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Abstract. The inverse problem of estimating the conductivity function from head
observations is generally ill posed: Many conductivity functions are consistent with the
data. It is widely accepted now that a well-defined estimate can be obtained only if
additional information about the function structure is introduced into the problem
formulation. This work presents a method to obtain a stable and reasonable estimate that
utilizes only the data and the flow or transport model with the minimum possible
suppositions about the unknown function or its structure. The motivation is to develop a
solution that has only characteristics that are traced directly to the data and the flow or
transport model, without taking advantage of spatial continuity or other “prior
information.” The solution is obtained by minimizing the upper bound to the error, or, in
a stochastic conceptual framework, as the most likely solution given the data. This
solution, although generally not the most accurate since it neglects to utilize structural
information that may be available, is of fundamental importance and may be useful as a
benchmark. For example, by comparing this solution with other solutions, one can become
aware of how prior information or the model of spatial structure affects the solution to
the inverse problem.

1. Background

The equation of steady flow in heterogeneous isotropic po-
rous media is

­

­ xi
SK

­f

­ xi
D 5 2N (1)

where K is conductivity, f is hydraulic head, N represents
sources and sinks, and xi is a spatial coordinate. K, f , and N
vary in space. Summation is implied over an index that appears
exactly twice in a term. Consider the following inverse prob-
lem: Given N, appropriate boundary conditions, and sparse
observations of head and perhaps conductivity, estimate the
conductivity function. Reviews of the extensive literature on
such inverse problems are given by Yeh [1986], Ginn and Cush-
man [1990], Sun [1994], and others.

For practical reasons we will seek not the conductivity but its
logarithm (known as the log conductivity): The obvious advan-
tage is that at the very outset we restrict our search to non-
negative conductivity functions. In most practical applications
the domain is discretized in the process of solving the flow
equation through finite difference or finite element methods.
To fix ideas, although this discussion does not require the
discretization of the domain, consider that the domain has
been discretized and the conductivity function is represented
through a vector. Thus we search for an m by 1 vector s of log
conductivity values, for example, the log conductivity values at
the m elements of a finite element model.

Similarly, the observations are arranged into an n by 1 vector
y of observations. The relation between log conductivity and
observations may be represented in the following observation
equations:

yi 5 hi~s1, z z z , sm! 1 v i, i 5 1, z z z , n (2)

or, in vector notation,

y 5 h~s! 1 v (3)

Disregarding for a moment v, this equation expresses that for
a given s one may find y; for example, the head at an obser-
vation point can be computed from the groundwater flow
model for given log conductivity. The role of v becomes clear
when we consider that a model prediction does not have to
match exactly the observation on account of observation errors
but also model imperfections. Thus v represents deviations
between values measured in the field and those predicted by
the mathematical model and is referred to as measurement
error.

In least squares fitting we select the values s1, z z z , sm that
minimize the sum of squares of differences between measured
values and the corresponding predictions:

min
s1, . . . , sm

O
i51

n

~ yi 2 hi~s1, z z z , sm!!2 (4)

or, in vector notation,

min
s

~y 2 h~s!!T~y 2 h~s!! (5)

where the superscript T means matrix transpose. For the sake
of generality, in order to account for nonuniform magnitudes
and tendencies for simultaneous change (i.e., correlation) in
the observation errors, a weighted least squares approach is
adopted

min
s

~y 2 h~s!!TR21~y 2 h~s!! (6)

where R is an n by n positive definite matrix.
Such least squares formulations to the inverse problem are

quite popular. One of the earliest applications was given by
Jahns [1966]. In groundwater hydrology a well-known ap-
proach is the nonlinear regression method [Cooley, 1977]. In
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this method the number m of unknown variables cannot ex-
ceed the number of observations. In practice, in the nonlinear
regression approach the number of observations must exceed
the number of unknown parameters sufficiently for the error
analysis to make sense. Such least squares problems are called
algebraically overdetermined. The nonlinear regression ap-
proach is a sound and practical approach that is proper for
solving algebraically overdetermined problem. In applications
the challenge is in how to represent the log conductivity func-
tion through a small number of parameters. The usual ap-
proach is called “zonation” and consists of dividing the domain
into a small number of homogeneous zones; zonation is typi-
cally much coarser than the subdivision imposed by the grid of
the numerical model that is used for the solution of the flow
equation. This sort of parameterization undoubtedly con-
strains the resolution of the log conductivity estimate. This
method should work superbly when available information al-
lows the arrangement of the formation into a few zones that
are homogeneous for practical purposes. However, the se-
lected zonation predisposes the solution and even suppresses
information in the data about important heterogeneities when
the arrangement into zones turns out to be particularly unfor-
tunate. In addition, this approach is not intended for stochastic
analysis, for example, generation of conditional realizations
that may represent small-scale (subzone) variability.

In applications, it is desirable to achieve the maximum res-
olution of log conductivity that is possible consistent with the
mathematical model. For example, in a finite element formu-
lation it is preferable to allow every element to have a different
log conductivity; in analytical formulations that involve no dis-
cretization, one may view log conductivity as a function defined
over the domain occupied by the formation, which in an intu-
itive sense is equivalent to a vector with infinite entries (i.e.,
mathematically speaking, a function is a point in a Hilbert
space the same way that a vector is a point in a Euclidean
space). The salient and fundamental feature of this formula-
tion, which is the focus of this work, is that the number of
unknown values m is much larger than the number of obser-
vations n, m .. n. But this means that there are many
solutions that reproduce the data because there are more un-
knowns than measurement equations that can be used for the
determination of the unknowns. Such problems are known as
algebraically underdetermined. Thus the criterion of (6) does
not have a unique minimum, and the minimization yields a
solution that depends on the initial guess, number of iterations,
computer accuracy, etc. Solutions typically contain spurious
features, that is, characteristics that although consistent with
the data appear only in particular solutions. It is unreasonable
to pick at random one of these solutions and anoint it “best
estimate.” Instead, common sense dictates that a best estimate
should include only features that are somehow common to all
mathematical solutions.

Neuman [1973] argued that the best estimate should be
selected by considering a second objective: physical plausibil-
ity. This may be achieved by adding to the term that penalizes
deviations of predictions from observations, another term that
penalizes deviations of log conductivity from what other infor-
mation suggests as a physically reasonable solution. Gavalas et
al. [1976] arrived at a combined criterion of the form

min
s

$~y 2 h~s!!TR21~y 2 h~s!! 1 ~s 2 m!TQ21~s 2 m!% (7)

Interpreting the Bayesian approach of Gavalas et al. in intui-
tive terms, the vector m represents a “prior” estimate of s,
which means based on data other than y. The matrix Q repre-
sents the accuracy of this prior estimate. In the combined
criterion the first term penalizes deviations of model predic-
tions from observations and the second term penalizes devia-
tions of log conductivity from the prior estimate. The matrix Q
serves to weigh the second term against the first: the “larger”
the Q, the less important the second term. The new optimiza-
tion problem should, if properly constructed, have a unique
solution. This formulation is appealing and has been used
again and again in the solution of inverse problems.

In practice, the selection of the prior-information terms m
and Q is not a trivial matter. Putting too much faith in a badly
chosen m is bound to affect detrimentally the results. On the
other hand, putting too little trust in m means failing to take
advantage of information and may result in nonunique solu-
tions to the minimization problem. Another issue is that in
many cases there is no rational way to arrive at a m using prior
information, but there may be information (prior or extracted
from the observations that are used in the inverse problem)
about the spatial continuity of log conductivity. Equation (7)
requires some modification to be able to incorporate informa-
tion of this type. The geostatistical approach [Kitanidis and
Vomvoris, 1983] was developed to address such issues. An
important premise of this approach, which will be described
later, is that the additional information that is used in the
solution of the problem is about the structure (such as spatial
continuity) of the log conductivity and depends on prior infor-
mation and also on the data. Similar considerations have mo-
tivated the development of the “Bayesian maximum likeli-
hood” approach [e.g., Carrera and Neuman, 1986; Loaiciga and
Marino, 1987] which however differs from the geostatistical
approach (as discussed by Kitanidis [1996]).

From the discussion above it is clear that in both the over-
determined and the underdetermined formulations, the solu-
tion depends on the measurements and also on the parame-
terization. In the former case the solution depends on how the
formation is subdivided into zones; in the latter formulation,
the solution depends on prior information (the prior best es-
timate and its covariance) or on the assumed structure of the
function.

The objective of this work is to develop a methodology that
introduces the minimum of additional information. The poten-
tial advantage of such an approach is that it would allow the
observations to “speak for themselves”. Two different deriva-
tions will be presented: one based on minimization of the error
norm and one based on a stochastic conceptual model.

2. Minimum Norm Formulation
In this section, we make no assumption about the unknown

vector s other than that it has a finite norm, as will be discussed
later. To simplify the analysis, we will start with the special case
that the observation equation is linear,

h~s! 5 Hs (8a)

that is,

y 5 Hs (8b)

where s is the unknown, y is the observations, H is an n by m
known matrix, and m . n . Consider also that n rows of H are
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linearly independent; otherwise, some of the observations are
redundant or inconsistent, and this should be rectified before
proceeding.

A linear inversion scheme is a reasonable choice, that is,

ŝ 5 Ly (9)

where ŝ is the estimate of s. The error is

e 5 s 2 LHs 5 ~I 2 LH!s (10)

We may impose a number of conditions on the error vector
through our selection of matrix L. First, assume we change by
z the datum used to quantify s. This is equivalent to shifting the
unknown vector by zu, where u is an m by 1 vector of 1s.
Obviously, the error should be unaffected by such a change:

~I 2 LH!uz 5 0 (11)

Since z is arbitrary, the only way to guarantee that this condi-
tion will be met is by enforcing the constraint:

LHu 5 u (12)

Our second concern is to make the length of the error
vector, indicated by iei, as small as possible. The Euclidean
(also known as Frobenious or Schur) norm of matrix A is by
definition

iAi 5 $Tr@ATA#%1/ 2 5 H O
i

O
j

Aij
2J 1/ 2

(13)

where “Tr” indicates matrix trace. A basic property of a norm
is that iABi # iABi iBi. Thus

iei 5 i~I 2 LH!si # iI 2 LHi isi (14)

We can minimize the upper bound on the error norm by
selecting the L that minimizes iI 2 LHi.

The two requirements have thus led to the constrained min-
imization problem:

min Tr @~I 2 LH!T~I 2 LH!# (15)

subject to constraint (12).
The solution may be obtained readily through the method of

Lagrange multipliers (see Appendix A). Finally, the estimate is

ŝ 5 HTj 1 ub (16)

where the n by 1 vector j and the scalar b satisfy the system of
n 1 1 linear equations:

F HHT

~Hu!T

Hu

0 G F j

bG 5 F y

0G (17)

One may give the following intuitive interpretation to the
system of equations, given the estimator of (16). The first
equation in (17) is obtained by considering that the estimate
must reproduce the given data,

y 5 Hŝ 5 HHTj 1 Hub (18)

To obtain the second equation, interpret b as the arithmetic
mean of the estimate ŝ (remember that u is an m 3 1 vector
of 1s), that is,

b 5
1

uTu
uTŝ (19)

But from (16),

uTŝ 5 uTHTj 1 uTub (20)

Since the first term equals the last term, the middle term must
vanish.

We briefly mention the special case in which the constraint
(12) is redundant: when the uT is linearly dependent on the
rows of H. Then the minimization of the norm, (15), yields the
result:

ŝ 5 HTj ~HHT!j 5 y (21)

or, explicitly,

ŝ 5 HT~HHT!21y (22)

which is identical with the renowned method of Backus and
Gilbert [1967].

This is the basic difference between the method presented
here and that of Backus and Gilbert: We enforce (unless it is
redundant) the constraint (12). Because the method of Backus
and Gilbert does not enforce that requirement, its estimate is
affected if one changes the datum for assigning values to s
because the estimates are always biased toward the datum
value! The Backus and Gilbert solution was apparently in-
tended for cases where the data dominate the estimate suffi-
ciently to prevent the bias from becoming conspicuous or
where it does make sense to push the estimate toward zero.
This method may not perform satisfactorily under different
circumstances. The Backus and Gilbert solution is the one with
the smallest norm while the solution presented here has the
smallest norm of fluctuations from its mean; thus the former is
called smallest solution while the latter may be called most
uniform solution. These designations are accurate, but it
should be kept in mind that their raison d’être is that they
minimize bounds on the estimation error.

The approach presented in this section can be extended to
the case of nonlinear measurement equation, through succes-
sive linearizations. We will deal with this issue within the sto-
chastic formulation where the meaning of the nonlinear esti-
mation will be more transparent and intuitive as a weighted
least squares approach.

3. Stochastic Formulation and Least Squares
3.1. Model

In the stochastic approach, information about the unknown
log conductivity function s( x) is represented through statistical
moments. The a priori moments of s( x) are deterministic
functions that may involve a few unknown parameters. In the
prevailing approach, only the first two moments, the mean
function and the covariance function, are utilized. A conve-
nient representation of the mean function is

m~ x! 5 c~ x! 1 O
i51

p

Xi~ x!b i (23)

where c( x) and Xi( x), i 5 1, z z z , p are known functions and
b i are unknown parameters. For example, Kitanidis and Vom-
voris [1983] used a constant but unknown mean: c( x) 5 0,
p 5 1, and X1( x) 5 1. The covariance function is usually a
function of the separation vector q( x 2 x9; u), where u
represents a few parameters that need to be adjusted from
data.
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It is natural and convenient to arrange the n observations in
a vector, y. Similarly, it is convenient to consider that the
unknown function has been discretized into an m by 1 vector,
s. We are interested in situations where m .. n. The function
discretization is mathematically unessential but expedient be-
cause it allows us to derive solutions, even analytic ones, with-
out recourse to Hilbert or Banach spaces. A priori, the vector
s is random with mean

m s 5 E@s# 5 c s 1 X sb (24)

(where b is the p 3 1 vector of unknown parameters, cs is a
known vector of dimension m; Xs is m by p matrix) and
covariance matrix Qss.

3.2. Approach

We now give a synopsis of the stochastic approach in a
Bayesian framework [Kitanidis, 1986] abridged for the case
that the covariance is known. Bayes theorem states that the a
posteriori probability distribution of s and b is proportional to
the likelihood of the data given (s, b) times the a priori dis-
tributions of s and b:

p0~s, b! } p~y us, b! p9~s, b! (25)

Since a priori s and b are independent and the prior of b is
noninformative, that is, p9(b) } 1,

p9~s, b! } p9~s!

} exp@21
2
~s 2 c s 2 X sb!TQ ss

21~s 2 c s 2 X sb!# (26)

under the assumption that p9 is Gaussian. The measurement-
error vector v is modelled as random, with Gaussian probabil-
ity distribution with zero mean and covariance matrix R. The
likelihood is

p~y us, b! } exp@2 1
2

~y 2 h~s!!TR21~y 2 h~s!!# (27)

The posterior distribution has thus been derived, although
its brute force computation for an arbitrary measurement
equation is generally impractical. In applications we are inter-
ested in obtaining best estimates and error estimates or
bounds. The straightforward way is to compute as best esti-
mates the values of s and b that maximize the posterior pdf, a
procedure known as maximum a posteriori (MAP) estimation.
This is equivalent to minimizing the negative logarithm of
p0(s, b) with respect to s and b,

C1 5 ~y 2 h~s!!TR21~y 2 h~s!!

1 ~s 2 c s 2 X sb!TQ ss
21~s 2 c s 2 X sb! (28)

This is a weighted least squares criterion, just like the one in
(7). The first term represents the requirement to reproduce the
observations, and the second term represents the requirement
for the function estimate to be close to the prior mean. The
second term thus serves to “regularize” the problem, that is, to
produce an optimization problem that has a unique and well-
defined solution.

Although the criterion of expression (28) is simple and intui-
tive, keep in mind that the objective is the estimation of just s.
Thus the relevant distribution is the marginal posterior pdf of s:

p0~s! 5 E p0~s, b! db (29)

This integration is easy to perform:

p0~s! } exp@2 1
2

~y 2 h~s!!TR21~y 2 h~s!!#

z exp@2 1
2

~s 2 c s!
TG~s 2 c s!# (30)

where

G 5 Q ss
21 2 Q ss

21X s~X s
TQ ss

21X s!
21X s

TQ ss
21 (31)

Then the MAP estimate is obtained by minimizing with respect
to s the criterion:

C2 5 ~y 2 h~s!!TR21~y 2 h~s!! 1 ~s 2 c s!
TG~s 2 c s! (32)

It is noted parenthetically that the same criterion could be
obtained if the expression of (28) were minimized with respect
to b given s and then this expression were substituted into (28).
That is why it is also accurate to state that (32) is obtained from
(28) by eliminating b, whereas in the Bayesian interpretation
one should say that (32) is obtained from (28) by averaging
out b.

We will now focus on criterion C2, equation (32), which is
more general than expression (7): expression (7) is obtained
from expression (32) by eliminating terms that involve Xs. The
MAP estimate of s is obtained by minimizing C2. There is
another important advantage in using criterion (32) as starting
point. Consider for example that a solution that meets certain
criteria of flatness or smoothness is sought. One may then set
cs 5 0 and adopt an appropriate G (using the concept of
generalized covariance functions) that will have the desired
effect.

3.3. Minimum Structure Model

In contrast with the geostatistical approach that strives to
identify the most appropriate structure and thus incorporate
useful information into the estimation, here we will use the
least informative or minimum-structure model: that is, the
model that supposes the least about the unknown function.
What is this model? A rigorous treatment of this subject would
require a serious incursion into information theory, although
through common sense and intuition the answer may be al-
ready obvious to many readers. We introduce the following
postulate:

For a random function with mean square value, the mini-
mum-structure model is one where s ( x ) is Gaussian-
distributed with mean

m~ x! 5 b (33)

where b is unknown and covariance function

q~ x 2 x9! 5 H u x 5 x9

0 x Þ x9
(34)

where u3 `. That is, the mean is constant but unknown, and
the covariance is, in the geostatistical terminology, nugget ef-
fect with arbitrarily large variance.

For this model

Q ss 5 uI (35)

where I is the m by m identity matrix. The X matrix is written
for convenience:

X s 5 qu (36)

KITANIDIS: MINIMUM STRUCTURE SOLUTION2266



where q is an arbitrary scalar (which may be chosen purely for
convenience in numerical computations) and u is an m by 1
vector consisting of 1s.

G 5
1
u

@I 2 u~uTu!21uT# 5
1
u

G0 (37)

where G0 is a symmetric matrix with m 2 1 eigenvalues equal
to unit and 1 eigenvalue equal to zero. Thus our objective is to
minimize:

C 5 ~y 2 h~s!!TR21~y 2 h~s!! 1
1
u

sG0s (38)

A cursory look at (38) might suggest that for infinite u there is
no unique solution, because the second term that regularizes
the solution vanishes, as expected since this is the no-prior-
information case. However, in the next section a more careful
examination will demonstrate that a unique and well-defined
solution does exist. This is achieved by developing the solution
in an appropriate form for finite u and then considering the
limit when u 3 `.

4. Obtaining the Estimate
The MAP estimate ŝ must satisfy the equation obtained by

setting the derivative of C with respect to s equal to zero,

2~y 2 h~ ŝ!!TR21H 1
1
u

ŝTG0 5 0 (39)

where H is n by m matrix with Hij 5 ­hi/­sj. Also, for
convenience, we will set q equal to u.

4.1. Linear Case

In the special case that the observation equation is linear,
equation (8), the solution might be found from the linear
vector equation:

FHTR21H 1
1
u

G0G ŝ 5 HTR21y (40)

However, this direct approach led to a system of linear equa-
tions that is unsatisfactory because (1) it involves solving a
system of order of m, where m can be an arbitrarily large
number, and (2) as u 3 ` the matrix of coefficients tends to
become singular because its rank tends to become n , which is
less than its order, m. Thus the solution to this system tends to
become unstable and nonunique.

We can rework the result using matrix identities in order to
obtain what is widely known as kriging-cokriging equations. As
shown in Appendix B,

ŝ 5 ub 1 HTj (41)

where the n by 1 matrix j and the scalar b are found from the
solution of a system of n 1 1 equations with n 1 1 unknowns.

3HHT 1
1
u

R

~Hu!T

Hu

0
4 F j

bG 5 F y

0G (42)

At the limit, the (1/u)R term vanishes.

4.2. Nonlinear Case

The observation equation h(s), equation (38), is typically
nonlinear and must be solved using an iterative method. Let s̃
be the most recent guess, which may be the starting guess or
the result of a previous iteration. The essence of the celebrated
Gauss-Newton method is to linearize the observation function
about the most recent guess,

2~y 2 h~ s̃! 2 H~ ŝ 2 s̃!!TR21H 1
1
u

ŝTG0 5 0 (43)

or,

2~~y 2 h~ s̃! 1 Hs̃! 2 Hŝ!TR21H 1
1
u

ŝTG0 5 0 (44)

Thus the problem has been reduced to the linear case. Thus
the guess is updated through equations of extended kriging-
cokriging:

ŝ 5 ub 1 HTj (45)

where the j and b coefficients are found by solving a single
linear system of n 1 1 equations:

3HHT 1
1
u

R

~Hu!T

Hu

0
4 F j

bG 5 F y 2 h~ s̃! 1 Hs̃

0 G (46)

Next, select ŝ as the new s̃ and repeat the procedure until
convergence is achieved. The important practical issue of
whether this approach converges will be discussed later.

It is repeated for emphasis that in this manner the weighted
least squares criterion C , equation (38), is minimized with
respect to the m dimensional vector s, although a much smaller
system of n 1 1 equations is solved thus achieving great
computational savings.

5. Noisy Data
The solution developed in the previous sections aims to

reproduce the data exactly and effectively treats the measure-
ment error term as zero. However, in applications, the mea-
surement error term is anything but negligible because it rep-
resents (1) errors in the collection and transmission of
measurements; (2) conceptual errors or limitations in the
model, such as neglecting the effects of pumping wells, re-
charge, or leakage; (3) scale discrepancies, such as when the
measured quantity is defined over a small volume in contrast to
the predicted quantity that is defined over a large volume; and
(4) computational errors in the mathematical model, which are
always present and can be significant in some cases.

In extreme cases there may be no solution that reproduces
the data. In all cases errors in the data affect the predictions,
especially if there are many observations. In fact, it is in the
nature of the problem of estimating conductivity from head
that as the density of head observations increases, the esti-
mates become more sensitive to perturbations in the observa-
tions.

To make the methodology more useful, the estimates must
become robust to perturbations in the data. This can be
achieved easily by selecting a finite variance parameter u. The
solution then loses its probity as the most likely solution given
only the data and the model; a finite u means infusing infor-
mation into the solution which may countervail information in
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the data. However, the approach supposes no spatial continu-
ity so that in a less absolute sense this is still a “minimum
structure” solution. The benefit of suppressing the effects of
errors in the data outweighs any disadvantages associated with
the infusion of limited outside information.

The value of u may be selected by the modeler through a
trial-and-error procedure or if sufficient observations are avail-
able through a systematic cross-validation method. Here we
will describe how to apply the general parameter estimation
(i.e., restricted maximum likelihood or cross validation)
method described by Kitanidis [1995] to estimate u from the data.

The method is iterative. We start with an initial estimate of
u and we proceed to find a best estimate ŝ. About this value,
linearize the h function with respect to s, that is,

h~s! 5 h~ ŝ! 1 H~s 2 ŝ! (47)

where

H 5
­h
­s U

s5ŝ

(48)

Compute

S 5 HHT 1
1
u

R (49)

y0 5 y 2 h~ ŝ! 1 Hŝ (50)

y0 and H are treated as constant in the estimation of u.
Then perform matrix inversion

F S

~Hu!T

Hu

0 G 21

5 F J

CT

C

VG
where J is an n by n matrix.

We seek u that satisfies the scalar equation

g 5 Tr @JHHT# 2
1
u

y0
T~JHHTJ!y0 5 0 (51)

Because the equation is nonlinear, it is solved iteratively. A
scheme that usually works is the Gauss-Newton method (for
restricted maximum likelihood, not to be confused with the
Gauss-Newton method for determination of s.)

u l11 5 u l 2 3Tr@JHHT# 2
1
u

y0
T~JHHTJ!y0

1
u

Tr@JHHTJHHT# 4
l

(52)

When the iterative procedure has converged, a new value of
u has been obtained and the procedure of estimating s needs to
be repeated.

6. Implementation and Examples
In weakly nonlinear cases, characterized by mild and gradual

variability, the iterative Gauss-Newton method was found to
converge relatively rapidly and to the global minimum. The
estimate does not include unwarranted bumps and is invariant
to the initial guess. However, for large and abrupt changes in
log conductivity the basic Gauss-Newton method was found to
be inadequate: It would often fail to converge, or it would
converge to a local minimum. This experience is different from
that of Kitanidis [1995, 1996], for whom the Gauss-Newton

method performed quite well. It is clear that in methods that
utilize information about the structure (particularly by requir-
ing that the solution varies continuously or smoothly) and
where the large measurement error is taken into account, the
objective function satisfies the conditions required for Gauss-
Newton to perform well. However the minimum supposition
solution relies only on the data and thus the nonlinearity in the
measurement equation may become crucial.

Finding the solution in truly nonlinear least squares is a
notoriously difficult problem. Although the nonlinear least
squares problem is one of the most studied problems, there is
unfortunately no method that is infallible or guaranteed to
work in all cases. The following quote from Draper and Smith
[1981, p. 471] sums up the situation: “ z z z given a particular
method a problem can be constructed to defeat it. Alterna-
tively, given a particular problem and a suggested method, ad
hoc modifications can often provide quicker convergence z z z .”

The performance of the Gauss-Newton method generally
improves by including line searches. That is, in each iteration,
we obtain from an initial estimate s̃0 an updated estimate s̃1.
The line connecting the two points is

s 5 s̃0 1 r~ s̃1 2 s̃0! (53)

For a number of r values (including r 5 0 and 1), solutions are
obtained and evaluated by computing the objective function.
The solution that minimizes the objective function is selected
as the most up-to-date estimate instead of always using the
value that corresponds to r 5 1. Disadvantages of the ap-
proach is that it increases the cost of computations and also is
not a panacea in strongly nonlinear cases.

We will present representative examples and will discuss the
methods that were found to work well.

6.1. A Weakly Nonlinear Case

Consider one-dimensional flow without sources or sinks be-
tween two boundaries. The flow satisfies

d
dx SK

df

dx D 5 0 (54)

where K is conductivity, f is hydraulic head, and x is a spatial
coordinate. The hydraulic head at the left boundary and the
specific discharge q are given (not the hydraulic head at the
other boundary). The problem has been rendered into a di-
mensionless form by selecting the size of the domain as unit
length for measuring x , selecting the hydraulic head at h 5 0
as the unit hydraulic length, and the specific discharge q as the
unit for measuring conductivities. There is one log conductivity
observation at x 5 0.5 and six head observations at x 5 0.1,
0.2, 0.3, 0.4, 0.7, and 0.9. For the numerical computation
and plotting, the domain was subdivided into 100 equal seg-
ments with uniform conductivity.

First, consider the solution obtained through engineering
judgment. Since the discharge is given, application of Darcy’s
law in the segment between two consecutive head observations
yields an estimate to the effective conductivity in that segment.
This is the best estimate one could obtain without using addi-
tional information about the structure of the function.

The minimum-structure inverse methodology was then ap-
plied, starting with error-free data. To account for the finite
numerical of the computer, the variance of the measurement
error was taken equal to 10214, that is,

R 5 10214I (55)
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where I is the n-dimensional identity matrix. The estimate
obtained with the method that depends solely on the data (for
1/u 3 0), which is shown in Figure 1, is exactly equal to our
engineering guess. Note that in the segment [0.9, 1] Darcy’s law
cannot be applied because the head is measured only at the
one end and the methodology yields as best estimate the mean
of the other segments. The same final result was obtained for
many different starting estimates (needed because of the iter-
ative nature of the methodology), but convergence seemed the
fastest when starting with a constant log conductivity close to
the measured log conductivity. Also, using any value u . 1026

gave practically the same final estimate of log conductivity. By
the way, a u larger than, say, 100 is an extremely large value for
a log conductivity variance.

Next, the observations were modified by introducing obser-
vation error, pseudorandom Gaussian with zero mean and
variance 0.02 and consistent with that,

R 5 4 3 1024I (56)

For the case of infinite u the methodology strives to reproduce
the data exactly and yields the estimate shown in Figure 2. In
this case the estimates are less accurate particularly where
head observations are the closest. (The reasons are obvious if
one considers that the estimate is K 5 qDL/ uDf u in every
segment between head observations, obtained from Darcy’s
law.) Next, when we use the method for noisy data, we obtain
a finite u 5 0.7, and the estimates are shown in Figure 3. The
estimated log conductivity has become considerably more uni-
form because of the lack of information in the data, but the
effect of the observations errors has been suppressed effec-
tively. The estimate when introduced into the flow equation
reproduces the data only approximately, as appropriate given
the observation error.

6.2. A Strongly Nonlinear Case

We will consider a log conductivity function that has 10
times the spread of the function seen in the previous one. In
this case the Gauss-Newton method would not converge to the
best estimate for an arbitrary initial condition, as is known to
often be the case in strongly nonlinear least squares. Never-
theless, a method was devised which worked in this as well as
in other cases examined so far:

1. Start with a constant initial estimate of s as close to the
actual mean as the data allow.

2. Utilize a u that is small enough to balance the two terms
in (38). The idea is to make the objective function nearly
quadratic in the neighborhood that contains the estimate of s.
The initial value of u may need to be extremely small.

3. Apply Gauss-Newton. If the new estimates of s are un-
even anywhere except at observation points, the Gauss-
Newton method has gone astray and one needs to return to
step 2 and reduce the value of u. Otherwise allow the Gauss-
Newton to converge to a new estimate s.

4. Increase u and return to step 3 for a Gauss-Newton
search with a new initial estimate s.

5. Continue until the results do not change any more.
A slightly different but more systematic approach to accom-

plish the same task is the following:
1. Start with a constant initial estimate of s as close to the

actual mean as possible.
2. Apply the method for noisy data starting with a suffi-

ciently small value of u.
3. After the method converges to a final u and s estimates,

increase u as much as desired.
The second method actually performed impressively in the

example problem. For no noise in the data and R as in (55), an
initial u 5 10212 was used. The iterative method updated the
estimate of u to the value 20.4 at the first iteration and to 71.6

Figure 1. Actual (solid line) and estimate (dashed line) for
weakly nonlinear noise-free case.

Figure 2. Actual (solid line) and estimate (dashed line) when
noise in the data is not taken into account.

Figure 3. Actual (solid line) and estimate (dashed line) when
accounting for error in the observations.
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at the second iteration. At that point the method converged
and the best estimate is given in Figure 4. Increasing the value
of u to any value larger than that gave estimates of s that are
indistinguishable from those shown in Figure 4.

Next error was added to the data, pseudorandom Gaussian
with zero mean and variance 0.02 and the methodology was
applied with

R 5 4 3 1024I (57)

The estimate for infinite u is depicted in Figure 5. When the
methodology for noisy data was used, an estimate of u equal to
53 was found and the corresponding estimate is given in Figure
6. By putting less weight on the data, the estimate becomes
much more uniform.

7. Discussion
The presented method has advantages and disadvantages:
1. The minimum-structure solution is of theoretical as well

as practical interest. From a theoretical standpoint the method
produces the most likely solution given the data. From a prac-
tical standpoint it is most useful as a benchmark or extreme
case, when one wants to get an estimate that relies only on the
data. However, in practice, better estimates may be obtained
by introducing some information about spatial structure, as

done for example in the geostatistical approach [e.g., Kitanidis
and Vomvoris, 1983; Dagan, 1985; Hoeksema and Kitanidis,
1984, 1985, 1989; Rubin and Dagan, 1987a, b; Wagner and
Gorelick, 1989; Hoeksema and Clapp; 1990, Kitanidis, 1995; Yeh
et al., 1995].

2. The minimum-structure solution tries to reproduce the
data exactly. Although this is a definite advantage when the
observations are free of errors, it produces artifacts when there
are observation errors. In practice, observation errors are quite
large and are expected to have a detrimental effect on the
solution; the method would then do definitely better if it re-
produced the data less faithfully. This applies to all inverse
methods. Although inverse methods are often promoted on
the basis that they reproduce the data, exact reproduction of
imprecise data is a dubious accomplishment.

For the above reasons a modification of the basic method
was introduced that accounts for the need to “filter out” the
effects of observation errors: A finite variance u is used, esti-
mated using a cross-validation technique. In this case the
method is not the truly minimum structure solution, but it still
supposes no spatial continuity. This method seems to work well.

1. The methodology seeks the most uniform function that
is consistent with the data but the solution does not have to be
either flat or smooth. In particular, we must make a distinction
between a uniform function, that (limiting attention to the
one-dimensional case) has a small * (s( x) 2 s#)2 dx, where s#
is the mean of s( x), and a flat solution that has a small
* (ds/dx)2 dx . (The integral is over the whole domain.) An
advantage of the no-structure solution is that it adjusts nicely
to sharp changes, if such changes are indicated by the data,
whereas other methods that assume spatial continuity tend to
smoothen the transition. However, the same characteristic may
be a disadvantage in that random errors may cause sharp ups
and downs.

2. A distinction is to be made between cases of weakly
nonlinear least squares where the Gauss-Newton method (“ex-
tended cokriging”) is robust and effective and cases of strongly
nonlinear least squares which involve challenging nonlinear
optimization problems. Of course, this is a concern with all
inverse methods that attempt to solve strongly nonlinear least
squares problems, such as when the variance is large. A
method was presented to solve such problems but no proce-
dure is expected to be applicable to all cases.

Figure 6. Actual (solid line) and estimated (dashed line) log
conductivity for strongly nonlinear case with errors data, using
methodology for noisy data.

Figure 4. Actual (solid line) and estimated (dashed line) log
conductivity for strongly nonlinear case with error-free data.

Figure 5. Actual (solid line) and estimated (dashed line) log
conductivity for strongly nonlinear case with errors in the data
(which are neglected by method).
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Appendix A: Lagrange Multipliers
The solution may be obtained readily through the method of

Lagrange multipliers. Introduce the Lagrangian,

Tr @~I 2 LH!T~I 2 LH!# 1 2 Tr @nT~LHu 2 u!# (58)

where n is an m by 1 vector of Lagrange multipliers

Tr@~I 2 LH!T~I 2 LH!# 1 2 Tr@nT~LHu 2 u!#

5 m 2 Tr@HTLT 1 LH# 1 Tr@HTLTLH#

1 2 Tr@~uTHTLT 2 uT!n# (59)

Take derivative [see Schweppe, 1973, p. 509] with respect to L
and set equal to zero:

22H 1 2HHTLT 1 2HunT 5 0 (60)

Combine with constraint:

F HHT

~Hu!T

Hu

0 G FLT

nTG 5 F H

uTG (61)

Or

@L n# 5 @HT u#F HHT

~Hu!T

Hu

0 G 21

(62)

Next multiply by vector Fy

0G
@L n#F y

0G 5 @HT u#F HHT

~Hu!T

Hu

0 G 21F y

0G (63)

Introduce the n by 1 vector j and the scalar b that satisfy the
system of n 1 1 equations with n 1 1 unknowns:

F HHT

~Hu!T

Hu

0 G F j

bG 5 F y

0G (64)

Then

ŝ 5 Ly 5 HTj 1 ub (65)

Appendix B: Map Estimation
Equation (40) will be transformed into a more convenient

form. Define

F 5 HTR21H 1
1
u

I (66)

S 5 HHT 1
1
u

R (67)

From matrix identity [see Schweppe, 1973, p. 496],

F21 5 uI 2 uHTS21H (68)

and also from

F21HTR21 5 ~uI 2 uHTS21H!HTR21

5 uHTS21SHHT 1
1
u

RDR21 2 uHTS21HHTR21

5 uHTS21HHTR21 1 HTS21 2 uHTS21HHTR21

5 HTS21

Then

ŝ 5 FHTR21H 1
1
u

~I 2 u~uTu!21uT!G 21

HTR21y

5 FF 2
1
u

u~uTu!21uTG 21

HTR21y

5 @F21 1 F21u@uuTu 2 uTF21u#21uTF21#HTR21y

5 HTS21y 1 F21u@uTu 2 uTF21u#21uTHTS21y

5 HTS21y 1 ~I 2 HTS21H!u@uTHTS21Hu#21uTHTS21y

5 HT@S21 2 S21Hu@uTHTS21Hu#21uTHTS21#y

1 u@uTHTS21Hu#21uTHTS21y

We write

ŝ 5 HTj 1 ub (69)

where

j 5 @S21 2 S21Hu@uTHTS21Hu#21uTHTS21#y

b 5 @uTHTS21Hu#21uTHTS21y

Note that

F S

~Hu!T

Hu

0 G 21F y

0G 5

FS212S21Hu~uTHTS21Hu!21uTHTS21

~uTHTS21Hu!21uTHTS21

S21Hu~uTHTS21Hu!21

2~uTHTS21Hu!21 G
z F y

0G 5 F j

bG (70)

Thus the j and b coefficients are found by solving a single
system of n 1 1 linear equations:

3HHT 1
1
u

R

~Hu!T

Hu

0 4 F j

bG 5 F y

0G (71)
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