)
It is assumed that the rate of decrease of ¢ to zero is such
that spatial moments can be defined.

A method similar to the method of moments originally
proposed by Aris [1956] for the determination of dispersion
and subsequently generalized by Brenner {1980a, b] will be
followed. Among other applications, this method has been
applied in transport problems in stratified porous media
[Giiven et al., 1984; Valocchi, 1989]. In this approach, two
types of moments, local and global, are introduced.

Local moments depend on the vector of local coordinates
as well as on time. The zeroth-order moment is a scalar
defined as the sum of head at all points with local coordinates
X,

alx, ) = 2, o(n, x, 1) (15)

where by 2, denote the triple summation X,°__. ¥7__.
,°,°3=_w . The a(x, ) represents the distribution of the volume
with respect to local coordinates. More precisely, a(x, t) dx
is the water volume which at time ¢ is contained in small

cubes dx about local coordinates x, for all elements.
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The first moment is a three-dimensional vector b(x, 1)
whose ith element is defined as follows:

bi=[b(x, n); = 2 (nld(n, x, 1) (16)

For example,

bi=l 2 2 2 mdlny, na, ny. Xy, Xg, X3, 1) (7

n=—%x my=-% A3=-—x

The second moment is a 3 X 3 symmetric matrix whose ijth
element is defined as follows:

Cy=[Cx, D)= 2 (nd)nd)d®m, x, 1) (18)
n
For example,
ch=082 2 2 n}
ny=—% Ap=—% ay=—-x

.¢(n]’ na, n3, Xy, X3, X3, t) (19)

Co=hly 22 2 2 nm

n=—% M= —% Ay=—%

* ¢(nl~ na, ni3, Xy, X3, X3, t) (20)

and so on. Higher moments could be defined in a similar way
but they will not be required in this analysis.

Global moments are defined from the integral of local
moments over the local coordinates. That is,

alt) = f al(x, 1) dx
v

B = J b(x, 1) dx (22)
v

2n

I“(z)=f C(x, 1) dx (23)
v

where V is the volume of an element.
Consider the physical meaning of the global moments. For
each element n, define ¢ as

¢in, = f &(n, x, 1) dx (24)
v

This is the volume of water in element n at time 7. If this
volume is assumed located at the center of the element, then
a, B, T are the spatial moments. The zero moment, «,
represents the total volume and is equal to 1 at all times (see
(11)). The first moment, B(1), is the vector of coordinates of
the centroid (center of mass) of the mound and can be
written

B(1) = 2 é(n, NX(n) (25)

where X(n) is the vector of global coordinates of the center
of element n.
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The second moment is the matrix of the mean square
displacements about the origin of the global coordinate
system and can be written as

T = 2, dn, HXmXm)T (26)

To measure the spreading of the mound about its center,
define the central second global moment

AlD) = 2, é(n, N[Xn) ~ BOXn) — BD))T

= - p0pw’ @1

Thus the global moments are defined for head after averaging
within each element.

3. EQUATIONS SATISFIED BY THE LOCAL MOMENTS

First off, obtain the equations satisfied by the local mo-
ments. For fixed x, summation over all elements gives:

a
2[§—V-(DV¢)]=0

n

(28

Since D does not depend on n and V is with respect to local
coordinates,

0
" [2 ¢(n, x, t):| -v. [DV > b, x, z)} =0 (29

da

~-V-DVa)=0
at

(30)

where a(x, r) satisfies partial differential equation (30) and
the following boundary conditions:

a(ly/2, x3, x3, 1) = a{—11/2, x3, X3, 1) (31a)
a(xlv ]2/27 X3, t) = a(X], _12/2v X3, t) (3]b)
a(xy, xq, [3/2, t) = a(xy, X9, —13/2, 1) Qlc)
da da
— =— (32a)
OXi| oyt 9% et
da da
— =— (32b)
il o tns OFil s, —ly
da da
— =— (320)
9x; Xy Xq9.042,1 ax; X0, =132t

where i = 1, 2, 3. These conditions are obtained through
summation of (13a)~{(13¢) over n.

To determine the equation satisfied by the components of
the first local moment, a similar procedure will be followed.
For the first component, b, satisfies exactly the same form of
a differential equation as a:

3b,
— = V- (DVb) =0 (33)

but with different boundary conditions:

KiTanipis: EFFECTIVE CONDUCTIVITY

by(y/2, X3, X3, 1) =b\(—1\/2, x5, x3, 1)

—a(~1/2, x3, x3, )l (34a)
b(xy, 12, x3, ) = by(x(, =12, x3, 1) (34b)
by(xy, x2, 132, 1) = by(xy, X2, —13/2, 1) (34c)

ab, by da
s =t = L (35a)
OXil ) e 9%l S 9%t 2mynas
ab; ab,
— =— (35b)
0%l sy O%ile, 12
ob,q b
—_ = — (35¢)
0%y ptyze O%ilx ey —ty2

By analogy, obtain the partial differential equation and the
boundary conditions which must be satisfied by b, and b;.

Now consider the second local moment. Each of its
elements, C;;, satisfies

aC;
— -9 (DVC) =0 (36)

with given boundary conditions. Consider, first, the case of
Cy-

C]](1|/2, X3, X3, 0= C“(—I]/Z, X3, X3, ?)

= 26\(—1y/2, X3, x3, Oy + a(~1i/2, x3, x3, DI} (37a)
Cilxp, b2, x3, ) = Cyy(xy, =laf2, x5, 1) (37b)
Cilxy, x2, 132, 1) = Cyy(xy, x2, =132, 1) 37¢c)
aCn _9Cn
OXi |} 2yt ~ax 12kt
-2 % I + s I} (38a)
X\ L pynt 0% i cptt
-a—c—]l = 6_61_1 (38b)
0%i ), rnwe O%ile ipn
ﬂ = -a—gg (38¢c)
OXi | xoiyze 0% lx oty

By analogy, obtain the boundary value problems for the
other diagonal elements.
The boundary conditions for C,; are

Cy2, x3, x3, 1) = Cyo(~ 112, x2, X3, 1)

= by(~14/2, x5, x3, D, (39a)
Clz(x], 12/2, X3, t) = Clz(xl, —12/2, X3, t)
= by(x;, =112, x3, Dl (39b)
Craxy, x2, 132, 1) = Ciodxy, x2, =142, 1) (39¢)
aCy aC 2 aby
-— = - L (40a)
IXi§ e % e 0% Sty
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aCy2 aCry ab, examined in the classical works of Taylor [1953] and Aris
a4 X; N aXx; - E b (405) [1956).
Flxf2x,0 T e =125 2,050 Consider now the second moment. The rate of increase of
o
aC 2 aCyy nts
— =— (40¢) ,
9x; xyxpdy2,t d.x; XXy —hf2u dr'y, _ f (DVCy,) -m dS = f’ﬁ b2 2 Dy;
and similarly for all other off-diagonal elements of the dt S L2J -2 i=1
second-moment matrix C.
6C| 1 aCll
3 - —a_— dX2 dX3
X X
4. EQUATIONS FOR RATES OF CHANGE OF THE GLOBAL ! 120000 ! ~12. 00t
MoMENTS AND RESULTS FOR GRADUAL FLOW
)2 15/2
2
Rates of Change of Global Moments = [ f 1° V(=2by + alj) dxydxs  (45)
—2J b L2000
From 30), H2X0.K
sa and similarly for I'y, and I'3;.
f [5 -V (DVa):I dx =10 41 For rate of increase of ',
14
Integrating each term and applying the divergence theorem 'y b2 i
’ o (DVCy)*n dS = E Dy;
e d s —td - i=i
—= V- (DVa) dx = DVa)-m dS 42
- fv ( fs( ) (42) . ocs
. a_ - P d.l': IIX3
where § is the surface which surrounds the parallelepipedal i 1250000 o 2
element, 7 is a unit vector normal to the surface and pointed ' '
outward, and dS is an infinitesimal area on the surface which W2 (i
surrounds the element. Because of symmetry in D and Va on f Ds;
the boundary, this integral vanishes and obtains the antici- wed-nni= 1
pated result
da . 8_ - 6_ dx; dxs
— = X; X
dt 0 (43) X 02500 ! X~ 12.x43,0
In a similar fashion the rate of increase of B, the first 12 ,3,»
element of the first moment, is f - Vb, dx, dx;
2 “’" =12, 03330

where d; is the vector formed by the first column of the

L2 (R
f(DVbl) nds= f D; hi2 h/z
b2t -1y r—l - zf [ d;- Vb, dxydx; (46)

L2Jd —un x5

ob ab
S22 = dx; dx; In a similar fashion, obtain the equations for all other
dx; dx; elements.
1/2x5,x3,t —~{/2.x5.%3,1
022 l;/z .
f f dx; dx; (44q) Results for Gradually Varied Flow
b2 -hi2 =1/2x3.x3.8 As the mound spreads, the distribution a(x, 1) gradually

becomes more uniform. One may show (see appendix), that
the ‘“‘large-time’’ solution to the boundary value problem of

symmetric diffusion matrix D. )
Similarly, for the other components, (0-G2yis

dﬁz

dl33

1
alx, ) =—+ T(x, 1) = 47

dxl dX3 (44b) 112[3 11213

f1|/2 fl]/2

L2 12

hi2 {2
d; Va

L2t —1/2

T hi2ed where the transient term T(x, 7) decays exponentially with

time and is negligible once ¢ exceeds a relaxation time 7*/D,
dx, dx, (44c) where [ is the periodicity and D is a typical value of the
diffusion. Thus the distribution of water volume over the
local coordinates is uniform. Note that this is the essence of

XX, =132t

What is particularly interesting is that the rate of increase of what will be referred to as *‘gradually varying’" flow.
the first global moment depends only on the zero local Once the steady state value of a(x, 7) is determined, the
moment. The same is true in the analysis of the problem rate of change of B8 can be calculated from (44) and (47):
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dg;

o 0 (48)

Thus after the mound has spread enough to sample all
conductivities, its centroid ceases to move.

The first local moment can now be determined from the
solution of a boundary value problem, equations (33)
through (35). Starting with b;, one may verify that for
gradually varying flow

by(xy, x3, x3) = {const — xy + g((xy, x2, X3)/l1aly  (49)
where g is a function of local spatial coordinates which
satisfies the differential equation

V-(DVg)=V-d, (50)
where, as already mentioned, d, is the first column of the
spatially variable D, subject to the symmetric boundary
conditions:

21(ly/2, x3, x3) = gi(—h/2, x3, x3) (51a)
gilxy, 12, x3) = g((x;, =122, x3) (515)
g1(x1, X2, 13/2) = g\(xy, x2, —13/2) (51¢)
gy og )
&t =1 (52a)
0%l s, O Zt2myms
g og
%51 = k) (52b)
axi X1lgf2,xy axi X1 =lf2.x3
0g ag
21 G (52¢)
OXi| 4 xntyz %Kil g xpoty

The rate of increase of ['}; may be written as follows

—=-2 d,'Vb, d
dr J;l 1 ax

after substituting areal by volume averages, which can be
shown to be appropriate under gradually varying fiow con-
ditions. Then, from the definition of the second central
moment and substituting in terms of g,

alll R ) d
—_——— e~ ———e . —_ +
At g ) O AV

(53)

2 -
= d,-Vg, dX+2D]|

-— (54
1112’3 v

where D,; is the spatial average of Dy, (D, = (V) [y
D|,(x) dx). However,

dA; dly dg; dg; dr'y

dt dt idt_ﬁj-:iT_ dt

2 L
=‘———‘f d,-Vg,dx+2D, (55)
1]’2{3 v

and similarly for the other elements. In general, the result is
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1 dA,-j 1
De = ——_——= -
Yoo dt 20115

v

(56)

where the three-dimensional matrix D¢ is the effective
diffusion matrix. Since the specific storage is assumed con-
stant, we can substitute hydraulic conductivities for diffu-
sivities.

It must be pointed out that the result was derived for a
Dirac initial condition &x — x’). However, an important
result is that the rate of change of the global moments for
gradually varying flow does not depend on the original
location of the input, x'. Consider the case of an arbitrary
initial condition ¢y(x). This can be written as the summation
of many Diracs, ¢g(x) = [y_ dg(x') 8(x — x') dx’. Using the
principle of superposition, one can verify that the analysis is
applicable for any initial condition (see Dagan [1987] and
Kitanidis [1988]).

5. KEY RESuLTs

In this section we will review the key results of this work
and will discuss how the method can be applied in the case
of nonperiodic and random media.

Basic Result

The key result of section 4 was that the effective diffusion
matrix of the variable-conductivity medium is given by
computing a volume integral given by (56). Functions g; are
determined from the partial differential equation

V- (DVg,)=V-d; 7)

defined over the elementary volume and subject to symmet-
ric boundary conditions (see, for example, (51) and (52)).
Thus the problem reduces to solving a well-defined boundary
value problem and carrying out an integration. Even if those
have to be performed numerically, this approach is poten-
tially a significant improvement over other numerical meth-
ods because (1) all computations are performed within one
elementary volume or spatial period; and (2) even though the
original problem is an unsteady flow one, the boundary value
problem to obtain the effective conductivity involves no time
derivatives. Examples of how to apply these equations to
find effective conductivities will be presented later.

Extension to Nonperiodic and Random Media

We are ready now to discuss the significance of the
periodic assumption. Our discussion will be based on intui-
tive arguments rather than rigorous mathematical analysis.
Consider that D is not truly periodic but still varies about a
mean value D in a ‘‘stationary’’ fashion. (The assumption of
stationary variability underlies every attempt to define effec-
tive properties.) Despite the fact that the medium is not truly
periodic, one can still superimpose a regular grid and apply
the methodology using the D values over one of the ele-
ments. One can then solve the associated boundary value
problems and calculate the integral. If the size of the grid is
large enough, it is quite possible that the value of the volume
integral of (56) will tend to a constant value. This value will
be practically independent of the spacing of the grid and of
which element was used in the computation.
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There are some deep questions regarding the mathemati-
cal conditions under which such a volume integral will
indeed converge for a (nonperiodic) stationary medium [see
Koch et al., 1989]. It is well beyond the scope of this work to
investigate these conditions (except in some special cases to
be examined in section 6). Suffice it to say that every effort
to define effective macroscopic parameters of a locally
heterogeneous medium is predicated on the tacit assumption
that convergence can be achieved. The prevailing attitude is
that it is of greater practical interest to investigate whether a
practically useful result can be obtained for a reasonably
small volume of averaging. The thrust of this work was to
provide the means for the computation of the effective
hydraulic conductivity for a given volume of averaging and
variable local hydraulic conductivity.

A related issue is that of stochastic analysis. This work
followed a purely deterministic approach, i.e., the local
hydraulic conductivity was assumed precisely specified at
every point. However, inspection of the final result indicates
that a less precise definition of the local properties might be
quite sufficient to obtain the desired result. That is, because
the final result is in terms of a volume average, the specifi-
cation of some volume-average properties of the hydraulic
conductivity may suffice. Thus a *‘statistical’’ specification
of the local conductivity may be quite adequate. Further
analysis will be required to establish which averages are
needed for determination of the effective hydraulic conduc-
tivity. An example will be presented when the small-
fluctuation case is examined.

6. SOME SOLUTIONS FOR LOCALLY IsOTROPIC MEDIUM

In this section, the application of the developed method
will be illustrated and at the same time it will be confirmed
that the general solution yields the right results for cases for
which results are already available. Here the focus is on
locally isotropic media,

K 0 0
0 K 0
0 0 K

K= (58)

From this condition and (50), the equation satisfied by g; is

] g 3 dg; ] agi\ oK
—[k—|+—(Kk—|+—|[K—]=—
ax, ax] dxy aXZ d.x3 313 axi

and the effective hydraulic conductivity is

. ! 0g; ogi .
Ki=- K|—=+—|dx+K5; (60)
2(]12[3 v ax,- axj

where §; = 1, if i = jand 8; = 0, otherwise. Consider the
familiar cases of perfect stratification and of small fluctua-
tions.

(59

Perfect Stratification

Assume that the values of K are constant in directions 1
and 2 and vary only in direction 3. Then, the effective
conductivity in x; direction is calculated as follows:

g % 9 ag)
Kl—S+—5 ]+ —({K—|=0 61)
axy  9x3 dxs ax3
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The solution depends only on x; and dg,/dx; = const/K.
Then, from (60),

=K (62)
and similarly for direction 2, K$, = K. This is the well-known
result that the effective hydraulic conductivity parallel to the
stratification is the arithmetic average for K.

Consider now the direction perpendicular to the stratifi-
cation. The associated equation for g3 is

a’gy o%g3\ @ g3\ 9K
Kl—+—=)+—|K—| =" (63)
axy dx3 axy

dxX3 61’3
g3 depends only on x; and

K—_K=C|

dxy 9

where C, is a constant. The solution of this differential
equation is

(65)

c |7 A C
= +x3 +
83 1 -[0 K(u) 3 2

where C, is another constant (which does not need to be
determined). Because of the boundary conditions for g3,

t-go=c ["2 w120 (66
- = —_— =
gillz) — g3 1 ,L K@ 3 )
thus C; = —I4/f§ (du/K@u)) = —K~' where K™ is the
so-called harmonic mean of K. Then,
1 0g3 _ —_ 1 I du -1

Kpy=——— | K—dx+K=K'=|-| ——

[llzl:; v 6X3 13 0 K(Il)

(67)

Thus the effective hydraulic conductivity in the direction
perpendicular to the stratification is the harmonic mean of
the hydraulic conductivity, another well-known resulit.

Small Variations of Hydraulic Conductivity

A general method of solution can be developed when the
fluctuations of X are small.
It is convenient to introduce ¥ = In (K). Then g; satisfies

aYy ag;, 9% aY og; 9%g; aY ag; 9% Y
— St —— b — — = —
dx;dxy 9x; dxp20x2 dx; Odxzdxy dxy IX;

(68)

subject to symmetric boundary conditions.

If ¥ were constant, g; would also have been equal to a
constant value g;. Let Y fluctuate slightly about its volume
average

Y(x) =Y+ Y(x) (69

where ¥ is the volume average of Y(x) and Y’ is the local
fluctuation about the average. Then, g; should fluctuate
about its mean value
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gix) =g; + gix) (70)

In this analysis, the primed terms are treated as small.
Substituting and neglecting products of primed quantities,

ay’

ax;

9* gr
6x32

o°gf
ax22

ag,

(?xl

an

which is a linear partial differential equation with constant
coefficients. The variable Y’ can be expanded into a Fourier
series:

2 W(k) exp (j27x - K)
k

Y'(x) = (72)

wherej = (—1)"?; k = (n,/l,, nylly, n3/15)T; 0y, ny, and ny are
integers; and X, is a triple summation over all k{, k;, ks
(excluding k; = k, = k3 = 0 since there is no constant term).
The vector of wave numbers is k and ¥(k) is a Fourier
coefficient. The Fourier coefficient can be calculated as a
weighted volume average of YV’ from the familiar relation

1
Yk)=—— Y’(x) exp (—j2mx - k) dx (73)
hizly
The solution can also be written in the form
£ix) = 2 Gk) exp (j27x - k) (74)

k

which automatically satisfies the boundary conditions so that
the problem reduces to finding the values of G, so that (71) is
satisfied. Substituting and accounting for the orthogonality
of the exp (27x - k) functions,

Jki
Gik) = — 2—-/? Y(k) all k, except fork = 0 (75)
where k2 = k} + k3 + k?. From this it follows that
98i
= Z \I’(k) exp (27x k) (76)
x;
From
K=exp(Y+Y)=exp(P)1+Y+Y22+:--]1 (7
taking volume averages
K=exp (P)1 +oH2+---] (78)

where o 3=(1/l;,15) [y Y'? dx. Also note that

HZISJ.[H-Y' ][ }dx

1+ Z W) exp (j2wx-1)
111213 v

kikj
. [2 2 (k) exp (j27x - k) | dx

‘P(k) —_—

exp (R27x-(1+k)) dx
Ll

=22w
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—2 \If( K)¥(K) (79)

Using ¥(—k) = ¥*(k), where the asterisk indicates complex
conjugate, and Y(K)¥*(k) = l‘lf(k)lz, the small-perturbation
solution is

K —exp(Y)Z I‘P(k| +exp ()1 + a32]5; (80)

where |W(k)|> is known as the power spectrum of the
periodic function. If the averaging volume is increased in
size, the power spectrum tends to become a function of
continuously varying variables. At the limit, the multiple
summation may be substituted with a multiple integral:

,._ —exp (¥) f S(k)dk+exp(Y)[1 +cr,/2]6,,

(81)

where S(k) is the power spectral density (i.e., the Fourier
transform of the covariance function of the stationary func-
tion Y). Equation (80) is suited for numerical computations
while (81) lends itself to analytical treatment.

Interestingly enough, (81) is identical to the result of
Gutjahr et al. [1978] which was obtained with different
means and under more restrictive assumptions. Note also
that the present analysis followed a purely deterministic
volume-averaging approach while Gutjahr et al. followed a
stochastic ensemble-averaging approach. It is important to
note that at least in this case the result which is applicable to
a random medium could be obtained from the result for a
periodic medium by taking a limit (the period tending to
infinity).

Note that for (1) one-dimensional flow (or for flow perpen-
dicular to perfect stratification), K¢ = ~exp (¥)o} + exp
(D[l + a¥2) = exp (V)[1 — o#2], which is a first-order
approximation to the harmonic mean; (2) for two-
dimensional flow with isotropic variability, in the sense that
[W(k)| = |W(k), by virtue of symmetry 2, (kk/kDI¥(K)|* =
o¥2 which means that Kf; = K§ = exp (¥); (3) for
three-dimensional flow with isotropic variability, again by
virtue of symmetry, ¥, (k;k;/k?)|¥(K)|?> = o $/3, which means
that K § = exp (Y)[1 + o #/6). Note that these results, which
were derived previously (see, for example, Gelhar and
Axness [1983) and Gelhar [1986]) with other methods, in-
volve no other assumption than the variability is isotropic.

In the small-fluctuation case, it is straightforward to an-
swer the question: what volume averages are needed for the
determination of the effective conductivity? From (80) or
(81) it is obvious that the effective conductivity depends
solely on the power spectrum of the local hydraulic conduc-
tivity. The power spectrum is the Fourier transform of the
volume-average covariance function, which could be em-
ployed instead of the power spectrum for purposes of
determination of the effective conductivity. (Incidentally,
this conclusion was reached without invoking a ‘‘Gaussian-
distribution’’ assumption. However, it is an asymptotic
result, predicated on the assumption of small fluctuations of
the logarithm of hydraulic conductivity.)

Furthermore, since an explicit expression was obtained,
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the conditions for covergence of the volume integral of (56)
and for existence of effective conductivity are obvious. The
power spectrum must be such that the summation of (80) or
the integral of (81) must be finite.

7. CONCLUDING REMARKS

This work has examined the problem of determining the
field scale or effective hydraulic conductivity of a medium
with locally variable conductivity. It was shown that the
assumptions of steady state and locally uniform flows, which
are commonly made in other approaches (an exception being
Dagan [1982], who studied slowly varying flow), are not
essential in the definition or determination of effective pa-
rameters. Instead, the essential assumption is that of ‘grad-
ually varying”’ flow. That is, that the scale of fluctuations of
the head must be large in comparison to the typical length
scale of fluctuations of local conductivity so that all values of
conductivity are sampled (equation (47)).

An example of when this condition is not satisfied is
shortly after the injection of a volume of water at a point.
The net rate of spreading depends not on a constant ‘‘effec-
tive conductivity”” but on the value of conductivity in the
neighborhood of the injection and varies with time. How-
ever, after enough time has elapsed for the mound to spread
out over an area larger than the scale of fluctuations of
conductivity, the net rate of spreading converges to a
constant, The time required for the conductivity to become
a constant is given approximately by I?S/K, where [ is the
scale of conductivity fluctuations, K is a typical value of
conductivity, and S is the specific storage coefficient. This
result is in general agreement with that of Dagan [1982].

Of course, any representation of a locally heterogeneous
medium by an equivalent homogeneous medium with an
effective conductivity is bound to be incomplete in that the
latter cannot describe variability of the head at the scale of
local conductivity fluctuations. However, if such variability
is deemed unimportant for the application at hand, the
concept of the effective conductivity is a useful one.

Key results of this analysis are two equations which must
be solved for the numerical determination of the effective
conductivity. The validity of the approach was verified by
comparison with the results of cases for which results are
currently available.

APPENDIX

Consider (30) and the periodic boundary conditions (31a)-
(32¢). We will investigate the large-time behavior of the
solution to this problem.

The solution is necessarily of the form

%

alxi, xnx, = 2 2 2 Ak, kg, ks, 1)

ki=-x ky=—-x ky= —

. e}'Zﬂ(kp\'l/[[ + kaxafly + kaxafly) (Al)

because the complex exponentials form a complete orthog-
onal basis for functions defined over an elementary volume
and having periodic boundary conditions.

Integrating (Al) over V,

f a(x, 1) dx = 11,1340, 0, 0, ) (A2)
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which should be 1 because of the initial condition, (3), and
continuity. Thus

A(0,0,0,1) = (A3)

1‘1713

The other (generally complex) coefficients are found by
substituting in (30)

__Zax,,,%:( 6x,,>=0

(Ad)

yielding

D>

ky=-x kr=-x ky=-—x

kn.k
+ 4772 Z 2 Dmn 1'"[ n }e_l:‘n‘(k|X|/’1 + kaxalla + kaxafls) 0 (AS)
m n min

) {ff—nwzz by

. 9Xm I,,

From (AS), again because the complex exponentials are a
complete basis, the bracketed expressions must vanish for
every (ky, k;, k3):

kmkn
——fszZ 4n2221)m,. A=0
n ax,,, ,,, mln
for every (ky, k3, k3) (A6)
The solution of this first-order linear equation is
Alky, k2, k3, 1) = Alky, k2, k3, 0)
aD iy kp
“exp | 27 Z 2 i
X ln
kmkn
“exp | —4x’ Z E D - (A7)
m n
Taking absolute values,
IA(klw k29 k3’ t)l = }A(kla k2y k3v O)I
k ik
-exp | —4n° E 2 D,,,,, t (A8)

mn

D is positive definite which means that 2, 2, D,,
(k,pk, /1) > 0 except in the special case that k| = k, =
ky = 0. Thus all terms except for the constant one decay
exponentially (the high-frequency components vanishing the
fastest) and

. -1
: when t>| > ZD,,,,,A'"—:("

[mn

A9
Lilyly (A%

a(x, 1) =
m n

for all (k, k3, k3)

We may define the relaxation time as the maximum value
of [Z,, Z, Dpun kpwkp/l,l,)] ™. An estimate of the relaxation
time is I*/D, where [ is a length characteristic of the perio-
dicity and D is typical diffusion value. This result is essen-
tially the same with that of Dagan [1982]) who followed a
different methodology. Using Dagan’s results, it can be
shown that the relaxation time can be quite short. For
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example, it is of the order of minutes or hours for three-
dimensional flow in relatively permeable formations with
conductivity correlation lengths of the order of a few meters.
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