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Abstract.

A geostatistical approach to contaminant source estimation is presented. The

problem is to estimate the release history of a conservative solute given point
concentration measurements at some time after the release. A Bayesian framework is
followed to derive the best estimate and to quantify the estimation error. The relation
between this approach and common regularization and interpolation schemes is discussed.
The performance of the method is demonstrated for transport in a simple one-
dimensional homogeneous medium, although the approach is directly applicable to
transport in two- or three-dimensional domains. The methodology produces a best
estimate of the release history and a confidence interval. Conditional realizations of the
release history are generated that are useful in visualization and risk assessment. The
performance of the method with sparse data and large measurement error is examined.
Emphasis is placed on formulating the estimation method in a computationally efficient
manner. The method does not require the inversion of matrices whose size depends on
the grid size used to resolve the solute release history. The issue of model validation is

addressed.

Introduction

In recent years, hydrogeologists have placed increasing em-
phasis on modeling contaminant transport in the subsurface.
One important aspect of this problem is identifying the source
of the contamination. For a variety of legal and regulatory
reasons it is often necessary to determine over what time pe-
riod and at what concentration contaminants were actually
released. The release history needs to be inferred from a lim-
ited number of point concentration measurements. Over the
years a variety of methods have been developed to solve this
problem. Skaggs and Kabala [1994] used Tikhonov regulariza-
tion to transform the ill-posed (i.e., algebraically underdeter-
mined) inverse problem into a minimization problem with a
unique solution. Skaggs and Kabala [1995] applied the method
of quasi-reversibility to solve the problem. Gorelick et al. [1983]
used linear programming to estimate the location and magni-
tude of steady state tracer injections. Bagtzoglou et al. [1992]
used particle tracking in reverse time to estimate a probability
distribution of the original solute position. Wagner [1992] de-
veloped a deterministic approach for the combined estimation
of model parameters and the solute source characteristics. A
brief summary of these methodologies and others is given by
Skaggs and Kabala [1994].

To date, however, Bayesian analysis has not been applied to
the problem of pollutant source characterization as it has been
to other aspects of hydrogeology. Hydrogeologists have used
Bayesian theory and geostatistical techniques to estimate hy-
draulic head and conductivity fields for many years [e.g., Hoek-
sema and Kitanidis, 1984; Dagan, 1986; Kitanidis, 1986, 1995;
Tarantola, 1987], but they have overlooked the applicability of
these techniques to the problem of source identification. There
are many advantages to developing a method of contaminant
source identification within the geostatistical and Bayesian
framework.
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There will always be uncertainty in contaminant concentra-
tion estimates and release history. It makes sense therefore to
treat these quantities as random functions that can be de-
scribed by their statistical properties. In this framework, esti-
mation uncertainty is recognized and its importance can be
determined. Bayesian analysis provides for the quantification
of estimation error and aids in the evaluation of the sources of
uncertainty. A major advantage of the geostatistical approach
is that it allows for the validation and improvement of the
chosen model. The proposed method is very general and in fact
includes Tikhonov regularization and many common interpo-
lation schemes as special cases. Often in practice, one of these
interpolation schemes is adhered to blindly without regard to
whether or not it is appropriate for the problem at hand. In
contrast, the geostatistical approach allows us to choose the
scheme that is most consistent with the data and other infor-
mation from a virtually infinite list including, but not limited to,
the aforementioned ones. Model parameters may be fitted to
the data in a systematic fashion. The procedure for checking
whether the model is adequate or should be improved is called
model validation or model criticism.

This paper presents the methodology and demonstrates its
versatility. The first section reviews the algorithm used to find
the best estimate following the geostatistical approach, fol-
lowed by a brief discussion of model validation. The geostatis-
tical approach is then applied to estimating the release history
of a conservative solute. Conditional realizations of possible
solutions are also generated to show what the actual solution
might look like given the available information. The perfor-
mance of the method in an application with sparse data and
large measurement error is demonstrated. The most compu-
tationally efficient forms of the equations are presented be-
cause in the end, a method is practical only if it is cost effective
to employ.

General Methodology

The objective is to estimate an unknown function, in this
case the release history, which is a function of time. For con-
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venience the unknown function is represented as a random
process because there is uncertainty associated with the func-
tion and its true value may never be found. However, we can
imagine the set of all possible functions that fit the data and are
consistent with additional information. In a Bayesian ap-
proach, each of these functions is assigned a probability that it
is the solution. The expected value of this set is sought as a best
estimate along with its covariance as a measure of the estima-
tion uncertainty.

The standard estimation problem may be expressed in the
following form:

z=h(s,r)+v

€]

where z is an m X 1 vector of observations and sisann X 1
“state vector” obtained from the discretization of the unknown
function that we wish to estimate. The vector r contains other
parameters needed by the model function h(s, r). For example,
r might include unknown aquifer parameters such as the ve-
locity or dispersivity. In practice, these parameters may also
need to be estimated, but in this work we will assume they are
known perfectly. Thus h(s, r) reduces to h(s). The measure-
ment error is represented by the vector v. Following geostatis-
tical methodology, s and v are represented as random vectors.
We shall assume that v has zero mean and known covariance
matrix R. Furthermore, we will model s, the unknown, as a
random vector with expected value

E[s] = Xp (2)

where X is a known n X p matrix and 8 are p unknown drift
coefficients. The covariance of s is

Q(68) = E[(s — XB)(s — XB)]

where Q(0) is a known function of unknown parameters 6. A
simplification occurs if the function h(s) is linear with respect to
s or if we can linearize the function. In fact, for conservative solute
transport, the relation between the solute observations z and the
solute input s is linear, so that we can rewrite equation (1) as

3)

where H is a known matrix. We now wish to find the estimate
of s that maximizes its posterior probability. The approach
used is detailed by Kitanidis [1995] and reviewed below.

The estimation procedure is divided into two parts. First the
optimal structural parameters are found, and then the unknown
function is estimated. The structural parameters 0 are estimated
by maximizing the probability of the measurements given 6:

z=Hs +v

p(z|0) o« |Z|7VIXTHTS 'HX| " exp [— %ZTE”Z] (4)
where
S =HQH” + R (5
E=3"-3"HXX™HZ 'HX) 'X"H'Z" (6)
Maximizing p(z|0) is equivalent to minimizing
L(0) =3In |3| + 3In [XTH'S 'HX| + 3227z (7)

Note that the drift parameters have been eliminated from the
analysis by integrating over all B [see Kitanidis, 1995]. This
process removes the bias caused by the unknown coefficients S.
This minimization can be achieved by taking derivatives of
L (6) with respect to 6 and setting them to zero. Define
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oL 1 9%\ 1
9= 50, 2"\ " a0,) 27| %

where the ith element of 0 is 0,.

These equations can be solved numerically. The recom-
mended procedure is to apply Gauss-Newton iterations. Form
the Fisher information matrix

P 1 _ 0% 93 9
i~ 2 = 56,7 90, ©)

and update the previous estimate of 6,
=6 —-F'g (10)

For the examples that will be discussed below, it was necessary
to apply the Marquardt modification by replacing F~' with
(F~' + AI), where I is the identity matrix and A is a positive
parameter. The mean square estimation error of the structural
parameters can by approximated using F~' and the Cramer-
Rao inequality.

Once the iterations have converged, form and solve the
system

P - HX][ AT HQ
HX)T : 0 M X7

where A is a m X n matrix of coefficients and M is p X n
matrix of multipliers. The best estimate of the function is

§= Az (12)

and its covariance is

V=—-XM+ Q- QH'A” (13)

It should be noted that the solution does not require the
inversion of Q or any matrix with dimensions which depend on
the number of grid points. The number of operations needed
to calculate 8, V and 9L/ 6, is on the order of nm.

This method is elegant but does not enforce the nonnega-
tivity of concentration. If this constraint is imposed, the com-
putational time increases. However, a solution can be found by
working in a transformed space and solving the equations
iteratively. This method will be developed below.

Instead of using concentration we will use a transformation
of the concentration [Box and Cox, 1964]. Define

§=a(s’-1) (14)

and the inverse operation
AN 15
s= (" (15)

where « is a positive number. The parameter o may be chosen
as small as possible while ensuring that § > —a. The exact
value of « used has little impact on the method’s overall per-
formance. (A method for the optimization of parameter « is
given by Kitanidis and Shen [1996].) However, smaller values of
a cause less drastic transformations, which tends to help the
method converge slightly more rapidly. When in doubt, a very
large « value may be used without fear of adversely affecting
the solution. Notice that at the limit

lim (a(s”*— 1)) =1In (s)

a—%
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The logarithm transformation could be used; however, it en-
counters difficulty when the concentration is zero. As a result
of this transformation, s is constrained to be nonnegative and
the relationship between § and s is one to one. It should be further
noted that the claim is not that this transformation is inherently
the best, but only that it is a useful mathematical tool for enforc-
ing the nonnegativity constraint, thus solving the problem at hand.
Thus equation (1) in the transformed space becomes

z=h@E)+v (16)
where h(8) = h[((§ + a)/a)].

In this case the transfer function h(8) is not linear with
respect to the transformed unknown §. For this reason the
solution is arrived at iteratively. The best estimate can be
found by following the quasi-linear procedure detailed by
Kitanidis [1995]. To summarize, the algorithm is as follows.

Make an initial estimate of the unknown §,. Find the deriv-
ative of h with respect to § at §:

H,= oh 17
=l (17)
Define
S = HQH/ + R (18)
zq =z — h(3) + HS, (19)
Solve
b3 - HX][ AT HQ
; .. ) « o “ v » — * o e (20)
\X)T 0 M b'd

where A is a m X n matrix of coefficients and M is p X n
matrix of multipliers. Then

S = Azg (21)

The structural parameters 6 are found by minimizing

L(0) =3In S|+ 1In [XTHS HX| + 3255 '2¢  (22)

where

E=3""-3THXXH/EHX)XH/S T (23)
In this step, z,, and H, are treated as constants. The minimi-
zation can be achieved efficiently by applying Gauss-Newton
iterations as described above. Once 0 is found, it is used to find an
updated value of §,. This two-step iterative process is continued
until §; and 6 converge. The final value of §; is the best estimate of
the transformed function, and its covariance is given by

V=-XM+ Q- QH"AT (24)

The best estimate of the unknown function is
a §1 + o « 25
s=( " (25)

The use of this transformed variable has the advantage of
returning a physically possible solution; however, the compu-
tational time is greater depending on the number of iterations
needed to converge to a solution. Fortunately, convergence is
generally rapid for the problem at hand.
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Model Validation

One of the most important steps in applying the geostatis-
tical approach is to develop a model that describes the struc-
ture of the unknown function to be estimated. Like any func-
tion, a release history can be represented through a statistical
structure. From the measurements we attempt to develop the
best possible model of this structure that describes available
information. Geostatistics gives us a methodology for develop-
ing a model and then checking it. Model development and
validation are discussed by Delfiner [1976], Dubrule [1983],
Kitanidis and Vomvoris [1983], Davis [1987], Borgman [1988],
and Kitanidis [1988]. Box and Jenkins [1976] discuss the issue
within the context of time series analysis, but the methodology
they describe is just as applicable to hydrogeological problems.

The choice of a model is far from arbitrary. It is arrived at
through careful and thoughtful analysis of the data and
through validation. In estimation, one starts with the simplest
model that is consistent with all available information. Two
principles guide the selection of a model: “indifference” and
“parsimony” [Box and Jenkins, 1976]. Indifference here means
that if there is no information suggesting a trend, then a con-
stant mean should be adopted. For example, in the problem
discussed in this paper, there is no way to know if the release
occurred as one catastrophic event, and if so, when that event
took place, or if the release was slow and gradual. Given this
lack of information the best choice is to assume a constant
mean. This accurately reflects the state of our a priori knowl-
edge. Parsimony means that the model should use as few
unknown parameters as possible; that is, additional parameters
should be introduced into the model only if they improve
significantly the ability of the model to reproduce the data.

Once the first tentative model has been selected, it must be
validated. This model validation process is discussed in a num-
ber of works [e.g., Anscombe and Tukey, 1963; Andrews, 1971;
Delfiner, 1976; Belsley et al., 1980; Box 1980; Kitanidis, 1988,
1991]. Model validation is of paramount importance, as it
allows the practitioner to reexamine the model and provides an
opportunity for improvements. This process is far superior to
blind adherence to one given model, as in previous approaches
to the source identification problem.

The purpose of this paper, however, is to demonstrate the
applicability of the geostatistical approach to the problem of
contaminant source identification. A full discussion of model
validation goes beyond the scope of this work.

Conditional Simulations

The preceding section outlined the methodology to find the
best estimate of the process and the error. At times, however,
it is useful to have an idea of how the actual process might
look, given the available information. This can be achieved by
generating realizations of the process that are conditional on
all the observations. Viewing a number of conditional realiza-
tions can aid in assessing how accurate the best estimate may
be. The procedure for generating conditional realizations is
discussed by Gutjahr et al. [1994] and Kitanidis [1995]. To
review, the approach is as follows. First, an unconditional re-
alization s, is generated. A simple and general approach is to

decompose the covariance matrix so that
Q= cCcC” (26)

and then compute the vector
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Figure 1. The contaminant release history.
Sui = Cl.li (27)

Here u, is a vector of independent, identically distributed nor-
mal variants. A realization of the error vector v, must also be
independently generated with zero mean and covariance R.
Then the conditional realization s, may be found by minimizing

(sc = 8.)'G(s, = s,) + (z+ v, = h(s))'R"(z + v, — h(s,))
(28)
with respect to s.. Here

G = Qfl _ Qflx(XTQflx)fleQfl (29)

For the transformed case, h is used, and conditional realiza-
tions of the transformed function § are computed which are
then back transformed. Note that this operation may be
achieved without explicitly calculating the inverse of Q. De-
composition of Q, however, may take considerable computa-
tional effort, which is why in practice spectral decomposition
methods, such as fast Fourier transforms, are preferred.

Simulations and Results

As was stated in the introduction, the motivation behind this
paper was to formulate the release history estimation work of
Skaggs and Kabala [1994, 1995] and others within a geostatis-
tical framework. The example problem we will examine is
modeled after the example used by Skaggs and Kabala [1994,
1995]. Let us consider the advective and dispersive transport of
a conservative solute in a one-dimensional (1-D) homogeneous
aquifer, even though the estimation method described in the
work applies to transport in any domain. Suppose the conser-
vative solute is injected at the left boundary of the aquifer and
at some later time 7" the concentration is measured at various
points in the aquifer. From this data we wish to estimate the
amount of solute injected as a function of time. Figure 1 shows
the true solution

(t — 130)? (t — 150)?
s(t) = exp <_T> + 0.3 exp <_W>

(t — 190)2>

+ 0.5 exp <— 08

(30)
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This release history is used to generate the contaminant plume
that is measured. Figure 2 shows the plume after 300 time units
and the location of the measurements. We will estimate the
release history from the data using the two methods described
above. First let us outline the specific example problem.

Example Problem

In the 1-D case we have an analytical solution

c(x, T) = f s(r)f(x, T— 1) dr (31)
0

where ¢(x, T) is the concentration at distance x from the
source and time 7. The source is a function of time and is
expressed by s(7). The transfer function f(x, ¢+ — 1) applies
the appropriate weight to the source function [Skaggs and
Kabala, 1994]:

(x — o(t — 7))?

4D(t — 7) ] (32)

X
fx, 1 =1) :72#_@([ = eXP[_

The velocity is v, and the dispersion coefficientis D. Letx,, i =

1, -+, m be the m points at which the measurements are
taken (in this example, m = 25. Let us discretize the time
domain into n temporal points ¢;, i = 1, --+, n, with a time
step At = T/n. In this example, At = 1 andn = T = 300.
Then we can set up the system as follows:
c(xy, T) s(ty)
c(x, T s(t
z= ( 2 ) vV, § = (32) (33)
(X T) s(t,)
f(xla T_tl) f(xl’ T_tn)
, T —t , T —t,
H = As fx, : 1) f(x, : ) (34)
f(xm) T - tl) f(xma T - tn)

Again, z is the vector of known observations and s is the
unknown we wish to estimate. A realization of the estimation
error v is generated to have zero mean and covariance matrix
R(m X m). The problem will be solved using the two methods
developed in the preceding section. For this problem a con-
stant, but unknown, mean is assumed. Thus

0.4

0.35 b

=]
) o
o w

Concentration
(o)
n

0.15 ]
0.1
0.05¢

% ° s 100 150 200 250 © 300

Distance from source

Figure 2. Contaminant plume after 30 time units, with mea-
surement locations denoted by circles.
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(35)

and B is the mean of the function, an unknown scalar. The
assumed form of the mean function and the form of the co-
variance matrix are subject to validation as discussed above.

Solution 1: Unconstrained Case

In the first case the solution is not constrained to be non-
negative. The covariance of the measurement errors used was

R = o}l (36)

where o3 was assigned the value 1 X 1072 The covariance
matrix Q is assumed to have Gaussian form.
t,—t) 2)

(37)

Q(t;, t]0) = o* exp (— 2

where (¢; — t;) is the separation distance (time units) and

[7)

This covariance function is used for illustration, though it may
not be best, as will be shown later. The variance ¢ and the
characteristic time scale [ are estimated as described above.
The best estimates are

02 =0.046 = 0.0096
(38)
1=13.24 %12

The mean square errors of estimation are estimated using the
Cramer-Rao inequality. Once these parameters are estimated,
we solve for the best estimate. Figure 3 shows the best estimate
and the approximate 95% confidence interval given by the
covariance matrix V, that is the bounds are given by

(25 e, -0
_ (Myrﬂxz,T_tl)
H=Ar a

(LUILJF a) - F(x, T —ty)

s+ 2V,

where V,; are the diagonal elements of V. Five realizations
conditioned on the data are shown in Figure 4. The uncertainty
associated with the estimate can be seen by examining Figure
3. The confidence interval and the scatter of the realizations
show the degree of error in the estimate. Also note that the
solution oscillates to negative values of concentration. To solve
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Figure 3. Unconstrained case with Gaussian covariance: the
true solution (solid line), best estimate (dashed line), and ap-
proximate 95% confidence interval (dotted lines).

this problem and to a achieve a more accurate estimate, we use
the second method described.
Solution 2: Constrained Case

The solution is constrained to be nonnegative by introducing
a new variable:

§=a(s’— 1) (39)

and an initial guess of § is made (any reasonable guess will do).

Define
l~1(50) = JI (

and find the derivative of the transfer function at the initial
guess, 5.

)+ «

(40)

o

>af(x, t—7)drT

(M2 e, 71
(S(’(”%) ST 1)

(41)

(w> - f(‘an T - tn)

a

The best estimate of the function is found iteratively by apply-
ing the quasi-linear method [Kitanidis, 1995].
The covariance of the measurement errors used was

R = o7l (42)

where o was assigned the value oz = 1 X 10~ '2. The
results in Figure 5 were generated using a Gaussian covariance
matrix and « = 4. The covariance parameters were found to be
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Figure 4. Unconstrained case with Gaussian covariance: the

true solution (solid line) and five equally likely realizations

(dashed lines).

ol =1.82 * 2.86
(43)
1=17.5* 6.4

Figure 6 shows five realizations. The accuracy of the estimate
has increased significantly, as can be seen by the small error
bound and the low degree of spread in the realizations, be-
cause we introduced in the analysis the information that con-
centration is nonnegative. Note here that the confidence inter-
vals is approximated in the transformed space and the bounds
are then calculated using the inverse transformation operator.

Correspondence Between the Geostatistical Approach
and Other Estimation Schemes

An important aspect of the geostatistical method applied
here is its generality. By using certain generalized covariance
functions, many common regularization and interpolation
schemes may be duplicated. This equivalence between Bayes-
ian theory and common interpolation schemes is discussed by
among others, Kimeldorf and Wahba [1970], Matheron [1981],
Micchelli [1986], and Salkauskas [1982]. Presented below are
the results using two such common schemes.

Tikhonov regularization. Tikhonov regularization is a
commonly used method to transform an ill-posed inverse prob-
lem to a well-posed minimization problem. Skaggs and Kabala
[1994] use this method to estimate the release history. Tik-
honov regularization is generally formulated as minimizing the
function

2

Vik) = |[y(w) — f K(X, w)s(A) dX|| + «?||Ls|? (44)

where s is the function to be estimated, K is a known function
of spatial or temporal variables A and w, and « is the regular-
ization parameter. The regularization operator is generally of

the form
b dns 2
2
o= [ (G)

The first term on the right-hand side of (44) forces the un-
known function to reproduce the data. The second term en-

(45)

SNODGRASS AND KITANIDIS: CONTAMINANT SOURCE IDENTIFICATION

1.2

Concentration
o o
> o

o
N
T

0.2f 1
0 ez
0 50 100 150 200 250 300
Time
Figure 5. Constrained case with Gaussian covariance: the

true solution (solid line), best estimate (dashed line), and ap-
proximate 95% confidence interval (dotted lines).

forces smoothness or another desired property of the unknown
function. This formulation, although reasonable, has three
problems. First, there is no obvious and simple method to find
the optimal regularization parameter k. Second, as often ap-
plied, the only measure of the estimation error is given by the
scalar quantity V'(«). This quantity tells little about the uncer-
tainty associated with the estimate; i.e., it does not specify a
confidence interval (although, as was pointed out by a reviewer
of this paper, methods have been developed to compute
bounds that account for the uncertainty introduced by mea-
surement error [e.g., Weese, 1992; Provencher, 1982]). The third
problem is that it may be difficult to formulate the problem in
a computationally efficient manner. The geostatistical ap-
proach solves all of these problems.

If n = 2, which is the most popular case, then Tikhonov
regularization in one dimension is equivalent to using the
geostatistical approach for a first-order intrinsic function (i.e.,
linear trend)

o
@
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n o

0.2t 1

0 50 100 150 200 250
Time

300

Figure 6. Constrained case with Gaussian covariance: the
true solution (solid line) and five equally likely realizations
(dashed lines).
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Figure 7. Unconstrained case with cubic spline generalized
covariance: the true solution (solid line), best estimate (dashed

line), and approximate 95% confidence interval (dotted lines).

with the generalized covariance [Kimeldorf and Wahba, 1970]
0(6) = 0| (46)

where £ is the separation distance in units of time. This co-

variance matrix also corresponds to cubic spline interpolation.
For the unconstrained case, using this covariance matrix and

0% = 1 X 107 '2, the optimal covariance parameter was

§=7.82x10°+2.02x 10 (47)

The best estimate and the approximate 95% confidence inter-
val are shown in Figure 7, and five conditional realizations are
shown in Figure 8.

For the constrained case, with 0% =
6, the following result was obtained:

1 X 1072, and =

Concentration
o o o
N (o)} oo

o
o

0.2 . - -
0 150 200 250
Time

300

Figure 8. Unconstrained case with cubic spline generalized
covariance: the true solution (solid line) and five equally likely
realizations (dashed lines).
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Figure 9. Constrained case with cubic spline generalized co-
variance: the true solution (solid line), best estimate (dashed
line), and approximate 95% confidence interval (dotted lines).

§=7.07x10°5+1.33x 107 (48)

The best estimate and the approximate 95% confidence inter-
val are shown in Figure 9 and five conditional realizations are
shown in Figure 10.

Thin plate splines. Another popular interpolation method
is the thin plate spline. This method is equivalent to the
geostatistical approach with the generalized covariance [Mic-
chelli, 1986]

ola n |k h+0
0 h=0

Using this covariance matrix and 0% = 1 X 10~ '2 for the
unconstrained case, the following result was obtained:

0(6) —{ (49)

9=124x10%=21x10"° (50)

The best estimate and the approximate 95% confidence inter-
val are shown in Figure 11. Five conditional realizations are
shown in Figure 12.

.
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Figure 10. Constrained case with cubic spline generalized
covariance: the true solution (solid line) and five equally likely
realizations (dashed lines).
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Figure 11. Unconstrained case with thin plate spline gener-

alized covariance: the true solution (solid line), best estimate
(dashed line), and approximate 95% confidence interval (dot-
ted lines).

Using this covariance matrix, 0z = 1 X 107'?, anda = 6
for the constrained case, the following result was obtained.

9=1.15x10*+59x10" (51)

The best estimate and the approximate 95% confidence inter-
val are shown in Figure 13. Five conditional realizations are
shown in Figure 14. The best estimate agrees remarkably well
with the true solution.

Results With Large Measurement Error and Sparse Data

In practical applications the available data is usually sparse
and there may be a high degree of measurement uncertainty.
To illustrate how the method performs under these conditions
we consider the following example. Figure 15 shows the posi-
tion and values of the new measurements. Notice that the
measurements vary considerably from the actual plume. Here
the number of measurements is reduced to 15 and the variance
of the measurements is increased to oz = 1 X 10>, Figure
16 shows the results. For illustration purposes a Gaussian co-
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Figure 12. Unconstrained case with thin plate spline gener-

alized covariance: the true solution (solid line) and five equally
likely realizations (dashed lines).
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Figure 13. Constrained case with thin plate spline general-
ized covariance: the true solution (solid line), best estimate
(dashed lines), and approximate 95% confidence interval (dot-
ted line).

variance matrix and a constant mean are used with « = 8. The
optimal covariance parameters were calculated to be

02=10.33+0.2
[=17.4*+83

Results are presented here for only the constrained case. The
model results reflect the greater degree of uncertainty. The
size of the 95% confidence interval has increased, and the best
estimate is flatter and smoother. This is because the extreme
peaks and valleys in actual release history cannot be resolved
with the current degree of measurement error.

Conclusions

This paper has demonstrated the application of Bayesian
analysis and the geostatistical approach to the problem of
release history estimation. The method improves on previous
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Figure 14. Constrained case with thin plate spline general-

ized covariance: the true solution (solid line) and five equally
likely realizations (dashed lines).
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solutions to the problem because it is more general and makes
no blind assumptions about the nature and structure of the
unknown source function. Many common solution methods
such as least squares, splines, and Tikhonov regularization
make implicit assumptions about the statistical structure of the
unknown process. Through the geostatistical approach, only
assumptions that are supported by the data are made. The
issues of model development and validation were discussed
here. By following the two guiding principles of geostatistics
(indifference and parsimony) to arrive at tentative models, and
then by criticizing and refining the model through the valida-
tion process, meaningful estimates may be obtained.

The method provides a measure of the error associated with
the best estimate of the release history. This is extremely im-
portant in deciding how much faith to place on the estimate. It
can also help identify sources of uncertainty, thus aiding in
deciding if and where new measurements should be taken.
Measurements are often costly. If more data are needed, the
new sampling points should be located in the position where
they will do the most good. The error bounds generated with
the best estimate can aid in this decision. For example, if there
is large uncertainty at time 7 in the best estimate of the release
history, a new measurement can be taken at positionx = T,
where v is the groundwater velocity. This position corresponds
to the location of the center of mass of a pulse injection at time
T before the measurement time.

The results for the unconstrained case (Figures 3 and 4)
compare well with the results achieved by Skaggs and Kabala
[1995] using the method of quasi-reversibility. The method
presented here has the advantage that it provides a measure of
estimation uncertainty and a method for optimizing the pa-
rameters used in the model. The geostatistical method is com-
putationally efficient. The number of operations needed to
compute the best estimate is, to leading order, mn? times the
number of iterations needed to find the structural parameters,
where m is the number of measurements and # is the number
of grid points over which the release history is discretized. The
number of iterations is usually small; in this example, only five
were needed. In contrast, methods used elsewhere require
operations of the order of n>. Typically, m << n; therefore the
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Figure 15. Contaminant plume in practical application with

sparse data and large measurement error, with measurement

locations denoted by circles.
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Figure 16. Constrained case with Gaussian covariance and
large measurement error: the true solution (solid line), best
estimate (dashed line), and approximate 95% confidence in-
terval (dotted lines).

developed method is much more efficient then other ap-
proaches.

Introducing the additional information that concentration is
a nonnegative quantity improves the performance of the
method. More computational time is required because more
iterations are needed. However the method is still efficient.
The results compare well with those obtained by Skaggs and
Kabala [1994] using Tikhonov regularization. The method pre-
sented here offers the added benefit of automatically supplying
a measure of the estimation uncertainty and a means of opti-
mizing the structural parameters. Additionally, the best form
of the mean and covariance can be determined.

The generality of the method and its correspondence with
other methods have been discussed. Noting this connection
adds insight into the estimation procedure. Various types of
splines have been used in interpolation and estimation to pro-
duce estimates with a desired degree of smoothness. The cubic
spline and the thin plate spline discussed here produce very
smooth estimates (see Figures 7 and 9) that in this case agree
remarkably with the actual function. They require only one
structural parameter. If this sort of result is desired, then the
corresponding generalized covariance function may be used in
the geostatistical approach.

One limitation of the method is that the location of the
potential sources must be known. However, the method is
robust enough to handle complex cases with multiple potential
sources and spatially varying velocity field and dispersion co-
efficients. Uncertainty in the measurement error can also be
included in the analysis. It has been demonstrated that the
method performs well even with sparse and uncertain data. If
the measurement error is unknown, then o can be estimated
along with the other structural parameters.

The methodology was presented here with attention to com-
putational efficiency. All calculation needed in the estimation
process can be completed without inverting matrices whose
size depends on the discretization of the unknown parameter.
If a quick solution is desired, we recommend that the first
method (unconstrained case) be used. A solution can be found
with a minimal of computational effort. If a more accurate
solution is desired, then it may be worth it to apply the second
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method (constrained case). A number of generalized covari-
ance matrices can be used to enforce certain desired properties
on the estimate.
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